Public Debt, Child Allowances, and Pension Benefits with Endogenous Fertility

Masaya Yasuoka
University of Kitakyushu

Atsushi Miyake
Kobe Gakuin University

Abstract The stock of public debt in some developed countries continues to increase because of a lack of tax revenues and the burdens of social security. Many of those developed countries suffer from lower birth rates. Child allowances might help to raise fertility, leading to higher tax revenue in the future because of an increase in the younger population. In this paper, the authors examine whether or not child allowances reduce the public debt stock as a share of Gross Domestic Product (GDP) in an economy with a pension system. As long as the long-run debt ratio is non-negative, child allowances financed by bonds always increase the public debt stock per unit of GDP.

JEL G23 H55 J13
Keywords Public debt; endogenous fertility; child allowances; pension

Correspondence Masaya Yasuoka, Faculty of Economics and Business Administration, The University of Kitakyushu, 4-2-1 Kitagata, Kokuraminami, Kitakyushu, Japan 802-8577; e-mail: yasuoka@kitakyu-u.ac.jp

The authors would like to thank Akira Momota, Lisa Stadler and seminar participants at the 2011 Autumn Meeting of Japanese Economic Association and at the 2012 Annual Congress of International Institute of Public Finance for their helpful comments and suggestions. All remaining errors are of the authors. Research for this paper was financially supported by a Grant-in-Aid for Scientific Research (No.21730159, 23730283).
1 Introduction

Public debt accumulation is a social problem in some developed countries. After the financial shocks in 2008, the pace of public debt accumulation has accelerated. It is predicted that the general government gross financial liabilities (public debt stock) per Gross Domestic Product (GDP) of OECD countries in all will be almost 100% in 2012. Particularly, the accumulation of public debt stock in Japan will be more than 200% of GDP in 2012.

Some people might be anxious that their country, which owes so much debt, would declare bankruptcy. To avoid sovereign bankruptcy, some countries must carry out fiscal reforms. Two basic ways exist to decrease the public debt stock per GDP: raising the tax burden and increasing population. Even if the tax burden per capita remains constant, population growth can bring higher tax revenues. Population growth contributes to economic growth, which increases tax revenues. Therefore, population growth might be more effective to decrease the public debt stock per GDP than an increased tax burden.

Child allowances are commonly regarded as instruments used by governments for policies of family support. Some earlier papers examined the effects of child allowances in the economy with endogenous fertility. Zhang (1997), Oshio (2001), van Groezen et al. (2003), and van Groezen and Meijdam (2008) reported that the fertility level is raised by child allowances in the economy with a pay-as-you-go pension system.\footnote{However, child allowances can not always raise fertility. Fanti and Gori (2009) found that taxation for children raises fertility because of the income effect in a closed economy. In other words, they showed that a child allowance lowers fertility because of decreased capital per capita, i.e. income.}

Some earlier research papers have described public debt. Diamond (1965) considered public debt in an overlapping-generations model. Samuelson (1958) and Azariadis (1993) examined whether a fiscal policy that brings about fiscal deficit is sustainable or not in terms of fiscal management. Sustainability depends on the primary fiscal deficit and on the gap separating interest rates and the population growth rate. Government expenditures in these models are regarded as public consumption. Similarly, Chalk (2000) and Bräuninger (2005) investigated whether public bond financing is sustainable or not in a model incorporating government consumption. Ono (2003) examined the dynamics of public debt stock and capital stock and found that they depend on parametric conditions and the initial level of public debt.
stock. In the paper, the government issues public debt to finance the wedge between contributions for public pension and benefits of that in a closed economy with a fixed contribution rate and benefits. Meijdam et al. (1996) examined the dynamics of public debt stock in a small open economy and derived the manner in which taxation affects the dynamics of public debt. Yakita (2008) investigated public capital formation financed by public debt and examined the sustainability of fiscal management.

Our paper presents development of a model with endogenous fertility and analyzes whether child allowances financed by public debt can reduce public debt stock per GDP or not in the long run. Child allowances raise fertility and then bring about a population effect that decreases public debt stock per GDP because an increase in the population of younger people raises income tax revenues. In Japan, total fertility was about 1.4 at 2010, which is a low level in OECD countries. The Japanese government is seeking to raise fertility through provision of child allowances to sustain an aging society. Our analyses derive that child allowances financed by public debt increase the public debt stock per GDP in the long run if the government targets zero public debt stock in the long run. Indeed, child allowances financed by public debt can raise fertility, and there exists a population effect to decrease public debt stock per GDP through an increase in tax revenue. However, increased public debt prevents capital accumulation, and GDP decreases as a result. In short, because this effect is greater than the population effect, child allowances financed by public debt can not decrease the public debt stock per GDP. Even if the government targets positive public debt stock per GDP in the long run, child allowances can not decrease public debt stock per GDP. Therefore, given a non-negative public debt stock policy, a population effect by which revenue rises because of an increase in younger people is small. It is insufficient to reduce the public debt stock per GDP.

The remainder of this paper presents the following. Section 2 of this paper establishes the model. Section 3 derives equilibrium in a closed economy. Section 4 examines the effect of child allowances on the public debt stock per GDP. The final section presents results.

2 The Model

This model economy consists of a two-period (young and old) overlapping generations model. Three agents exist in this model: households, firms, and a government. In the following subsection, we explain

\footnote{Data: OECD Statistics.}
each agent.

2.1 Households

Each household lives in three periods—childhood, young, and old—and supplies labor to earn an income during the young period. Young people supply labor inelastically for consumption during the young period and use savings to consume during the old period in addition to caring for children. A government provides not only a pension system that gives older people a fixed benefit, but also a child allowance for younger people. The budget constraint is given as

$$c_{1t} + \frac{c_{2t+1}}{1 + r_{t+1}} + (z_t - q_t)n_t = (1 - \tau)w_t + \frac{p_{t+1}}{1 + r_{t+1}}. \quad (1)$$

Therein, \(q_t\) denotes the child allowance. Furthermore, \(n_t\) represents the number of children. Necessary goods to bring up a child are represented as \(z_t\). In addition, \(c_{1t}\) and \(c_{2t+1}\) respectively denote consumption during young and old periods. Here, \(w_t\) shows the wage rate. Interest rate \(1 + r_{t+1}\) is returned to savings. Younger people face income taxation (tax rate or contribution rate \(\tau\)). Older people receive a pension benefit \(p_{t+1}\). Furthermore, \(t\) signifies the period. We assume that the child-care cost \(z_t\) depends on wage income such as \(z_t = \hat{z}w_t\) \((\hat{z} > 0)\).

Moreover, the government provides a child allowance as \(q_t = \hat{q}w_t\) \((\hat{z} > \hat{q} > 0)\) and pension benefit as \(p_{t+1} = \hat{x}w_t\) \((\hat{x} > 0)\). A household’s utility function is assumed as

$$u_t = \alpha \ln c_{1t} + \beta \ln c_{2t+1} + (1 - \alpha - \beta) \ln n_t, \quad 0 < \alpha, \beta < 1, \quad \alpha + \beta < 1. \quad (2)$$

Under the budget constraint (1), the allocation of \(c_{1t}\), \(c_{2t+1}\), and \(n_t\) to maximize their utility is shown as

$$c_{1t} = \alpha \left(1 - \tau + \frac{\hat{x}}{1 + r_{t+1}}\right) w_t, \quad (3)$$

$$c_{2t+1} = (1 + r_{t+1})\beta \left(1 - \tau + \frac{\hat{x}}{1 + r_{t+1}}\right) w_t, \quad (4)$$

$$n_t = \frac{(1 - \alpha - \beta) (1 - \tau + \frac{\hat{x}}{1 + r_{t+1}})}{\hat{z} - \hat{q}}. \quad (5)$$

3van Groezen, Leers, and Meijdam (2003), Fanti and Gori (2009), and Oshio (2001) also assume the same fixed child-care cost. van Groezen and Meijdam (2008) describe an economy with child-care cost \(z_t\) as a wage increasing function.

4Zhang and Zhang (2007) explain that the assumed pension benefit is practiced by many developed countries such as France, Germany, and Japan. \(\hat{x}\) denotes the replacement rate.
2.2 Firms

A representative firm produces final good Y_t with constant returns to scale or a neoclassical product function, shown as

$$Y_t = K_t^\theta (A_t N_t)^{1-\theta}, \quad 0 < \theta < 1, \quad A_t \equiv a \frac{K_t}{N_t}, \quad 0 < a. \quad (6)$$

The firm inputs capital stock K_t and labor (population size of younger people) N_t. The productivity A_t is given as a Romer-type externality, as described by Romer (1986) and Grossman and Yanagawa (1993). θ and a are given exogenously. With a perfectly competitive market, the wage rate w_t and the interest rate r_t are

$$w_t = (1-\theta) a^{1-\theta} k_t \quad \text{and} \quad (7)$$

$$1 + r_t = \theta a^{1-\theta}, \quad (8)$$

where $k_t \equiv \frac{K_t}{N_t}$, and where capital stock depreciates fully in a single period. An interest rate is constant over time. Fertility n_t is constant ($n_t = n$), too.

2.3 Government

The government executes two policies: one for the pension and one for child allowances. A payroll tax rate τ, which we can regard as the contribution rate, is levied on younger people. Older people receive pension benefit p_t. Assuming a balanced budget in each period, the government must change the tax rate to balance the budget. However, allowing a fiscal deficit, the government need not change the tax rate in each period. Therefore, the government budget is shown as

$$b_{t+1} = 1 + r \frac{b_t}{n} + \frac{\hat{x} w_{t-1}}{n^2} + \left(\hat{q} - \frac{\tau}{n} \right) w_t. \quad (9)$$

b_t denotes the public debt stock per young individual, i.e., $b_t \equiv \frac{B_t}{N_t}$, which B_t denotes the aggregate public debt stock. $5 \frac{\hat{x} w_{t-1}}{n^2} + \left(\hat{q} - \frac{\tau}{n} \right) w_t$ shows the primary balance. Even if this primary balance just equals to zero, public debt per capita b_t increases when $1 + r > n$. In developed countries, no population growth exists. Then $1 + r > n$ holds. Eq. (9) becomes the following equation.

$$b_t = \frac{b_{t+1}}{(1+r)^{j}} - \sum_{s=1}^{j} \frac{\hat{x} w_{t-2+s}}{n^2} \left(\frac{1+r}{n} \right)^{s} + \left(\hat{q} - \frac{\tau}{n} \right) w_{t-1+s}. \quad (9)$$

5Considering $B_{t+1} = (1+r)B_t + \hat{x} w_{t-1} N_{t-1} + \hat{q} w t N_t - \tau w_t N_t$, we obtain (9).
If a non-Ponzi condition prevails, then we obtain \(\lim_{j \to \infty} \frac{b_{t+j}}{(\frac{1+r}{n})^j} \). Therefore, a fiscal surplus is necessary to sustain positive \(b_t \).

3 Equilibrium

Having examined the agents’ behavior, we proceed to analysis of the equilibrium. The equilibrium of this economy depends on the amount of capital per-capita \(k_t \equiv \frac{K_t}{N_t} \). Representing the savings per household as \(s_t \), the capital market clearing condition is given as \(K_{t+1} + B_{t+1} = N_t s_t \) or \(k_{t+1} + b_{t+1} = \frac{s_t}{n_t} \). Consequently, we obtain the following equation.

\[
k_{t+1} + b_{t+1} = \left(1 - \frac{\tau}{n} - \frac{(1 - \beta)(\hat{z} - \hat{q})}{1 - \alpha - \beta} \right) (1 - \theta) a^{1 - \theta} k_t
\]

An increase in \(b_{t+1} \) prevents capital accumulation such that income per capita \(y_t \) and wage rate \(w_t \) decrease. This is a crowding-out effect. Then, the equilibrium is determined by the following two equations,

\[
b_{t+1} = H b_t + I k_t, \quad (11)
\]
\[
k_{t+1} = -H b_t + J k_t, \quad (12)
\]

where

\[
H \equiv \frac{\beta(\hat{z} - \hat{q})(1 + r)(1 - \tau) + \hat{x}}{(1 - \alpha - \beta) \left(1 - \tau + \frac{\hat{x}}{1+r} \right) (1 - \theta) a^{1 - \theta} k_t} > 0,
\]
\[
I \equiv \frac{(\hat{z} - \hat{q}) \left(\frac{\hat{x}}{\beta(1 - \tau)} - \frac{(1 - \theta)(1 + r)}{1 + \frac{\hat{x}}{1+r}} \right) + (1 - \theta)(1 + r) \hat{q}}{\theta},
\]
\[
J \equiv \frac{(\hat{z} - \hat{q}) \left(\frac{(1 - \theta)(1 + r) (\beta + (1 - \beta)(\hat{q} - \hat{z}))}{\beta(1 - \tau)} - \frac{\hat{x}}{1 + \frac{\hat{x}}{1+r}} \right) - \frac{(1 - \theta)(1 + r) \hat{q}}{\theta}}{1 - \alpha - \beta} \left(1 - \tau + \frac{\hat{x}}{1+r} \right).
\]

\(H \) corresponds to \(\frac{1+r}{n} \) in (9) if \(\hat{x} = 0 \). An increase in the child allowance \(\hat{q} \) decreases \(H \) because fertility \(n \) increases. Then \(\frac{1+r}{n} \) decreases. \(I \) corresponds partially to \(\frac{\hat{x}w_t}{n} + (\hat{q} - \hat{z}) w_t \). Without a pension and no child allowance, this sign becomes negative, which indicates a surplus of the primary balance. An increase in pension \(\hat{x} \) can change this sign from negative to positive. Given \(\tau \), an increase in \(\hat{x} \) crowds

\(^6\)See Appendix for a detailed proof.
out capital accumulation. Because $H > 0$ and because of the non-negative $k_{t+1}, J > 0$ must be assumed. Defining $v_t \equiv \frac{b_t}{y_t}$ and considering (11) and (12), we obtain

$$v_{t+1} = \frac{Hv_t + I}{-Hv_t + J}. \quad (13)$$

Because of $k_t = \frac{y_t}{a+1}$ and $v_t = a^1 - \theta b_t$, we consider v_t as the public debt stock/GDP ratio. We consider the equilibrium without child allowances $\dot{q} = 0$. Additionally, we consider the economy with $I = 0$, which is the primary balanced fiscal policy. Then, we obtain $\frac{\partial v_{t+1}}{\partial v_t} > 0$ and $\frac{\partial^2 v_{t+1}}{\partial v_t^2} > 0$. Assuming $J > H$, the dynamics of v_t is shown by Fig. 2.

[Insert Fig. 2 around here.]

Defining v^* and v^{**} as the public debt stock per GDP in a stable steady state and that in an unstable steady state respectively, $v^* = 0$ and $v^{**} = \frac{I-H}{J}$. Considering a stable steady state, this fiscal policy $I = 0$ gives no public debt stock in the long run. In the following section, we examine whether child allowances can decrease public debt stock per GDP or not.

4 Policy Effects

First, we examine the effect of an increase in child allowances \dot{q} on $v^* = 0$ the public debt stock per GDP in the steady state. Calculating $\frac{dv_{t+1}}{dq}$ at an approximation of $\dot{q} = 0$ for any v_t, we obtain

$$\frac{dv_{t+1}}{dq} = \frac{HJ}{(-Hv_t + J)^2} > 0. \quad (14)$$

As shown in Fig. 3, an increase in \dot{q} increases v^*.

[Insert Fig. 3 around here.]

Then, the following proposition is established.

Proposition 1 If the public debt stock per GDP is zero in a stable steady state, then an increase in child allowances raises the public debt stock per GDP in a stable steady state.

7the pension benefit \dot{x} must be held by $\dot{x} = \frac{\beta \theta (1-\tau)(1+\rho)}{(1-\beta)(1+\rho)}$ to obtain $I = 0$.

8The condition to be $J > H$ is $\frac{\beta(1+\rho)(1-\tau)\beta^2(1+\rho)}{\beta(1-\tau) - \frac{\beta^2(1+\rho)}{1+\rho}} > \frac{\beta(1+\rho)(1-\tau)\beta^2(1+\rho)}{\beta(1-\tau) - \frac{\beta^2(1+\rho)}{1+\rho}}.$
An increase in child allowances financed by public debt raises the fertility given by (5). Then, population growth increases. The share of older people to total population shrinks. Tax revenues are growing for pension benefits for older people. Therefore, we can infer that child allowances financed by public debt reduce the public debt stock per GDP in the long run because of an increase in tax revenue given by an increase in younger population. However, this effect is weak and is dominated by a direct increase in public debt.

Second, we examine the effect of child allowances on public debt stock per GDP in the economy with $I > 0$. If $I > 0$, then v^* is given as a positive value. The government in each country targets some positive public debt per GDP such as the budget rule in the European Union (EU). In the EU, each country must obey the budget rule that public debt stock per GDP be less than 60% and that the annual fiscal deficit be less than 3%. Therefore, in addition to the policy that the government targets no public debt stock in the long run, it is important to examine the fiscal budget rule $v^* > 0$ as a realistic target.

Calculating $\frac{dv^*}{dq}$ at an approximation of $\dot{q} = 0$ in $I > 0$, we obtain the following

$$\frac{dv^*}{dq} = \left(\frac{(1-\theta)(1+r)}{\theta}\right)^2 \frac{\beta(1-\tau) - \frac{(1-\beta)\dot{q}}{1+r}}{(1-\alpha-\beta)\left(1-\tau + \frac{\dot{q}}{1+r}\right)} \left(1 - \frac{H(J+I)}{-Hv^*+J}\right) > 0. \quad (15)$$

Then, the following proposition is established.

Proposition 2 We assume an economy with positive v^* in a steady state. An increase in child allowances raises public debt stock per GDP.

Regarding non-negative public debt stock per GDP, an increase in child allowances raises the public debt stock per GDP in the steady state v^*. As shown by I, the first term in I includes \dot{q}. With $I > 0$, this first term is positive unless child allowances are not provided. This positive term shows that payments for older people as pension benefits are greater than tax revenue. An increase in \dot{q} shrinks this term. This effect reduces b_{t+1}, i.e., v^*. An increase in \dot{q} increases fertility. An increase in population growth raises tax revenues from younger people, compared with pension benefits for older people. However, in the endogenous growth model given by production function (6), the population effect that reduces public debt stock is small.

9 the stable condition holds $1 - \frac{H(J+I)}{-Hv^*+J} > 0$.

8
5 Concluding Remarks

This paper describes an endogenous fertility model with a pay-as-you-go pension model including public debt. It examines the effect of child allowances. Child allowances are used to raise fertility. A government in a developed country considers that an increase in fertility brings about an increase in tax revenue in the future because of an increase in younger people. This policy therefore copes with an aging society. This paper presents analysis of whether child allowances financed by public debt can decrease public debt stock per GDP thanks to an increase in younger people or not. However, this paper presents a derivation that child allowances financed by public debt raise the public debt stock per GDP in the model with no public debt policy in the long run. Even if the government adopts a positive public debt stock policy in the long run, child allowances can not reduce the public debt stock per GDP. Therefore, an increase in the younger population given by child allowances does not make sense for reduction of the public debt stock per GDP. Child allowances increase the public debt stock directly. This constitutes a direct and immediate effect. However, child allowances raise fertility. Therefore, the ratio of younger people to older people increases. Consequently, tax revenue increases for pension benefit for older people and child allowances have the effect of decreasing the public debt stock. This is an indirect effect. Our paper verifies that the indirect effect is less than the direct effect. For that reason, child allowances can not reduce public debt stock per GDP.
Appendix

Considering (10), the following equation is obtained.

\[
k_{t-1} = \frac{k_t + b_t}{(1 - \theta)^{a^1 - \theta} \left(\frac{1 - \tau}{n} - \frac{(1 - \beta)(\hat{z} - \hat{q})}{1 - \alpha - \beta} \right)}. \tag{16}
\]

Substituting (5), (7), and (16) into (9), the following equation is obtained.

\[
b_{t+1} = \frac{1 + r}{n} b_t + \frac{\hat{x}}{n^2} \left[\frac{k_t + b_t}{1 - \theta} - \frac{(1 - \beta)(\hat{z} - \hat{q})}{1 - \alpha - \beta} \right] + \left(\hat{q} - \frac{\tau}{n} \right) (1 - \theta)^{a^1 - \theta} k_t
\]

\[= \frac{\beta(\hat{z} - \hat{q})((1 - \tau)(1 + r) + \hat{x})}{(1 - \alpha - \beta) \left(1 - \tau + \frac{\hat{x}}{1 + \tau} \right) \left(\beta(1 - \tau) - \frac{(1 - \beta)\hat{x}}{1 + \tau} \right) b_t}
\]

\[+ \left[\frac{(\hat{z} - \hat{q}) \left(\frac{\hat{x}}{\beta(1 - \tau) - \frac{(1 - \beta)\hat{x}}{1 + \tau}} - \frac{(1 - \theta)(1 + r)\tau}{\theta} \right)}{(1 - \alpha - \beta) \left(1 - \tau + \frac{\hat{x}}{1 + \tau} \right)} + \left(1 - \theta \right)(1 + r)\hat{q} \right] k_t.
\]

Substituting (5) and (11) into (10), the following equation is obtained.

\[
k_{t+1} = -H b_t + \frac{1}{n} \left[\frac{(1 - \theta)(1 + r)}{\theta} \right] \left[1 - \tau - (1 - \beta) \left(1 - \tau + \frac{\hat{x}}{1 + \tau} \right) \right] k_t - I k_t,
\]

\[= -H b_t + \frac{\left(\hat{z} - \hat{q} \right) \left(\frac{\beta + (1 - \beta)\tau - \frac{(1 - \beta)\hat{x}}{\theta(1 - \tau) - \frac{(1 - \beta)\hat{x}}{1 + \tau}} \right)}{(1 - \alpha - \beta) \left(1 - \tau + \frac{\hat{x}}{1 + \tau} \right)} - \frac{(1 - \theta)(1 + r)\hat{q} \theta}{\theta} k_t.
\]
References

Fig. 1: General government gross financial liabilities per cent of nominal GDP (Data: OECD Statistics).
Fig. 2: Dynamics of the public debt/capital stock ratio.

Fig. 3: Increase in the public debt/capital stock ratio.
Please note:

You are most sincerely encouraged to participate in the open assessment of this discussion paper. You can do so by either recommending the paper or by posting your comments.

Please go to:

http://www.economics-ejournal.org/economics/discussionpapers/2012-47

The Editor