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Abstract 
Using copula methods and simulation-based inference, we investigate the association between the performance 
of a stock index formed by European financial institutions and a basket of CDS of the same sector. Our analysis 
focuses on (i) assessing the dependence structure of the markets when extreme events occur; (ii) checking the 
validity of the conclusion by Merton (1974) and other similar structural models that there is an intensification of 
the relationship between stock prices and credit spreads after large negative shocks in the value of firms’ assets. 
We show that there is a large tail dependence between the two portfolios. However, the dependence structure 
seems to be similar with respect to positive and negative innovations in the indexes. Our findings suggest that 
credit models implications do not apply to financial firms, likely because the implicit subsidies from 
governments to financial institutions are distorting the dependency structure.  

 

* The views stated herein are those of the authors and not those of the Portuguese Securities Commission. 

** The views stated herein are those of the authors and not those of the Bank of Portugal. 
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1. Introduction 

The market for credit derivatives, and in particular the market for Credit Default Swaps (henceforth 

CDS), has experienced a remarkable development over the last two decades. These markets are often 

seen as very opaque because of the inexistence of formally established clearing and settlement 

mechanisms providing reliable information on prices or volumes. Further, they are still barely subject 

to any regulation. The turnover of CDS markets has surged over the years mostly through transactions 

executed over-the-counter. The transparency of these operations is a concern for financial supervisors, 

who fear that the concentration of massive risk-taking by a small group of financial intermediaries 

might frighten financial stability. Indeed, the role of these markets in the recent financial crisis has 

been widely scrutinized by the policy makers, and has had extensive media coverage, particularly 

after the AIG bail-out.  

CDS spreads reflect the default risk of the underlying debt instrument. The final payoff of these over-

the-counter contracts depends on a credit event and the spreads indicate the creditworthiness of the 

reference entity. This type of derivatives may be used to hedge risk or for speculation, and allow 

investors to transact separately the credit risk of the reference entity and to split funding from default 

risk.1 Financial institutions are one of the major participants in the CDS markets, since it allows them 

to hedge and diversify their exposure to illiquid bonds and/or loans/receivables. In fact, some 

arguments in favour of these instruments are that they provide additional liquidity to the bond market, 

promote risk sharing between market participants and allow creating synthetic portfolios of bonds. 

The rapid growth of this market along with the severe financial crisis experienced in Europe induced a 

relevant discussion in the literature on the impact of credit risk derivatives on financial stability. In 

fact, this discussion had started in the years prior to the before mentioned crisis with some authors 

defending that CDS can stimulate financial stability through their ability of improving credit risk 

allocation, as a consequence of a more liquid and diversified market for credit risk transfers.  For 

                                                           
1 CDS is a bilateral financial contract in which one counterparty (the protection buyer or buyer) pays a periodic 
fee, typically expressed in basis points per annum on the notional amount, in return for a contingent payment by 
the other counterparty (the protection seller or seller) after a credit event of the reference entity. The contingent 
payment is designed to mirror the loss incurred by creditors of the reference entity in the event of a default. The 
settlement mechanism depends on the liquidity and availability of reference obligations. 
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instance, Alan Greenspan2 argued that these new financial instruments allowed the sophisticated 

financial institutions to reduce their credit risk, transferring it to less leveraged market participants. In 

contrast, others suggest that the CDS market has been used by large financial institutions to leverage 

their positions and to perform regulatory arbitrage. 

One of the interesting features of these financial instruments is that they provide us a way to assess 

the interaction between stocks performance and credit risk. The linkage between credit spreads and 

stock prices is sustained by credit risk structural models, such as the Merton (1974) model. The author 

values equity and debt as contingent claims over the firm’s assets. According to Merton, the default 

probability of a company is a non-linear function of the assets value, the asset price volatility and the 

debt-equity ratio. Consequently, the returns of debt claims and stocks should be correlated, 

particularly when default risk surges. This is because the value of debt becomes more sensitive to 

changes in the assets’ value when a firm enters into financial distress. When the credit risk is low, 

debt claimers’ hardly benefit from increases in firm assets’ value because their upside potential is 

limited, in contrast with stockholders who own residual claims (with unlimited upside potential).  

Duffie (1999) shows that subject to some assumptions, a long position in a par priced floating rate 

note and the purchase of a CDS contract with the same face value of protection create a combined 

position with no credit risk in the event of default. Hence, the CDS spread should be equal to the 

credit spread of the par priced floating rate note. In that sense, one should expect a similar association 

between bond credit spreads and stock prices and between CDS spreads and stock prices, because 

bond credit spreads and CDS spreads are close substitutes. In theory, when the equity and debt 

rewards are not proper, arbitrage based on the firm capital structure is possible. Thus, if a company 

CDS spread is higher (lower) than it should be (given the stock price as well), an arbitrageur may 

obtain riskless profit from selling (buying) CDS contracts and buying (selling) shares. This way, 

arbitrage forces the equilibrium between the two markets.  

                                                           
2 From Greenspan’s speech “Economic Flexibility” before Her Majesty’s Treasury Enterprise Conference 
(London, 26 January 2004). 
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Our research addresses the interaction between credit risk and stocks performance of financial firms. 

This paper pursues two research questions. First, we examine the dependence structure of the markets 

when extreme events occur. For that reason, the conclusions of this paper may be important for risk 

managers. Second, we aim to check the validity of the conclusion of Merton (1974) and other similar 

structural models concerning the intensification of the relationship between stock prices and credit 

spreads when extreme innovations occur. In that sense, we assess the “too-big-to-fail” effect on the 

association between financial stock performance and credit risk.  

This study extends the thriving academic literature on the interaction of credit markets and stock 

markets. In doing so, we use the theory of copulas. Copula-based models provide a great deal of 

flexibility in modelling multivariate distributions, permitting the researcher to specify the models for 

the marginal distributions separately from the dependence structure (copula) that defines the joint 

distribution. In addition to flexibility, this method also facilitates the estimation of the model in 

phases, reducing the computational burden. We add to that analysis simulation-based inference with 

the aim of selecting the type of dependence structure that best fits the empirical data and to ascertain 

the robustness of the results. 

The contribute of this paper is relevant for several reasons. First, banks played an essential part in the 

trigger of the recent financial crisis, as well as being among the worst-hit players. Moreover, they still 

perform an important role in the economy, namely providing liquidity transformation and monitoring 

services. After the 2007 financial crisis, the importance of credit risk in the banking sector has 

increased and CDS spreads are seen as an indicator of a bank’s weakness. CDS spreads are used to 

extract market perceptions about the financial soundness of banking institutions in particular of 

systemically important banks. Thus, understanding the relationships between CDS spreads of the 

financial sector and stock markets could be of interest to evaluate financial stability, and more 

precisely it is of crucial importance in terms of market discipline.  

Moreover, it is also important to evaluate the “too-big-to-fail” effect on the association between 

financial stocks performance and credit risk, in particular for systemically large banks. In this respect, 

it is of interest to gauge whether the incentives provided to the banking system are reflected in the 
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association between spreads and stock returns.  In that sense, we evaluate whether Merton (1974) and 

other similar structural models assertions can be applied to the banking sector. Finally, CDS markets 

may threaten financial stability due to spillovers to other markets, namely the equity market and the 

bond market, which is why the results of this paper may help understanding contagion. 

This paper is structured as follows: section two contains a literature review on this subject; sector 

three describes the sample; section four presents the methodology and the empirical results; and 

finally section five displays the conclusions and presents a brief discussion of the implication of the 

results. 

 

2. Literature Review 

The empirical literature about the relationship between stock and debt markets performance is quite 

extensive. In the 90’s, some empirical studies showed an empirical relation between stock returns and 

bond yield changes.  For instance, Blume et al. (1991), Cornell and Green (1991) and Fama and 

French (1993) report a contemporary and slightly positive but statistically significant association 

between stocks and bond returns. Kwan (1996) concludes that changes of bond yields are positively 

influenced by changes of Treasury bond yields and negatively affected by contemporaneous and 

lagged stock returns. More recently, Alexander and Ferri (2000) show a positive association between 

the raw daily returns of stocks and bonds of financially distressed firms in the period 1994-1997. 

However, when stocks abnormal returns are used instead of raw returns, the statistical association 

between the variables turns non-statistically significant. Hotchkiss and Ronen (2002) do not find 

evidence that stock markets led bond markets, although they report a modest and positive 

contemporaneous association between them. 

Longstaff et al. (2003) examine Granger causality between (weekly) changes of CDS spreads, 

changes of bond credit spreads and stock returns. Their analysis focuses on US markets and the results 

indicate that stock markets and CDS markets led corporate bond markets. Campbell and Taksler 

(2002) document an empirical relation between the volatility of stock returns and bond yields. Zhang 
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(2007) shows that CDS spreads anticipate credit quality deterioration before stock markets. Norden 

and Weber (2009) study the relationships between stock markets, bond markets and CDS markets 

during the period 2000-2002 for a set of 58 firms [USA (35), Europe (20) and Asia (3)]. They find 

that (i) CDS markets react to stock market movements, and that the magnitude of that reaction is 

affected by the credit quality of the firm and by the liquidity of the bond market; (ii) stock returns lead 

credit spreads and CDS spreads.  

Bystrom (2005) analyses the association between the performance of a CDS iTraxx index and stock 

market returns during the period 2004-2005 and concludes that stock market returns Granger cause 

CDS spread changes, but the reverse does not occur. Fung et al. (2008) report a negative correlation 

between CDS indexes and stock indexes performance. That correlation is higher amid financial 

distressed firms and, in the overall, the correlation surged after July 2007. This outcome is consistent 

with Merton (1974) model: the decline of stock prices results in an increase of leverage, contributing 

to a rise of default risk and CDS spreads. Results also suggest that stock markets lead CDS markets, 

regardless of the firm’s financial situation. However, the volatility spillovers from the CDS markets to 

the stock markets are higher than the reverse. 

Avramov et al. (2009) show that the effects of rating downgrades on stock prices and CDS spreads 

are higher amid financially distressed firms.  Forte and Peña (2009) show that stock markets lead CDS 

and bond markets in price discovery. Forte and Lovreta (2009) show that price discovery process 

changes with the financial situation of firms. The contribution of stock markets to price discovery is 

positively influenced by the turnover ratio of the stock market, the credit quality of the firm and by the 

reduced presence of negative adverse shocks. Stock markets appear to lead CDS markets, but that 

leadership has been decreasing over time.    

The correlation between the two markets also appears to be asymmetric. For instance, Dupuis et al. 

(2009) conduct an empirical analysis on the influence of credit risk on the performance of stocks from 

the automobile industry using the theory of copulas. They show that stocks returns and CDS spread 

changes are negatively correlated, being that correlation higher in the tails of the probability density 
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functions (henceforth, p.d.f.). Gatfaoui (2007) also presents evidence of an asymmetric relation 

between the CDS market and the stock market.  

Heyde and Neyer (2010) show that macroeconomic surrounding influences the impact of CDS 

markets on the stability of the banking sector. During recessions CDS markets affect the stability of 

the banking sector, regardless of the shock type (idiosyncratic or systematic), increasing the risk of a 

systemic crisis. However, in periods of moderate economic growth and during booms idiosyncratic 

shocks will increase the systemic risk only if there are other channels of contagion as well.     

This paper adds to the financial literature by focusing exclusively in the banking sector, which is by 

its nature and opaqueness very different from other economic sectors. Moreover, instead of analysing 

the lead-lag association between stock returns and CDS spread changes as other authors, we 

concentrate our efforts in investigating whether the association between the markets at extreme 

conditions – in the tails – are consistent with what is conjectured by financial theory (Merton, 1974 

and other structural models) and by conventional wisdom. The next section describes the data used in 

the remainder of the paper. 

3. Data description 

We perform our analysis using weekly data for the period comprised between 03 December 2007 and 

28 May 2014. We study the interaction between two well-known European indexes of the financial 

sector: the DJ EuroStoxx Banks 600 (Bloomberg ticker: SX7E) and the iTraxx Europe Senior 

Financials 5Y TR from Markit (Bloomberg ticker: SNRFIN CDSI GENERIC 5Y Corp). Prices and 

spreads from these two indexes are extracted from Bloomberg. 

Although daily information is available for the two indexes, we conduct the analysis using weekly 

data to make our results immune to the microstructure noise that stems from the bid-ask bounce and 

non-synchronicity between the two indexes. In addition, information is assimilated at different paces 

by stock prices and spreads within each index, causing autocorrelation of the indexes returns and 

affecting spuriously their conditional means and variances.   
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The DJ EuroStoxx Banks index is a capitalization-weighted basket and includes stocks from the 

banking sector (mostly large and systemically important banks) traded in countries that integrate the 

European Monetary Union. iTraxx indexes are often used as proxies for default risk. These baskets 

cover firms and sovereign entities from different sectors and regions of the world, and usually display 

high liquidity and low bid-ask spreads. The iTraxx Europe Senior Financials 5Y TR is a basket of 

CDS contracts having European financial institutions as references. It is an equally weighted index of 

25 European financial institutions reference entities (also large and systemically important).  

Figure 1 displays the performance of the iTraxx Europe Senior Financials 5Y TR and the DJ 

EuroStoxx Banks 600. In the period before 2008, CDS spreads were small, denoting the reduced 

probability of default of the major European financial institutions. As of 2007, the default risk of 

financial institutions has surged sharply, in particular after the Bear Stearns’ failure, with investors 

perceiving a higher probability of default of financial companies. On the other hand, stock prices 

experienced pronounced declines between 2007 and mid-2009, and after 2010. Indeed, the figure 

suggests a negative co-movement between CDS spreads and stock prices. It is clear that news about 

financial firms have opposite impacts on stocks prices and CDS spreads. CDS spreads should increase 

after negative news, in particular when the likelihood of a credit event is greater.  

Figure 1 – DJ Eurostoxx Banks 600 and iTraxx European Financial SNR prices 
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In this assessment we exclude the span prior to 2007. Before the end-2007, the bid-ask spread 

associated to the CDS index was very high as compared with the rest of the sample. Between mid-

2004 and 03 December 2007 the average bid-ask spread was near 12.0%, whereas in the remainder of 

the span it was below 1.75% (non-tabulated results). In addition, the percentage of trading days with 

no CDS spread changes was also very high during the first span, which is consistent with the presence 

of large transaction costs. Short-term frictions in the CDS markets were very high prior to 2008, and 

that could lead to biased results. Moreover, as Figure 1 suggests, there is a clear structural break in the 

time series conditional mean and variance of the series of CDS index returns. For all the above 

mentioned reasons, we exclude the span prior to 03 December 2007 from the subsequent analysis. The 

restricted sample comprises 363 weekly observations. The next section presents the methodology used 

in the assessment of the interaction between CDS spreads and stock returns. 

4. Methodology and Empirical Results 

The classical theory of portfolio management and risk management is based on the assumption that 

returns follow multivariate normal i.i.d. distributions.  This assumption is very convenient because it 

allows practitioners to use correlations as a measure of dependence. However, that might not be a 

very realistic assumption about the behaviour of returns on financial markets. For instance, equity 

returns take joint negative extreme values more often than joint positive extremes, leading to the 

conventional wisdom that “stocks tend to crash together but not boom together.” The opposite tends 

to take place in the CDS market, where the correlation is larger when higher positive extreme values 

occur.  

Another way to assess the correlation structure of the series lies in the concept of copulas. Copula-

based multivariate models permit modelling the marginal distributions separately from the 

dependence structure (copula) that links these distributions to form the joint distribution. This method 

increases the degree of flexibility in specifying the model, in comparison to other methods.  

In some cases, such as in portfolio management, the concordance between extreme (tail) values of 

random variables is of interest. Very often the marginal distributions are asymmetric and/or the tail 
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dependence is non-linear. This means that correlation makes no sense as a dependence metric, given 

that it requires an elliptical multivariate distribution.  In our analysis, we address the interaction of the 

equity markets and CDS markets, and in particular we assess the tail dependence between the two 

markets. Tail dependence captures the behaviour of the random variables during extreme events. In 

our analysis, we are interested in the co-movement of CDS spreads and stock prices not only in 

normal conditions, but especially in extreme distress situations.  This requires a dependence measure 

for the upper and the lower tails of the multivariate distribution of the series. Such a dependence 

measure is essentially related to the conditional probability that one series exceeds some high value, 

given that the other series exceeded the same value.  

The copula of two variables is simply the function that maps the univariate marginal distributions to a 

joint distribution. The estimation by the copula method is performed in several stages. First, the 

marginal distributions are estimated separately from the dependence structure, simplifying the study 

of high-dimension multivariate problems. Before modelling the dependence structure of the series, 

one must first model their conditional marginal distributions.  

𝑌𝑖,𝑡 = 𝜇𝑖(𝑍𝑡−1) + 𝜎𝑖(𝑍𝑡−1) × 𝜀𝑖,𝑡 

for i=1,2 

𝑍𝑡−1 ∈ ℱ𝑡−1 ~𝐹𝑖(0,1) 

where 𝑌𝑖,𝑡 are the returns, and 𝜇𝑖 and 𝜎𝑖 denote the conditional mean and variance of the returns, 

respectively. Within this setup, it is assumed that each series will have potential time-varying 

conditional mean and variance, and that the standardized residual εi,t  is a white noise, that is, it has 

a constant conditional distribution (with zero mean and a variance of one).  

Thus, in a first pass, we model the conditional means and variances of the returns of the two indexes. 

In order to capture the conditional mean, we use standard econometric approaches. We begin by 

calculating and plotting the ACF and PACF of the time series, along with the computation of the 

Ljung-Box-Pierce test and the Breusch-Godfrey LM test (results not reported). To model the 

conditional mean, we use ARMA models: we fit an AR (1) for the returns of the iTraxx Europe 
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Financials SNR. In the case of the stock index, we do not detect the presence of autocorrelation. The 

autocorrelation of the original series is removed after applying the ARMA filters. To model the 

volatility of the returns, we employ GARCH(1,1) models. 

After that, the standardized residuals are calculated as:  

𝜀𝑖̂,𝑡 =
𝑌𝑖,𝑡 − 𝜇𝑖(𝑍𝑡−1; 𝛼�)
𝜎𝑖(𝑍𝑡−1; 𝛼�)  

 

where α� is the vector of estimated parameters of the ARMA/GARCH model.  

To further inspect whether the standardized residuals are i.i.d., we perform two alternative and 

complementary statistical tests, the runs test and the BDS test. According to the null hypothesis of the 

runs test, the first-stage noise variables are random. The runs test is a non-parametric statistical test 

that gauges the randomness of two-valued data sequence. In specific, it is used to check whether a 

sequence of values are mutually independent. The BDS test aims to capture nonlinear serial 

dependence in time series. These tests do not reject the null hypothesis of i.i.d. innovations in neither 

of the series (non- tabulated results). 

Estimating the dependence structure between the series entails the transformation of the standardized 

residuals into a uniform distribution using the marginal distribution function Fi. The estimation of Fi 

may be performed assuming parametric or empirical margins. Many choices are possible for the 

parametric model of Fi, including the Normal and the standardized Student’s t, among others. We use 

the former two parametric marginal distributions along with the empirical distribution function (EDF) 

to ascertain the robustness of the results. As we will see latter on, the results do not seem to be 

affected by the choice of the marginal distribution. The EDF is calculated according to the following 

expression (Patton, 2012): 

F�i(𝜀) ≡
1

𝑇 + 1
�1 ∗
𝑇

𝑡=1

�𝜀𝑖,𝑡 < 𝜀� 
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Combining the use of the empirical distribution function (EDF) of the standardized residuals with 

parametric models for estimating the conditional means and variances turns our model semi-

parametric. Inference on the estimated dependence statistics can be performed either using the 

asymptotic distribution of the parameters of the model or using a bootstrap approach (assuming that 

the true conditional copula is constant through time). As in Rémillard (2010), we are assuming that 

the estimated parameters of the ARMA/GARCH model do not affect the asymptotic distribution of 

the dependence statistics and thereby the conditional mean and variance may be estimated 

independently of the copula.  

We estimate eight different time-invariant copulas: 

- Normal Copula - the normal copula is flexible in that it allows for equal degrees of positive and 

negative dependence, and includes both Fréchet bounds in its permissible range. Normal copula has 

zero tail dependence, meaning that in the extreme tails of the distribution the variables are 

independent. 

- Clayton’s Copula - the Clayton copula cannot account for negative dependence. It has been used to 

model correlated risks characterized by strong lower tail dependence and zero upper tail dependence. 

- Rotated Clayton Copula – Copula rotation permits to transform copulas such that they may be used 

to model negative dependence also. When a copula has an upper tail dependence then the associated 

survival copula has a lower tail dependence and conversely Rotated Clayton copula imposes zero 

lower tail dependence and allows only for upper tail dependence. 

- Frank Copula – the Frank copula has zero tail dependence. The dependence is larger in the center of 

the marginal distributions than in the normal copula. 

- Gumbel Copula - Gumbel copula has zero lower tail dependence and cannot account for negative 

dependence. If outcomes are known to be strongly correlated at high values but less correlated at low 

values, then the Gumbel copula is an appropriate choice for modelling the concordance of the series.  

- Rotated Gumbel Copula - similar to Gumbel Copula, it can only account for negative dependence. 

Rotated Gumbel copula has zero upper tail dependence. 
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- Student’s t Copula – provides higher tail dependence than the Normal Copula. Student's t copula has 

symmetric tail dependence. 

- Symmetrised Joe-Clayton Copula. SJC copula parameters are the tail dependence coefficients, but in 

reverse order. 

Along with time-invariant copulas, we also estimate four dynamic copulas: time-varying Normal 

copula, time-varying Student’s t Copula, time-varying Rotated Gumbel copula and time-varying SJC 

copula.  

With the aim of turning the results easier to interpret, we analyse the dependency structure of a long 

portfolio of stocks and a short portfolio of CDS contracts. Intuitively, the correlation between the two 

portfolios should be positive. As a first step, we estimate the quantile dependence of the two time 

series innovations. The quantile dependence assesses the strength of the dependence between two 

variables in the joint lower, or joint upper, tails of their support. Quantile dependence is the 

probability that both variables lie above or below a given quantile q of their marginal distributions. It 

provides a good description of the dependence structure of two series.  

The empirical quantile dependence of the series is calculated as follows 

𝜆̂𝑞 =

⎩
⎪
⎨

⎪
⎧ 1

𝑇 × 𝑞 × � 1�𝑈𝑆𝑡𝑜𝑐𝑘𝑠,𝑡 ≤ 𝑞, 𝑈𝐶𝐷𝑆,𝑡 ≤ 𝑞�,    0 < 𝑞 ≤ 1/2
𝑇

𝑡=1
1

𝑇 × (1 − 𝑞) × � 1�𝑈𝑆𝑡𝑜𝑐𝑘𝑠,𝑡 > 𝑞,𝑈𝐶𝐷𝑆,𝑡 > 𝑞�,    1/2 < 𝑞 ≤ 1
𝑇

𝑡=1

 

where 𝑈𝑆𝑡𝑜𝑐𝑘𝑠,𝑡 (𝑈𝐶𝐷𝑆,𝑡) corresponds to the implied probability of the filtered stock (CDS) returns at t 

under the EDF, T is the number of observations for each series and q respects to the quantile under 

analysis. 

Figure 2 shows the (estimated) quantile dependence plot along with a 90% confidence interval based 

on a bootstrap simulation. The dependency between the two series is concentrated in the median of 

the margins. Further, that dependence is lower in the tails than in the median of the distribution. In 

spite of that, there is still a strong tail dependency between the series. We also compute the standard 

deviation of the quantile dependence through a bootstrap simulation and the corresponding confidence 

intervals. In effect, the latters are narrower near the median of the distribution than in the tails.  
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In addition, Figure 2 also presents the difference between the upper and lower tails of the series, along 

with a pointwise confidence interval for the differential. It suggests that there is no difference between 

the upper and lower tail quantile dependence frequencies. This aspect will be analysed in more detail 

later. 

Figure 2 - Quantile dependence for the Eurostoxx Banks 600 innovations and the iTraxx Financial Europe SNR 

innovations 
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regarding this issue. Indeed, as highlighted earlier, a closer look to the aforementioned chart suggests 
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that the quantile dependence is symmetric. To further explore that issue, we perform a statistical test 

proposed by Rémillard (2010). The author proposes a Chi-square test to gauge jointly asymmetric 

dependence for a set of different q’s, instead of testing each q separately. Following Rémillard (2010), 

we run a co-joint significance test over the dependence measure at different quantiles: 

𝐻0:𝑅𝜆 = 0 

where 𝜆 = [𝜆𝑞1, 𝜆𝑞2, 𝜆𝑞3 …𝜆𝑞𝑘] and  q ∈{0.025; 0.05; 0.10; 0.975; 0.95; 0.90}. Rémillard (2010) 

proposes a bootstrap estimate to implement the Chi-square test, which we also adopt in this analysis 

(see further details about this test on Rémillard (2010) or Patton (2012)). The test fails to reject the 

null hypothesis of a symmetric dependence between the variables (Table 1 –Panel A). This signifies 

that the dependence structure is similar in face of positive and negative innovations of equal absolute 

magnitude.  

The second test addresses tail dependency equality in the tails, namely whether the tail dependence 

coefficients (i.e., the limits of the quantile dependence functions) are equal. More precisely we test if: 

𝜆𝑈 = 𝜆𝐿 

In other words, it investigates whether right-tail dependence is similar to left-tail dependence. Tail 

dependence traces out the limiting proportion that one margin exceeds a certain threshold conditional 

on that the other margin has already exceeded that threshold. It is, thus, a measure of the dependence 

conditioned to the existence of extreme events. Herein, we test whether the dependence conditional to 

positive extreme innovations is equal to negative extreme innovations. The test is implemented using 

bootstrap inference methods (see again Patton (2012) for more details). The t-stat associated to this 

test is -0.562, which is not statistically significant (Table 1 – Panel B). 

 

Table 1 – Testing for asymmetric dependence and tail dependence equality 

Panel A - Testing for asymmetric dependence 

  Chi-stat p-value 
Testing for asymmetric dependence  0.114 0.990 
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Panel  B - Testing for tail dependence equality 

  t-stat p-value 
Testing for tail dependence equality -0.562 0.574 

 

In view of these results we may conclude that the dependence structure of the variables appears to be 

equal in the presence of positive and negative extreme innovations. Taken together, these tests suggest 

that the correlation between financial stocks and CDS are not affected by the sign of the innovations, 

contradicting Merton (1974), in that the correlation between the stock returns and spreads should 

increase in the presence of large negative movements in the value of the firm’s assets. 

Figure 3 plots the 60 days rolling rank correlation for the series innovations and a bootstrap 

confidence interval for that correlation. The rank correlation between the standardized residuals 

ranges between 0.5 and 0.85 in the time frame covered by the analysis. Notice that the correlation is 

higher during the peak of the 2008 financial crisis and in the period marked by the sovereign debt 

crisis in Europe.  

 

Figure 3 - 60 day rolling rank correlation between financial stocks and CDS 

  

The variability of the rank correlation through time suggests the presence of time-varying 

dependence. In effect, testing the presence of time-varying dependence could be informative, for 

example, before specifying a functional form or choosing between a dynamic and a static copula 

specification. We implement two different types of tests to evaluate structural breaks and time-

varying dependence.  
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The first evaluates a break in the rank correlation at some specified point in the sample. Under the null 

hypothesis, the dependence measure before and after the breakpoint is equal to: 

 

𝐻0: 𝜌1 = 𝜌2 

 

where 𝜌1 and 𝜌2 denote the rank correlation before and after the breakpoint. The critical value for this 

test derives from an iid bootstrap simulation. By generating the bootstrap samples we obtain draws 

that impose the null hypothesis. Even though simple to implement, this entails a prior knowledge by 

the researcher about the dependence structure of the variables. The critical value for the difference 

between the rank correlations of both sides of the sample (before and after some specified point in the 

sample) is obtained using iid bootstrap. The p-values are obtained through 1,000 bootstrap 

simulations. We account for three different break points (25, 50 and 75% points of the sample). As 

one can see in Table 2, we do not detect structural breaks in the first half of the sample; nevertheless, 

the structural break test hints for a possible break in the rank correlation in the middle of the second 

half of the sample. 

A second test for time-varying dependence checks the break in the rank correlation coefficient at 

some unknown date. We follow Andrews (1993) in the implementation of the test. A critical value for 

this test is obtained again by using an iid bootstrap. The null hypothesis of no structural break is again 

rejected, but this time at a 10% significance level (see Table 2).   

The final test concerning time-varying dependence is based on the “ARCH LM” test for conditional 

variance proposed by Engle (1982). Instead of testing for one discrete one-time breaks in the 

dependence structure, it addresses the autocorrelation of a measure of dependence (rank correlation), 

using an autoregressive-type test. The null hypothesis of no autocorrelation of the dependence 

structure of the variables is not rejected by the test. The table below outlines the results of the tests for 

time varying correlation between the innovations.  
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Table 2 – Testing for time-varying dependence and structural breaks 

    p-value 

Break 
0.25 0.238 
0.50 0.174 
0.75 0.021 

Anywhere 0.065 

AR (p) 1 0.834 
5 0.94 

10 0.42 

 

Next, we estimate several copulas in order to find the one that better fits and depicts the data. Copulas 

are written in terms of random variables U1 and U2 with standard uniform marginal distributions. 

Herein, we use the empirical distribution function to obtain uniform margins. So, along with the 

estimation of Fi as described earlier, a Kolmogorov-Smirnov test is performed for each of the standard 

uniform variables, which does not reject the null hypothesis that the transformed standardized 

residuals are uniformly distributed (non-tabulated results).  

Because copulas separate the marginal distributions from the dependence structures, the appropriate 

copula for a particular application is the one that best captures the dependence features of the 

innovations. A first step to choose the right copula (the one that best fits the data) consists in 

evaluating AIC and BIC measures. Table 3 shows the log likelihood, AIC and BIC measures, and the 

lower and the upper tail derived from the estimated parameters of the copulas. The results of the 

estimation suggest that the copula that better fits the data is the Student's t copula, since it is the one 

that exhibits lower AIC and BIC values. Student's t copulas display strong and symmetric tail 

dependence. The interpretation of the coefficients of tail dependency is that they translate the 

probability of two random variables both taking extreme values. In the present case, the tail 

dependence coefficient equals 0.73 if one attend to the results of the Student's t copula. Thus, one way 

to interpret the results is that 73% of extreme innovation episodes in one of the series are followed by 

an extreme innovation with the same sign in the other series. 

One may also conclude for the existence of symmetric tail dependence between CDS returns and 

stock returns of the financial sector. Student’s t copula outperforms others as Clayton, Rotated 

Clayton, Gumbel and Rotated Gumbel copulas that posit asymmetric tail dependence. Recall that 
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Merton’s model postulates that the correlation between bonds and stocks should be greater when large 

negative movements in the value of the firms’ occurs, or put in another way, the conditional 

probability of having positive large movements in prices of a basket of stocks and in a short position 

on a basket of CDS contracts should be lower than having large negative movements in those 

instruments. Our findings suggest that that relationship is not observed for financial firms. 

 

Table 3 – Summary results from the (static) copula estimation 

  -LL AIC BIC Lower Tail Upper Tail Par1 Par2 
Normal -119.08 -238.17 -238.18 0 0 0.694 NaN 
Clayton -103.98 -207.96 -207.97 0.6175 0 1.438 NaN 
Rot Clayton -84.69 -169.38 -169.40 0 0.5643 NaN 1.211 
Frank -121.92 -243.84 -243.86 0 0 6.062 NaN 
Gumbel -108.49 -216.99 -217.00 0 0.5552 1.884 NaN 
Rot Gumbel -121.45 -242.90 -242.91 0.5737 0 NaN 1.952 
Student's t -124.47 -248.95 -248.97 0.7317 0.7317 0.565 0.421 
SJC -117.52 -235.05 -235.07 0.5649 0.4211 NaN 0.712 

 

Table 4 displays the standard errors of the copula parameters estimates. We present three standard 

error types: naïve, bootstrapped standard errors and corrected standard errors. Naïve standard errors 

are obtained from the matrix of the second derivatives of the likelihood function (Hessian). 

Bootstrapped standard errors are justified by Chen and Fan (2006) and Remillard (2010), and are 

retrieved from a bootstrapped simulation in tandem of the (uniform) empirical distributions. Under the 

assumption that the copula is constant over time, we perform an iid bootstrap to calculate standard 

errors: (i) we randomly draw with replacement in tandem from the matrix of standardized residuals; 

(ii) and estimate the dependence measures from the bootstrapped sample; (iii) the before mentioned 

procedure is repeated 1000 times t; (iv) finally, we calculate the standard errors of the parameters. 

Finally, corrected standard errors are obtained from a correction of the standard errors à la White as in 

Chen and Fan (2006). A closer look on the results for the Student's t copula reveals that the standard 

errors of the estimate are very similar for the alternative approaches.  

Table 4 – Standard-errors of the copula parameters estimates 

  Naive s.e. Boot  s.e. Corrected  s.e. 
 Par. 1  Par. 2 Par. 1  Par. 2 Par. 1  Par. 2 
Normal 0.023 

 
0.032 

 
0.032 
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Clayton 0.123 
 

0.157 
 

0.155 
 

Rot Clayton 0.113 
 

0.144 
 

0.132 
 

Frank 0.417 
 

0.445 
 

0.623 
 

Gumbel 0.081 
 

0.091 
 

0.096 
 

Rot Gumbel 0.084 
 

0.093 
 

0.104 
 

Student's t 0.025 0.055 0.025 0.073 0.025 0.065 
SJC 0.033 0.081 0.073 0.049 0.041 0.119 

 

Several authors have shown that AIC and BIC measures may be inappropriate to compare non-nested 

models. Thus, as an alternative to the AIC and BIC criterions, we also present the goodness-of-fit test 

of Chen and Fan (2006), PLR test, a pseudo likelihood test that compares the ability of a copula to fit 

the data against another copula candidate using in-sample data. Negative values of the test signify that 

copulas listed in columns outperform copulas presented in rows. In doing so, we test Student's t 

copula against the remaining alternatives. The table below displays the test results and confirms 

Student's t copula as the one that better fits the data.  

  Table 5 – In-sample PLR tests of Student's t copula against the remaining specifications 

  Student's t 
Normal -0.95 
Clayton -2.19 
Rot Clayton -4.90 
Frank -0.47 
Gumbel -3.37 
Rot Gumbel -0.55 
SJC -3.70 

 

All in all, copulas displaying tail dependency equality and dependence symmetry dominate their 

peers. In the next subsection, we ascertain whether the results hold when using parametric margins 

instead of the EDF. 

 

Robustness tests – Results for alternative parametric marginal distribution functions and time-

varying dependence 

The previous sections show the results of copulas estimation using a semi-parametric approach. We 

estimate the conditional mean and variance using parametric models and use the empirical distribution 

function of the standardized residuals to conduct copula estimations. Indeed, because the true 
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distribution function of the residuals is unknown, one feasible approach is to use their empirical 

distribution function. 

One alternative method resides in using parametric marginal distribution functions instead. Two 

alternative parametric functions commonly used to fit the returns of financial assets are the Gaussian 

and Student’s t marginal distributions (Horta et al, 2010). We estimate the copula functions using 

those parametric marginal distributions. The assumption that returns are Gaussian is used in 

theoretical literature, such as the mainstream option pricing theory. Empirically, it has been shown 

that returns are skewed and display positive excess kurtosis. An alternative to the Gaussian 

distribution is Student’s t marginal distribution, which accommodates a higher kurtosis.  

We convert the standardized residuals of the returns into a uniform distribution assuming alternatively 

that they follow a Gaussian and Student’s t marginal distribution functions. If one attend to the AIC 

and BIC criterions, Student's t copula still outperforms the remaining alternatives when it is assumed 

that the marginal distribution function is Gaussian or Student's t (see Table 6). 

Table 6 – Summary results from copula estimation – parametric marginal distribution functions 

 
Gaussian marginal distribution function Student's t marginal distribution function 

 
LL AIC BIC LL AIC BIC 

Normal -100.19 -200.39 -200.40 -115.80 -231.61 -231.62 
Clayton -73.67 -147.35 -147.36 -97.96 -195.93 -195.94 
Rot Clayton -89.74 -179.49 -179.50 -92.96 -185.93 -185.94 
Frank -123.35 -246.71 -246.72 -120.38 -240.76 -240.77 
Gumbel -115.89 -231.79 -231.80 -115.72 -231.45 -231.46 
Rot Gumbel -101.13 -202.26 -202.27 -117.66 -235.33 -235.35 
Student's t -127.51 -255.02 -255.04 -128.40 -256.81 -256.83 
SJC -105.86 -211.74 -211.76 -118.23 -236.47 -236.49 
TV rotated 

  

-105.65 -211.284 -211.252 -124.257 -248.498 -248.466 
TV Normal  -108.913 -217.81 -217.778 -120.452 -240.887 -240.855 
TV Clayton  -85.811 -171.606 -171.574 -85.0917 -170.167 -170.135 
TV  SJC -105.34 -210.648 -210.583 -119.391 -238.75 -238.685 
TV Student's t -112.866 -225.699 -225.634 NaN NaN NaN 
 

We also compare the goodness-of-fit of Student's t copula with several specifications of dynamic 

copulas when using parametric margins. Student's t copula appears to outperform their peers that 

display a dynamic specification, since it is the one that presents lower AIC/BIC measures. This result 

is in accordance with the one obtained when testing for time-varying dependence (see Table 2), 

wherein the time-varying dependence hypothesis is rejected by the data. 



 
 

21 
 

Indeed, the earlier results are also corroborated when using Chen and Fan (2006) PLR test. According 

to this test, neither of the alternatives performs better than Student's t copula function. 

Table 7 – In-sample PLR tests of the Student's t copula against the remaining specifications 

 Student's t copula 
 Gaussian margins Student's t margins 

Normal -1.14 -0.93 
Clayton -2.53 -2.34 
Rot Clayton -4.61 -4.86 
Frank -0.42 -0.47 
Gumbel -3.28 -3.32 
Rot Gumbel -0.58 -0.60 
SJC -1.21 -2.58 

 

Robustness tests – Results for different subsamples 

In order to ascertain whether copula functions are stable over time, we also divide the sample into two 

different subsamples. In doing so, we attend to the results of structural break tests exhibited in Table 

2. In effect, those tests suggest a possible break in the last tercile of observations in the sample. As 

such, we form two groups of observations. The first comprises the initial 199 observations, and the 

second covers the remaining observations. Then, we re-estimate the static copula functions in each 

subsample. It is important to keep in mind that partitioning the sample may result in greater estimation 

error. Notwithstanding that, the results are very similar to the ones reported earlier, in that Student's t 

copula is the one that better adjusts to the data.  

Table 8 - Summary results from copula estimation – different subsamples 

  Obs. 1-199 Obs. 200-363 
 LL AIC BIC LL AIC BIC 

Normal -51.79 -103.59 -103.61 -69.26 -138.54 -138.56 
Clayton -46.65 -93.32 -93.33 -58.52 -117.06 -117.08 
Rot Clayton -36.13 -72.28 -72.29 -51.46 -102.93 -102.95 
Frank -54.19 -108.39 -108.41 -68.52 -137.06 -137.08 
Gumbel -45.82 -91.66 -91.68 -64.62 -129.25 -129.27 
Rot 

 

-53.70 -107.42 -107.43 -68.84 -137.69 -137.71 
Student's t -54.20 -108.41 -108.44 -71.19 -142.41 -142.45 
SJC -51.22 -102.46 -102.50 -67.98 -135.99 -136.02 

 

Indeed, Student's t copula outperforms other copulas in both subsamples. These results are confirmed 

not only by AIC/BIC criterions, but also by Chen and Fan (2006) PLR test (see table 10). 

Table 9 - In sample PLR tests of the best three copulas against the remaining specifications – different subsamples    
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 Obs. 1-199 Obs. 200-363 
Normal -0.719  -0.913  
Clayton -1.312  -1.790  
Rot Clayton -3.250  -3.373  
Frank -0.002  -0.686  
Gumbel -2.674  -1.867  
Rot Gumbel -0.138  -0.617  
SJC -3.074  -2.098  

 

One aspect that is worth mentioning is that, in the first subsample, the second best copula is the Frank 

copula, while in the second sub-period it is the rotated Gumbel. One possible interpretation for this 

outcome is that tail dependence is higher in the second subsample. In fact, we also observe an increase 

of the tail dependence coefficient associated to the Student's t copula (from 0.71 to 0.76; non-

tabulated results). 

6. Conclusions 

Merton (1974) provides the setup for the analysis of the relationship between CDS markets and stock 

markets performance. According to the model, a high debt-equity ratio would imply a higher 

correlation between stock and bond returns, than a low debt-equity ratio. The intuition is that debt has 

a limited upside potential, and when the firm is performing well the bondholders do not profit from 

that situation as stockholders. On the contrary, when the firm is in distress both stockholders’ and 

bondholders’ wealth are highly influenced by the market value of the firm’s assets. Concurrently, 

large negative jumps in the firm’s asset value should have a greater effect on the value of debt than 

positive jumps, ceteris paribus. In that sense, the relationship between stock prices and CDS spreads 

should increase with financial distress. This implies a non-linear association, where the co-movement 

intensifies when large negative movements in the value of the assets of the firms occur. 

We focus our analysis in the banking sector. We show that the conclusions of Merton (1974) do not 

apply to financial firms (banks).  Understanding the relationships between CDS spreads of the 

financial sector and stock markets is important to evaluate financial stability, and more precisely is of 

crucial importance in terms of supervision, regulation and market discipline. Moreover, it allow us to 
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evaluate the “too-big-to-fail” effect on the association between financial stock performance and credit 

risk, in particular for systemically large banks. 

 Using a copula-based approach we address the association between stocks of European financial 

institutions and CDS markets. We aim to accomplish two purposes: (i) analysing the dependence 

structure of the markets when extreme events occur, having into account that sometimes banks are too 

big to fail; (ii) checking the validity of the conclusion of Merton (1974) and other similar structural 

models regarding the intensification of the relationship between stock prices and CDS spreads during 

financial distress periods. Our major findings are that (i) the structure of dependence between the two 

markets appears to be symmetric; (ii) there is symmetric tail dependency between financial stock 

returns and CDS spread changes. 

These findings contrast with Merton (1974) assertion that large positive movements in firms’ asset 

values should imply a lower dependence between stock prices and credit claims spreads than large 

negative movements. One possible reason for the inexistence of a higher negative tail dependence 

between the innovations of the series may reside in the too-big-to-fail effect, that is, credit holders 

receive a subsidy from governments protecting them from bankruptcy costs, in contrast with equity 

holders whose capital is wiped-out if the bank fails. In such case, the poor financial situation of a bank 

is likely to affect severely stockholders’ wealth, whereas bond holders are bailed out; as a 

consequence, spreads and stock returns do not co-move as they would so if that subsidy did not exist 

which in turn makes negative and positive tail dependence statistically similar. 
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