References for Journalarticle 2011-20

Please note: the authoritative source for references in this article is the according PDF file.

Number of references: 20

Axtell, R.L. (2001). Zipf Distribution of U.S. Firm Sizes. Science, 293:1818–1820. http://linkage.rockefeller.edu/wli/zipf/axtell01.pdf

Clauset, A., Shalizi, C.R., and Newman, M.E.J. (2009). Power-Law Distributions in Empirical Data. SIAM Review, 51:661–703. http://arxiv.org/abs/arxiv:0706.1062

Cobb, C.W., and Douglas, P.H. (1928). A Theory of Production. American Economics Review, 18:139–165. http://www.aeaweb.org/aer/top20/18.1.139-165.pdf

Coronel-Brizio, H.F., and Hernandez-Montoya, A.R. (2005). On Fitting the Pareto–Levy Distribution to Stock Market Index Data: Selecting a Suitable Cutoff Value. Physica A, 354:437–449. http://arxiv.org/abs/cond-mat/0411161

Coronel-Brizio, H.F., and Hernandez-Montoya, A.R. (2010). The Anderson-Darling Test of Fit for the Power Law Distribution from Left Censored Samples. Physica A: Statistical Mechanics and its Applications, 389(3):3508–3515. http://arxiv.org/abs/1004.0417

Fujiwara, Y., _Guilmi, C., Aoyama, H., Gallegati, M., and Souma, W. (2004). Do Pareto–Zipf and Gibrat Laws Hold True? An Analysis with European Firms. Physica A, 335:197–216. http://chemlabs.nju.edu.cn/Literature/Zipf/Do%20Pareto-Zipf%20and%20Gibrat%20laws%20hold%20true-An%20analysis%20with%20European%20firms%20.pdf

Gaffeo, E., Gallegati, M., and Palestrinib, A. (2003). On the Size Distribution of Firms: Additional Evidence from the G7 Countries. Physica A, 324:117–123. http://www.mendeley.com/research/on-the-size-distribution-of-firms-additional-evidence-from-the-g7-countries/

Geyer, C.J. (1994). On the Asymptotics of Constrained M-Estimation. The Annals of Statistics, 22:1993–2010. http://www.jstor.org/stable/2242495

Hisano, R., and Mizuno, T. (2011). Sales Distribution of Consumer Electronics. Physica A, 390:309–318. http://arxiv.org/abs/1004.0637

Jessen, A.H., and Mikosch, T. (2006). Regularly Varying Functions. Publications de l'Institut Mathematique, Nouvelle serie, 80(94):171–192.

Malevergne, Y., Pisarenko, V., and Sornette, D. (2011). Testing the Pareto against the Lognormal Distributions with the Uniformly Most Powerful Unbiased Test Applied to the Distribution of Cities. Physical Review E, 83:036111. http://www.mendeley.com/research/testing-pareto-against-lognormal-distributions-uniformly-most-powerful-unbiased-test-applied-distribution-cities/

Mizuno, T., Katori, M., Takayasu, H., and Takayasu, M. (2006). Statistical and Stochastic Laws in the Income of Japanese Companies. In: Empirical Science of Financial Fluctuations: The Advent of Econophysics, ed. by H. Takayasu. http://arxiv.org/ftp/cond-mat/papers/0308/0308365.pdf

Newman, M.E.J. (2005). Power Laws, Pareto Distributions and Zipf's law. Contemporary Physics, 46:323–351. http://arxiv.org/PS_cache/cond-mat/pdf/0412/0412004v3.pdf

Okuyama, K., Takayasu, M., and Takayasu, H. (1999). Zipf's Law in Income Distribution of Companies. Physica A, 269:125–131. http://www.mendeley.com/research/zipfs-law-income-distribution-companies/

Pareto, Vilfredo (1897). Cours d'Economique Politique. London: Macmillan.

Ramsden, J.J., and Kiss-Hayp\'al, G. (2000). Company Size Distribution in Different Countries. Physica A, 277:220–227.

Self, S.G., and Liang, K.-Y. (1987). Asymptotic Properties of Maximum Likelhood Estimatiors and Likelihood Ratio Test Under Nonstandard Conditions. Journal of the American Statistical Association, 82(398):605–610. http://www.jstor.org/stable/2289471

Stanley, M.H., Buldyrev, S.V., Havlin, S., Mantegna, R.N., Salinger, M.A., and Stanley, H. (1995). Zipf plots and the size distribution of firms. Economics Letters, 49:453–457. http://ideas.repec.org/a/eee/ecolet/v49y1995i4p453-457.html

Zhang, J., Chen, Q., and Wang, Y. (2009). Zipf distribution in top Chinese Firms and an Economic Explanation. Physica A, 388:2020–2024. http://www.sciencedirect.com/science/article/pii/S0378437109000806

del_Castillo, J., and Puig, P. (1999). The Best Test of Exponentiality against Singly Truncated Normal Alternatives. Journal of the American Statistical Association, 94(446):529–532.