References for Journalarticle 2013-17

Please note: the authoritative source for references in this article is the according PDF file.

Number of references: 47

Allen, F., and Gale, D. (2000). Financial contagion. Journal of Political Economy, 108(1):1-33. http://ideas.repec.org/a/ucp/jpolec/v108y2001i1p1-33.html

Amini, H., Cont, R., and Minca, A. (2011). Resilience to contagion in financial networks. arXiv.org, Papers 1112.5687. http://ideas.repec.org/p/arx/papers/1112.5687.html

Amini, H., Cont, R., and Minca, A. (2012). Stress testing the resilience of financial networks. International Journal of Theoretical and Applied Finance (IJTAF), 15(01):1250006-1-1. http://ideas.repec.org/a/wsi/ijtafx/v15y2012i01p1250006-1-1250006-20.html

Aoki, M., and Yoshikawa, H. (2006). Reconstructing macroeconomics. Cambridge University Press.

Bank, European (2010). Recent advances in modelling systemic risk using network analysis. Miscellaneous publication, Frankfurt am Main.

Barber, M.J. (2007). Modularity and community detection in bipartite networks. Phys. Rev. E, 76:066102. http://link.aps.org/doi/10.1103/PhysRevE.76.066102

Bargigli, L., and Gallegati, M. (2011). Random digraphs with given expected degree sequences: A model for economic networks. Journal of Economic Behavior & Organization, 78(3):396-411. http://ideas.repec.org/a/eee/jeborg/v78y2011i3p396-411.html

Battiston, S., Gatti, D.D., Gallegati, M., Greenwald, B., and Stiglitz, J.E. (2012). Liaisons dangereuses: Increasing connectivity, risk sharing, and systemic risk. Journal of Economic Dynamics and Control, 36(8):1121 - 1141. http://www.sciencedirect.com/science/article/pii/S0165188912000899

Bianconi, G. (2008). The entropy of randomized network ensembles. EPL (Europhysics Letters), 81(2):28005.

Bianconi, G. (2009). Entropy of network ensembles. Phys. Rev. E, 79:036114. http://link.aps.org/doi/10.1103/PhysRevE.79.036114

Boss, M., Elsinger, H., Summer, M., and Thurner, S. (2004). Network topology of the interbank market. Quantitative Finance, 4(6):677-684. http://ideas.repec.org/a/taf/quantf/v4y2004i6p677-684.html

Brunnermeier, M.K. (2009). Deciphering the liquidity and credit crunch 2007-2008. Journal of Economic Perspectives, 23(1):77-100. http://ideas.repec.org/a/aea/jecper/v23y2009i1p77-100.html

Castrén, O., and Kavonius, I.K. (2009). Balance sheet interlinkages and macro-financial risk analysis in the euro area. European Central Bank, Working Paper Series 1124. http://ideas.repec.org/p/ecb/ecbwps/20091124.html

Chauhan, S., Girvan, M., and Ott, E. (2009). Spectral properties of networks with community structure. Phys. Rev. E, 80:056114. http://link.aps.org/doi/10.1103/PhysRevE.80.056114

Cont, R., Moussa, A., and Santos, E.B. (2012). Network structure and systemic risk in banking systems. In: Banking Systems, in Fouque, J.P., & Langsam, J. (eds.),Handbook of Systemic Risk, Cambridge University Press., ed. by Fouque, J.P. and Langsam, J., Cambridge University Press.

Craig, B.R., and Peter, G. (2009). Interbank tiering and money center banks. Federal Reserve Bank of Cleveland, Working Paper 0912. http://ideas.repec.org/p/fip/fedcwp/0912.html

Donetti, L., and Muñoz, M.A. (2005). Improved spectral algorithm for the detection of network communities. AIP Conference Proceedings, 779:104–107. http://ergodic.ugr.es/mamunoz/papers/PROCAIPCommunit:pdf

Elsinger, H., Lehar, A., and Summer, M. (2006). Systemically important banks: An analysis for the European banking system. International Economics and Economic Policy, 3(1):73-89. http://ideas.repec.org/a/kap/iecepo/v3y2006i1p73-89.html

Fortunato, S., and Barthélemy, M. (2007). Resolution limit in community detection. Proceedings of the National Academy of Sciences, 104(1):36-41. http://www.pnas.org/content/104/1/36.abstract

Fortunato, S. (2010). Community detection in graphs. Physics Reports, 486(3–5):75 - 174. http://www.sciencedirect.com/science/article/pii/S0370157309002841

Fujiwara, Y., and Aoyama, H. (2008). Large-scale structure of a nation-wide production network. The European Physical Journal B, 77(4):565-580.

Fujiwara, Y., Aoyama, H., Ikeda, Y., Iyetomi, H., and Souma, W. (2009). Structure and temporal change of the credit network between banks and large firms in Japan. Economics: The Open-Access, Open-Assessment E-Journal, 3(2009-7). http://dx.doi.org/10.5018/economics-ejournal.ja.2009-7

Gai, P., and Kapadia, S. (2010). Contagion in financial networks. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science, 466(2120):2401-2423. http://rspa.royalsocietypublishing.org/content/466/2120/2401.abstract

Jackson, M.O. (2008). Social and economic networks. Princeton University Press.

Lancichinetti, A., and Fortunato, S. (2009). Community detection algorithms: A comparative analysis. Physical Review E, 80(5):056117, November. http://arxiv.org/abs/0908.1062

Lancichinetti, A., Fortunato, S., and Kertész, J. (2009). Detecting the overlapping and hierarchical community structure in complex networks. New Journal of Physics, 11(3):033015. http://arxiv.org/abs/0802.1218

Lancichinetti, A., and Fortunato., S. (2009). Benchmarks for testing community detection algorithms on directed and weighted graphs with overlapping communities. Physical Review E, 80(1):016118, July. http://arxiv.org/abs/0904.3940

Lelyveld, I., and Liedorp, F. (2006). Interbank contagion in the Dutch banking sector: A sensitivity analysis. International Journal of Central Banking, 2(2). http://ideas.repec.org/a/ijc/ijcjou/y2006q2a4.html

Masi, G., Fujiwara, Y., Gallegati, M., Greenwald, B., and Stiglitz, J.E. (2009). An analysis of the japanese credit network. arXiv.org, Papers 0901.2384. http://ideas.repec.org/p/arx/papers/0901.2384.html

Mistrulli, P.E. (2011). Assessing financial contagion in the interbank market: Maximum entropy versus observed interbank lending patterns. Journal of Banking & Finance, 35(5):1114-1127. http://ideas.repec.org/a/eee/jbfina/v35y2011i5p1114-1127.html

Mitrovic, M., and Tadic, B. (2009). Spectral and dynamical properties in classes of sparse networks with mesoscopic inhomogeneities. Physical Review E, 80(2):026123. http://arxiv.org/abs/0809.4850

Molloy, M., and Reed, B. . A critical point for random graphs with a given degree sequence. Random Structures and Algorithms, (6):161–179. http://dl.acm.org/citation.cfm?id=1943750

Newman, M.E.J., and Girvan, M. (2004). Finding and evaluating community structure in networks. Physical Review E, 69(2):026113. http://arxiv.org/abs/cond-mat/0308217

Newman, M.E.J., Strogatz, S.H., and Watts, D.J. (2011). Random graphs with arbitrary degree distributions and their applications. Physical Review E, :02611. http://arxiv.org/abs/cond-mat/0007235/

Ng, A.Y., Jordan, M.I., and Weiss, Y. (2011). On spectral clustering: Analysis and an algorithm. In: Advances in Neural Information Processing Systems, MIT Press.

Nier, E., Yang, J., Yorulmazer, T., and Alentorn, A. (2007). Network models and financial stability. Journal of Economic Dynamics and Control, 31(6):2033–2060. http://ideas.repec.org/a/eee/dyncon/v31y2007i6p2033-2060.html

Park, J., and Newman, M.E.J. (2004). Statistical mechanics of networks. Phys. Rev. E, 70:066117. http://arxiv.org/abs/cond-mat/0405566

Radicchi, F., Lancichinetti, A., Ramasco, J., and Fortunato, S. (2011). Finding statistically significant communities in networks. PLoS ONE, 6(04):e18961. http://arxiv.org/abs/1012.2363

Reichardt, J., and White, D.R. (2007). Role models for complex networks. European. Physical Journal B, 60(2):217–224. http://arxiv.org/abs/0708.0958

Rosvall, M., and Bergstrom, C.T. (2008). Maps of random walks on complex networks reveal community structure. Proceedings of the National Academy of Sciences, 105(4):1118–1123. http://www.jstor.org/stable/25451237

Sawardecker, E.N., Amundsen, C., Sales-Pardo, M., and Amaral, L (2009). Comparison of methods for the detection of node group membership in bipartite networks. The European Physical Journal B - Condensed Matter and Complex Systems, 72(4):671–677. http://ideas.repec.org/a/spr/eurphb/v72y2009i4p671-677.html

Soramäki, K., Bech, M, Arnold, J., Glass, R, and Beyeler, W.E. (2007). The topology of interbank payment flows. Physica A: Statistical Mechanics and its Applications, 379(1):317–333. http://adsabs.harvard.edu/abs/2007PhyA..379..317S

Squartini, T., and Garlaschelli, D. (2011). Analytical maximum-likelihood method to detect patterns in real networks. New Journal of Physics, 13(8):083001. http://arxiv.org/abs/1103.0701

Tumminello, M., Miccichè, S., Lillo, F., Piilo, J., Mantegna, R.N., and Ben-Jacob, E. (2011). Statistically validated networks in bipartite complex systems. PLoS ONE, (6). http://arxiv.org/abs/1008.1414

Upper, C., and Worms, A. (2004). Estimating bilateral exposures in the German interbank market: Is there a danger of contagion? European Economic Review, 48(4):827–849. http://ideas.repec.org/a/eee/eecrev/v48y2004i4p827-849.html

Upper, C. (2011). Simulation methods to assess the danger of contagion in interbank markets. Journal of Financial Stability, 7(3):111–125. http://ideas.repec.org/a/eee/finsta/v7y2011i3p111-125.html

Vega-Redondo, F. (2007). Complex Social Networks. , Cambridge.