References for Journalarticle 2009-17

Please note: the authoritative source for references in this article is the according PDF file.

Number of references: 63

Agarwal, G.S. (1972). Fluctation-Dissipation Theorems for Systems in Non-Thermal Equilibrium and Applications. Zeitschrift fuer Physik A, 252(1):25-38.

Aoki, M. (1993). Hierarchical Method, Unit Root and Aggregation. Los Angeles, CA, unpublished note.

Aoki, M. (1994). Group Dynamics When Agents Have a Finite Number of Alternatives: Dynamics of a Macrovariable with Mean-Field Approximation. UCLA Center for Computable Economics, Working Paper 13, Los Angeles, CA.

Aoki, M. (1996). New Approaches to Macroeconomic Modeling: Evolutionary Stochastic Dynamics, Multiple Equilibria, and Externalities as Field Effects. Cambridge University Press, New York, NY.

Aoki, M. (2000). Modeling Aggregate Fluctuations in Economics: Stochastic Views of Interacting Agents. Cambridge University Press, New York, NY.

Aoki, M., and Yoshikawa, H. (2005). A New Model of Labor Dynamics: Ultrametrics, Okun's Law, and Transient Dynamics. In: Nonlinear Dynamics and Heterogeneous Interacting Agents, ed. by T. Lux and E. Samanidou and S. Reitz, Springer, Berlin, Heidelberg. Lecture Notes in Economics and Mathematical Systems.

Aoki, M., and Yoshikawa, H. (2007). Reconstructing Macroeconomics: A Perspective from Statistical Physics and Combinatorial Stochastic Processes. Cambridge University Press, New York, NY. Japan-U.S. Center UFJ Bank Monographs on International Financial Markets.

Axtel, R.L. (2006). Multi-Agent Systems Macro: A Prospectus. In: Post Walrasian Macroeconomics, ed. by Colander, D., chap. 10, pp. 203-220, New York, Cambridge University Press.

Bachas, C.P., and Huberman, B.A. (1986). Complexity and the Relaxation of Hierarchical Structures. Physical Review Letters, 57(16):1965-1969.

Bachas, C.P., and Huberman, B.A. (1987). Complexity and Ultradiffusion. Journal of Physics A, 20(14):4995-5014.

Balakrishnan, V. (1978). General Linear Response Analysis of Anelasticity. Pramana - Journal of Physics, 11(4):379-388.

Balakrishnan, V., Dattagupta, S., and Venkataraman, G. (1978). A Stochastic Theory of Anelastic Creep. Philosophical Magazine A, 37(1):65-84.

Bernaschi, M., Grilli, L., and Vergni, D. (2002). Statistical Analysis of Fixed Income Market. Physica A, 308(1-4):381-390.

Blumen, A., Klafter, J., and Zumofen, G. (1986). Relaxation Behaviour in Ultrametric Spaces. Journal of Physics A, 19(2):L77-L84.

Blundell, R., and Stoker, T.M. (2005). Heterogeneity and Aggregation. Journal of Economic Literature, 43(2):347-391.

Bonanno, G., Vanderwalle, N., and Mantegna, R. (2000). Taxonomy of Stock Market Indices. Physical Review E, 62(6):R7615-R7618.

Bonanno, G., Lillo, F., and Mantegna, R. (2001). High-frequency cross-correlation in a set of stocks. Quantitative Finance, 1(1):96-104.

Bonanno, G., Caldarelli, G., Lillo, F., and Mantegna, R. (2003). Topology of Correlation-Based Minimal Spanning Trees in Real and Model Markets. Physical Review E, 68(4).

Bonanno, G., Caldarelli, G., Lillo, F., Micciche, S., Vandewalle, N., and Mantegna, R. (2004). Networks of Equities in Financial Markets. European Physical Journal B, 38(2):363-371.

Bouchaud, J.P., and Potters, M. (2003). Theory of Financial Risk and Derivative Pricing: From Statistical Physics to Risk Management. Cambridge University Press, Cambridge, U. K., 2$^nd$ ed.

Bouchaud, J.-P. (2008). Anomalous Relaxation in Complex Systems: From Stretched to Compressed Exponentials. In: Anomalous Transport: Foundations and Applications, ed. by R. Klages and G. Radons and I. M. Sokolov, pp. 327-345, Wiley-VCH, Berlin.

Colander, D. (2006). Post Walrasian Macroeconomics. Cambridge University Press, New York.

Dattagupta, S. (1987). Relaxation Phenomena in Condensed Matter Physics. Academic Press, New York, NY.

E.S. Knotek, II (2007). How Useful is Okun's Law? In: Economic Review: Fourth Quarter 2007, Federal Reserve Bank of Kansas City, Kansas City, MO.

Grossmann, S., Wegner, F., and Hoffmann, K. (1985). Anomalous Diffusion on a Selfsimilar Hierarchical Structure. Journal de Physique Lettres, 46(13):575-583.

Hartley, J.E. (1996). The Origins of the Representative Agent. Journal of Economic Perspectives, 10(2):169-177.

Hawkins, R.J., and Arnold, M.R. (2000). Relaxation Processes in Administered-Rate Pricing. Physical Review E, 62(4):4730-4736.

Hoffmann, K.H., and Sibani, P. (1988). Diffusion in Hierarchies. Physical Review A, 38(8):4261-4270.

Huberman, B.A., and Kerszberg, M. (1985). The Relaxation of Hierarchical Systems. Journal of Physics A, 18(6):L331-L336.

Kirman, A.P. (1992). Whom or What Does the Representative Individual Represent? Journal of Economic Perspectives, 6(2):117-136.

Kohlrausch, F. (1863). Ueber die Elastische Nachwirkung bei der Torsion. Poggendorff's Annalen der Physik und Chemie, 119(7):337-368.

Kubo, R. (1966). The Fluctuation-Dissipation Theorem. Reports on Progress in Physics, 29(I):255-284.

Kumar, D., and Shenoy, S.R. (1986). Hierarchical Energy Barriers, Hierarchical Constraints and Nonexponential Decay in Glasses. Solid State Communications, 57(12):927-931.

Kumar, D., and Shenoy, S.R. (1986). Relaxational Dynamics for a Class of Disordered Ultrametric Models. Physical Review B, 34(5):3547-3550.

LeBaron, B. (2006). Agent-Based Financial Markets: Matching Stylized Facts with Style. In: Post Walrasian Macroeconomics, ed. by Colander, D., chap. 11, pp. 221-235, New York, Cambridge University Press.

Lee, J. (2000). The Robustness of Okun's Law: Evidence from OECD Countries. Journal of Macroeconomics, 22(2):331-356.

Lucarini, V. (2008). Response Theory for Equilibrium and Non-Equilibrium Statistical Mechanics: Causality and Generalized Kramers-Kronig Relations. Journal of Statistical Physics, 131(3):543-558.

Lucas, R. (1976). Econometric Policy Evaluation: A Critique. Carnegie-Rochester Conference Series on Public Policy, 1:19-46.

Mantegna, R.N. (1998). Hierarchical Structure in Financial Markets. Palermo, Italy, arXiv:cond-mat/9802256v1. http://arxiv.org/abs/cond-mat/9802256

Mantegna, R.N. (1999). Hierarchical Structure in Financial Markets. European Physical Journal B, 11(1):193-197.

Matteo, T., Aste, T., and Mantegna, R. (2004). An Interest Rates Cluster Analysis. Physica A, 339(1-2):181-188.

McDonald, M., Suleman, O., Williams, S., Howison, S., and Johnson, N.F. (2005). Detecting a Currency's Dominance or Dependence Using Foreign Exchange Network Trees. Physical Review E, 72(4).

McDonald, M., Suleman, O., Williams, S., Howison, S., and Johnson, N.F. (2008). Impact of Unexpected Events, Shocking News, and Rumors on Foreign Exchange Market Dynamics. Physical Review E, 77(4).

Micciche, S., Bonanno, G., Lillo, F., and Mantegna, R.N. (2003). Degree Stability of a Minimum Spanning Tree of Price Return and Volatility. Physica A, 324(1-2):66-73.

Moosa, I.A. (1997). A Cross-Country Comparison of Okun's Coefficient. Journal of Comparative Economics, 24(3):335-356.

Naylor, M.J., Rose, L.C., and Moyle, B.J. (2007). Topology of Foreign Exchange Markets Using Hierarchical Structure Methods. Physica A, 382(1):199-208.

Nowick, A.S., and Berry, B.S. (1972). Anelastic Relaxation in Crystalline Solids. Academic Press, New York, NY.

Ogielski, A.T., and Stein, D.L. (1985). Dynamics on Ultrametric Spaces. Physical Review Letters, 55(15):1634-1637.

Okun, A.M. (1962). Potential GNP: Its Measurement and Significance. In: Proceedings of the Business and Economics Statistics Section, American Statistical Association, pp. 98-103, American Statistical Association.

Onnela, J.-P., Chakraborti, A., Kaski, K., and Kertesz, J. (2002). Dynamic Asset Trees and Portfolio Analysis. European Physical Journal B, 30(3):285-288.

Onnela, J.-P., Chakraborti, A., Kaski, K., and Kertesz, J. (2003). Dynamic Asset Trees and Black Monday. Physica A, 324(1-2):247-252.

Onnela, J.-P., Chakraborti, A., Kaski, K., Kertesz, J., and Kanto, A. (2003). Dynamics of Market Correlations: Taxonomy and Portfolio Analysis. Physical Review E, 68(5).

Paladin, G., Mezard, M., and deDominicis, C. (1985). Diffusion in an Ultrametric Space: A Simple Case. Journal de Physique Lettres, 46(21):985-989.

Palmer, R.G., Stein, D.L., Abrahams, E., and Anderson, P.W. (1984). Models of Hierarchically Constrained Dynamics for Glassy Relaxation. Physical Review Letters, 53(10):958-961.

Samanidou, E., Zschischang, E., Stauffer, D., and Lux, T. (2007). Agent-Based Models of Financial Markets. Reports on Progress in Physics, 70:409-450.

Schnabel, G. (2002). Output Trends and Okun's Law. , BIS Working Papers 11, Basel, CH.

Schreckenberg, M. (1985). Long Range Diffusion in Ultrametric Spaces. Zeitschrift fuer Physik B, 60(2-4):483-488.

Tesfatsion, L. (2006). Agent-Based Computational Modeling and Macroeconomics. In: Post Walrasian Macroeconomics, ed. by Colander, D., chap. 9, pp. 175-202, New York, Cambridge University Press.

Tesfatsion, L., and Judd, K.L. (2006). Handbook of Computational Economics: Agent-Based Computational Economics. Elsevier B.V., vol. 2. Handbooks in Economics 13.

Uhlig, C., Hoffmann, K., and Sibani, P. (1995). Relaxation in Self-Similar Hierarchies. Zeitschrift fuer Physik B, 96(3):409-416.

Voit, J. (2005). The Statistical Mechanics of Financial Markets. Springer-Verlag, Berlin, 3rd ed.

Williams, G., and Watts, D.C. (1970). Non-symmetrical Dielectric Relaxation Behaviour Arising from a Simple Empirical Decay Function. Transactions of the Faraday Society, 66:80-85.

Yang, J.-M. (1994). Interaction, Hierarchy and Economic Phenomena. PhD thesis, University of California at Los Angeles, Department of Economics.