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Abstract 

This paper examines the diversity of the types of links of firms to science and their 
effect on innovation performance for a sample of Belgian firms. While at the industry 
level links to science are highly related to the R&D intensity of the sector, we show 
that there exists considerable heterogeneity in the type of links to science at the firm 
level. Overall, firms with a science link enjoy superior innovation performance, in 
particular with respect to innovations that are new to the market. At the invention level, 
our findings confirm that patents from firms engaged in science are more frequently 
cited and have a broader technological and geographical impact, but we show that it is 
crucial to distinguish between direct science links at the invention level and indirect 
science links at the firm level to encounter these distinct positive effects of science 
links.  
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Introduction 

An important and recurrent concern in economics has been to understand to what extent science 

influences technological progress. This literature has shown that knowledge flows from 

universities and public research centres make a substantial contribution to industrial innovation 

and, consequently, to public welfare.1  

 

More recent research suggests that the links to basic research by industrial firms have 

dramatically increased in the last decade. There is evidence of rising university spin-offs 

(Jensen and Thursby, 2001; Thursby and Thursby, 2002), university-industry collaboration 

(Liebeskind et al, 1996; Darby and Zucker; 2001; Zucker et al, 2001; 2002), mobility of 

university researchers (Kim et al, 2005), science-linkage in private patents (Narin et al, 1997; 

Hicks et al, 2001), and so forth. Narin et al (1997) report a threefold increase in the number of 

academic citations in industrial patents in the United States through the mid 1990s.2 These 

patterns suggest an increased opportunity for innovation offered by linking to science and 

scientific institutions.  

 

In spite of this growing evidence about firms connecting to science, our understanding at the 

firm level about how knowledge transfers occur through these links and how they affect 

industrial innovation remains unclear. The main incentive for enterprises to engage in industry-

science links (ISL) is to access scientific know how and knowledge. For private organizations 

to create and maintain such links to science, ultimately, this knowledge should increase the 

productivity of own internal research (Evenson and Kislev, 1976; Gambardella, 1992; 

                                                 
1 The importance of academic research for industrial innovation has also been corroborated in studies based on 
industrial survey and patent statistics (Mansfield, 1991, 1995; Cohen, Nelson and Walsh, 2002). 
2 Narin, Hamilton, Olivastro (1997), Branstetter (2004), and Van Looy et al (2004), have all confirmed an 
increasing citation to academic publications in patents 
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Cassiman et al., 2001).   The role and importance of science will be affected by industry 

factors, but also by firm and invention level factors.  

 

In this article, we shed some light on the debate on the importance of ISL by looking at the 

“diversity” of linkages to science employed by Flemish firms and their relationship to 

innovative performance.  Combining patent, publication and innovation survey information for 

these firms,  a wide variety of industry science link indicators can be considered:  i) cooperative 

R&D agreements with public research centers and universities, ii) use of public information 

sources – universities, public research centers, conferences, meeting and publications – to 

innovate, iii) citation to scientific literature in patents of the firm, and, iv) involvement in 

scientific publications by the firm.  

 

A first contribution of the paper is to show the diversity in ISL being used by firms,  suggesting 

the need to look beyond a single “silver-bullet” industry-science link, to include the full 

portfolio of industry science links.  A second contribution of this paper consists in evaluating 

whether these different types of ISL enhance industrial innovation and economic performance 

of the firms using ISL. Two types of analysis are presented. First, we relate linkages to science 

to the different indicators of innovation and economic performance at the firm level (with 

performance measured as turnover due to innovation and turnover due to market introduction as 

reported in the CIS 1998-2000 data).  Second, we delve further into the micro-level connections 

between science and innovation performance, focusing on the invention (i.c. patent) level. For 

this we restrict the sample to patenting firms and compare the differences in patent quality 

(forward citation) between patents with and without science linkages.  We also return to the 

firm level, by comparing the quality of patents (forward citations) of firms with science 

linkages vis-à-vis patents of other firms.  We thus provide an evaluation of the effectiveness of 
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the science-linkages to enhance technological performance by looking at the quality of private 

inventions.   

 

The paper is organized as follows. Section I presents a summary of the literature and reviews 

previous empirical work on the value of science for industrial innovation. While our 

contribution is intended to be rather descriptive, the review does lead to the formulation of our 

main hypotheses. Section II describes our data and the methodology. Basic descriptives are 

presented on the frequency of ISL, and the adoption of ISL by firms across various types of 

industries. Section III evaluates the relationship between ISL and firms’ innovation 

performance. The final section concludes and identifies some preliminary policy implications 

based on our research. 

 

I. The value of Science  

The value of science for innovation and growth has been demonstrated using a diverse set of 

methodologies. In large sample research Griliches (1979) and Adams (1990) have shown the 

important contribution of basic research (e.g. public research expenditures and scientific 

publications) to economic growth. Complementary research based on surveys has provided an 

alternative estimation of the contribution of basic research for industrial innovation and 

economic performance. In a survey of 76 U.S. firms in seven industries, Mansfield (1991) 

found that 11% of new product innovations and 9% of process innovations would not have 

been developed (without substantial delay) in the absence of recent academic research; these 

innovations represented respectively 3% and 1% of sales. Both the 1983 Yale Survey and the 

1994 Carnegie Mellon Survey of R&D have also shown the relevance of university research for 

industrial innovation and provide some insight as to the importance of different channels 

(Cohen et al, 2002). According to the 1994 Carnegie Mellon Survey, American firms 
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considered publishing by universities and patenting amongst the most important sources of 

knowledge for the innovation process.3   In a survey of Europe’s largest industrial firms, 

Arundal and Geuna (2004) find that public science is amongst the most important sources of 

technical knowledge for the innovative activities.   Evidence from the European community 

innovation surveys (CIS) indicates that 31% of firms that develop products or processes that are 

new to the market is an important source of information for the innovation process, compared 

to a mere 4% of all innovating firms who find these information sources important in general 

(EC-DGECFIN, 2000). Therefore, it seems that science is more important as a source of 

knowledge for innovation when innovations new to the market are developed. 

 

The management literature has tried to open the firm’s black box on how science linkages can 

improve the productivity of firm’s internal research.  Different mechanisms have been 

associated with this beneficial effect of science on innovation performance of firms. First, 

investment in science generates absorptive capacity and a better understanding of scientific 

research. As a result, the firm more easily identifies and integrates external information, 

enhancing the productivity of internal research (Cohen and Levinthal, 1989 and 1990; Arora 

and Gambardella, 1990) Second, Cockburn and Henderson (1998) argue that returns to science 

are exploited through economies of scope across different product lines. They trace these 

effects across therapeutical classes within the same pharmaceutical company. A third 

mechanism advanced by Fleming and Sorenson (2004) is that science serves as a map of the 

technological landscape and directs private research towards the most promising technological 

venues avoiding thereby wasteful experimentation.4 Finally, Stern (1999) shows that the 

                                                 
3 The results indicate that the key channels through which university research impacts industrial R&D include 
published papers and reports, public conferences and meetings, informal information exchange, and consulting. 
4 According to Fleming and Sorenson (2004), scientific knowledge differs from that derived through ‘local’ search 
within the firm -which is closely related to firms’ prior research activities-, namely because the scientific 
endeavour attempts to generate and test theories and fundamental ideas, whereas local search is focused on finding 
new technological solutions within a predetermined pool of knowledge. 
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adoption of pro-publication incentives for employees helps firms attract high quality academic 

researchers whose economic value might frequently be higher than their actual remuneration. 

Researchers looking for academic reputation, may want to pursue research projects leading to 

publications and are, therefore, likely to accept lower salaries in exchange of permission to 

keep up with scientific research. These researchers provide value along two dimensions: they 

not only generate important labor costs reductions and consequently higher productivity of 

internal research, but they also constitute a bridge with the scientific or academic world.   

 

A growing literature has tried to empirically assess the impact of ISLs on firm performance 

(e.g. Audretsch and Stephan, 1996; Zucker et al 1998; Cockburn and Henderson, 1998). Using 

university collaboration as an ISL, these papers seem to support the hypothesis that these links 

boast internal R&D investment (Adams et al, 2000), innovation productivity and sales 

(Belderbos et al, 2005).5 While they provide little explanation about the process through which 

science affects private innovation, the studies have found that science involvement and ties with 

academic star scientists lead to more patented technology (Henderson and Cockburn, 1996; 

Zucker et al, 2002; Cockburn and Henderson, 1998); more “important” patents: i.e. 

international patents (Henderson and Cockburn, 1996); and higher average of quality adjusted 

patenting at the firm level (Zucker and Darby, 2001; Zucker et al, 2002).  

 

The work of Cockburn and Henderson (1998) has shown that absorptive capacity is also 

affected by the closeness of the firm to scientific communities (Cohen and Levinthal, 1989; 

Kamien and Zang, 2000). Using data on co-authorship of scientific papers for a sample of 

pharmaceutical firms, they show that firms connected to science show a higher performance in 

                                                 
5 For instance, Lööf and Broström, (2004) have found complementarities between internal R&D and collaboration 
with universities: the average R&D firm that cooperates on innovation with universities spend more money on 
R&D and has a larger propensity to apply for patents compared to an almost identical R&D firm which has no 
such collaboration. 
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drug discovery and that this connectedness is closely related to the number of star scientists 

employed by the firm.6 Zucker et al (1998) and Darby and Zucker (2001) found that the 

location of top star scientists predicts firm entry into biotechnology (by new and existing firms) 

both in the United States and Japan. Darby and Zucker (2005) find similar evidence that firms 

enter nanotechnology where and when scientists are publishing breakthrough academic 

articles.7 In addition, collaborations between particular university star scientists and firms had a 

large positive impact on firm research productivity, increasing the average firm's biotech 

patents by 34 percent, products in development by 27 percent, and products on the market by 8 

percent (Darby and Zucker, 2001).  

 

In spite of such apparent benefits, the adoption of science by private firms remains limited and 

the benefits of science links seem hard to trace at the firm level as evidenced by different 

studies. Due to the highly specific nature of the know-how involved, only a select set of firms 

within specific industries tend to show strong interest in the scientific know-how offered by 

universities or other research institutes. Not surprisingly, in a survey based study on 38 

Advanced Technology Projects, Hall et al (2001) found that projects with university 

involvement tend to develop new knowledge and therefore experience more difficulty and 

delay but also are more likely not to be aborted prematurely.8 As a result, R&D managers often 

resent dealing with such joint projects (see Cassiman et al. 2009). Furthermore, linking with 

science is not costless as it requires the adoption of new organizational practices and the 

                                                 
6 Differences in the effectiveness with which a firm is accessing the upstream pool of knowledge correspond to 
differences in the research productivity of firms of as much as 30%.  
7 Furthermore, they report a similar pattern previously reported in biotech: breakthroughs in nanoscale science and 
engineering appear frequently to be transferred to industrial application with the active participation of discovering 
academic scientists. 
8 In a sample of 62 U.S. university licensing officers, Jensen and Thursby (2001) find that over 75% of the 
inventions licensed by these universities were in a very early, or embryonic stage. Further, 71% of the inventions 
licensed required cooperation between the professor and the licensing firm in order to commercialize a product 
successfully. Relying on the CIS for Belgium, Veugelers and Cassiman (2005), find that cooperation with 
universities is formed whenever risk is not an important obstacle to innovation. 
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recruitment of qualified scientists (Gambardella, 1994; Cockburn et al, 1999). Given these 

obstacles, firms will carefully assess the expected costs and benefits from developing ISL.  

 

While most studies have focused on a particular type of ISL – often in pharmaceuticals, 

biotechnology or nanotechnology, we believe that a variety of types of ISL are viable 

conditional on the underlying industry, firm and technological conditions. Nevertheless, firms 

interested in ISL are expected to access science through different complementary modes as the 

marginal cost of investing in additional modes of linking with science is lower once the cost of 

organizing accordingly has been sunk. 

 

In what follows, we will first document the diversity of ISL that firms can develop. As argued, 

we expect a certain degree of complementarity between these different ISL measures. For 

example, we expect that firms actively engaged in publishing their research are likely to have 

collaborative agreements with universities and find publicly available knowledge important for 

their innovation process. Second, we will examine the relative performance of these different 

ISL. While the overall performance of ISL is expected to be positive, little is actually known 

about the relative performance of different types of ISL. Furthermore, we will delve into the 

firm and examine the effect of ISL at a more disaggregated level: the invention (i.c. patent) 

level. We expect that at the invention level ISL would also positively impact performance, 

affecting the quality of inventions, as proxied by the citations received by these patents.  

Previous empirical research has shown that patents of universities are broader in scope and 

cited more frequently than private patents because they rely on more fundamental knowledge 

suggesting that public science is an important input for the innovative activities of firms (e.g. 

Jaffe et al, 1993; Henderson et al, 1998; Narin et al., 1997). Yet, there is little evidence about 
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the effectiveness of science to explain the quality of private patents (see Cassiman et al. (2008) 

for a more elaborate analysis at the invention level). 

  

II. The diversity of Linkages to Science 

A first objective of our analysis is to assess the heterogeneity in industry science links used by 

firms.   To this end, we use data on firms’ research strategies from the Third Community 

Innovation Survey (1998-2000) conducted in Belgium in 2000.9 A mail survey was sent out to a 

representative sample of manufacturing firms and the intended respondent was the CEO or the 

R&D manager of the establishment. A total of 1471 responses were obtained from the 2726 

surveys sent, resulting in a response rate of 54%. In this paper, we limit our sample to the 842 

manufacturing firms that are engaged in innovation activities.10 We complemented the survey 

results with patent and publication data of the firms.  This allowed constructing the following 

measures of ISL: 

i) A dummy variable (0/1) indicating whether the firm had at least one cooperative 

agreement in R&D with universities or public research centers. 

ii) A dummy variable (0/1) indicating whether the firm considers public information a 

very important source for innovation. Firms scored the importance of public 

information – (i) information from universities, (ii) public research institutions, or (iii) 

conferences, meetings or publications – on a scale from “0” (unimportant) to “3” (very 

important). Firms scoring “3” (very important) on one of these information sources are 

coded “1” in our measure of the importance of public information for the innovation 

                                                 
9 Since 1994 the European Community organizes every 4 years the EU wide “Community Innovation Survey” 
(CIS) on innovation practices by firms. The survey is organized by Eurostat, the statistical agency of the EU, but 
every member state is responsible for organizing the actual survey in its territory. The survey provides quantitative 
and qualitative information about the firms’ innovation activities. Questions range from internal and external R&D 
activities, R&D cooperation partners, sources of information of the innovation process, objectives of the 
innovation process, to questions about the effectiveness of protection measures of knowledge, etc. The survey has 
been widely used in recent years to examine innovation practices of firms. 
10 These firms had successfully introduced new products or processes from 1998 to 2000, or, claimed to be actively 
engaged in innovation activities during those years and projects failed or did not produce any outcomes yet. 
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process. 

iii) A dummy variable (0/1) indicating whether the firm is simultaneously engaged in a 

cooperative agreement in R&D with universities or public research centers, and, 

considers public information a very important source for innovation (effectively this 

measure is an interaction between the two previous measures). 

iv) A dummy variable (0/1) indicating whether the firm has been engaged in publication 

activity. The measure takes the value of “1” if the firm published at least one scientific 

article between 1990 and 1995, predating the survey years and any patents of the firm 

(see below). Data on publications is collected from the ISI-Web of Knowledge database 

using the affiliation of the authors. A publication is considered scientific if it is found in 

the ISI Web of Knowledge and one of the authors is affiliated to the firm. 

v) A dummy variable (0/1) indicating whether the firm has patents that contain references 

to scientific papers. These references are termed scientific non-patent references 

(NPR)11. An NPR is considered scientific if it is found in the ISI-Web of Science.  We 

collected all the patents of our CIS-3 firms in the European patent database (EPO 

ESPACE-B database) with grant dates between 1995 and 2001. These patents fall 

within the same time frame as the CIS survey. A total of 1186 patents were granted to 

79 firms reported in CIS-3. 

 

Tables 1 and 2 report the distribution of firms across the different measures of ISL and across 

industries. The first finding that emerges from these tables is the high number of firms without 

any ISL. About 75% of innovating firms do not have any linkage to science through 

                                                 
11 Some researchers consider (e.g. Jaffe et al., 1993) patent and non patent citations as a “noisy signal” of 
knowledge flows, with examiners adding much of the noise.  As patent and non patent references are issued from 
the examiner revision of the prior art in the European Patent Office, citations may rarely reflect or coincide with 
the science used by inventors. Care should therefore be exercised when interpreting the citation results as measures 
of direct knowledge flows. Nevertheless, some evidence exists that scientific NPRs are more likely inventor given 
compared to regular patent references (see Alcacer and Gittelman, 2006). 
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cooperative R&D agreements nor find public information very important for their innovation 

process. Not surprisingly, Table 2 shows that the low R&D intensive industries have the highest 

percentage of firms not having any connection to science (82%) while the opposite is true in the 

high R&D intensive industries, confirming the importance of technology and industry 

characteristics driving ISL.12   Within the high R&D intensive industries, 25% of firms are 

engaged into cooperation with public institutions, 33% consider the use of public information 

as very important for innovation; while 16% declare to be engaged in both strategies. These 

results are related to the underlying industry effects as seen in Table 1 where Electronics and 

Medical and precision instruments followed by Chemicals (including pharmaceuticals) score 

high on all types of ISL. Some interesting industry variation in the relative use of ISL emerges 

across industries from Table 1 though. Firms in Wood, printing and publishing industries or in 

Glass/Ceramics find public information sources relatively more important compared to 

engaging in cooperative agreements. Contrarily, firms in the Medical and precision instruments, 

Electronics or Vehicles business rely more on cooperation than on public information for their 

connections to science. Only very few firms report citations to the scientific literature in their 

patents. They represent less than 3% of the population of manufacturing firms in CIS casting 

some doubt on the relevance of such indicators for understanding links to science in the 

population of firms. If we consider only the population of patenting firms, 24% (19 firms out of 

79) of these firms report an ISL in their patents. 

 

                                                 
12 We follow the criteria used by the OECD (OECD Science and Technology, 2001). Manufacturing industries are 
classified in three different categories of technological intensity: high technology, medium-technology industries 
(grouping medium-high technology and medium-low technology) and low technology. High-technology industries 
include (ISIC. 3): Aerospace, Office & computing equipment; Drugs & medicines, Radio, TV & communication 
equipment. Medium Technology groups the two classes distinguished by OECD: Medium-high-technology 
industries (Scientific instruments, Motor vehicles, Electrical machines excl. Communication equipment, 
Chemicals excl. drugs, Other transport, and Non-electrical machinery) and Medium-low-technology industries 
(Rubber & plastic products, Shipbuilding & repairing, Other manufacturing, Non-ferrous metals, Non-metallic 
mineral products, Metal products, Petroleum refineries & products, Ferrous metals). Low-technology industries 
are: Paper, products & printing; Textiles, apparel & leather; Food, beverages & tobacco and Wood industries. 
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Figure 1 attempts to map the overlap between different types of ISL. We classify firms 

according to whether they cooperate with universities, find public information very important, 

or, have patents that refer to scientific publications, or any combination of these ISL. While we 

might have expected some complementarity between the different types of ISL, the diversity 

we actually find at the firm level is striking. At the sector level there seems to be substantial 

correlation between different types of ISL as shown by Tables 1 and 2. But at the firm level we 

find considerable diversity. Only 5 firms combine all three types of ISL (and 4 of those firms 

are also involved in publishing). Interestingly, 7 firms that do not report any other ISL appear 

as firms with scientific NPRs in their patents; Out of these 7 firms 5 belong to the medium 

R&D intensive industries. Only 45 firms use both cooperation in R&D agreements with 

universities and public information as ISL. Out of these 45 firms only 5 report citation to 

science in their innovation outputs measured by patents. Similarly, the majority of firms with 

cooperative R&D agreements with the university (60 out of 100) and firms that find public 

information very important (74 out of 121) do not have any other type of ISL. Very few firms 

(8) are directly involved in open science through publication, but more surprisingly, 5 of these 

firms are found in the medium low R&D intensive industries. These simple descriptive 

statistics – while based on a rather small sample – do corroborate the heterogeneity that exists 

in the ways to access scientific knowledge. At the same time our results reveal that each 

individual ISL measure might provide additional information about firms linking to science.  

 

III. Performance of Linkages to Science 

In this section we focus the analysis on whether and which type of ISL enables firms to achieve 

higher innovation and economic performance. Following the literature previously exposed, we 

expect that firms connected to science develop a comparative advantage in the production of 

innovation and notably, in the production of breakthrough innovation. ISL facilitate the 



 13

absorbing and understanding of fundamental knowledge, allow firms to follow new discoveries, 

upgrade internal technological competences, and detect new opportunities for industrial 

innovation. All of these effects of ISL are expected to improve the productivity of applied 

research. 

 

We present two levels of analysis. First, we relate ISL to the indicators of innovation and 

economic performance at the firm level reported in the CIS-3 data (section III.A).  The key 

measure of innovation we will use is the percentage of innovations that are new to the market. 

The indicators of economic performance are the percentage of turnover due to innovations 

introduced in the past 2 years, and, the percentage of turnover due to new market introductions 

during those past 2 years. Second, we restrict our analysis to the 79 firms with patents and 

analyze the effect from ISL on the quality of patents, both at the level of the invention (i.c. the 

patent) and at the level of the patenting firms (section III.B).    

 

III.A.  Science linkages and Economic Performance  

Table 3 displays the means for the R&D intensity, the number of employees, sales, and the 

measures of innovation and economic performance broken down by ISL. The percentage of 

firms that declare innovation new to the market is reported in the last row. Not surprisingly, 

firms with at least one ISL (column 2) are larger in turnover, have more employees and have 

high R&D intensity. These firms can more likely cover the sunk cost of becoming science 

linked. At the same time – corroborating the hypothesis advanced in the literature – firms with 

ISL have a higher percentage of sales from new or improved products (innovation turnover 

ratio) and a higher percentage of sales from innovative products that are new to the market (as 

opposed to new to the firm). Firms that have science linkages also show a higher frequency of 

innovations new to the market (47% versus 38%). When comparing different science linkages, 
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firms declaring to cooperate with public institutions and also declaring the use of public sources 

of information as very important (column 5) have a high frequency of introducing innovations 

new to the market (44%), but the group of firms having scientific references in their patents 

(column 7) appears as having the largest percentage of firms having introduced radical 

innovations (63%). Firms with this ISL also display the highest innovation turnover ratio and 

turnover due to new market introductions, but these firms are also larger and have a 

significantly higher R&D intensity. While firms with different ISL do display significant 

differences in size and R&D intensity, the differences in innovation output is not significant.13  

 

The correlation matrix in Table 4 offers additional insights on the correlation of ISL with 

respect to performance. Consistent with our finding about the diversity in ISL of firms, we find 

that having a link (column 1) has the highest correlation with the innovation turnover ratio, the 

new to market innovation turnover ratio and the new to market introduction indicator, while no 

one specific link seems to account for this positive effect.  

 

Overall, we confirm the fact that ISL and firm innovation performance are positively related. At 

the same time, no single ISL seems to drive this result. Rather, firms can affect their 

(innovation) performance through engaging in various types of ISL, reinforcing the fact that we 

found substantive heterogeneity across firms in ISL. 

 

III.B.  Science linkages and quality of patents 

We now turn to the analysis of the impact of industry science links on the quality of firm’s 

inventions, as proxied by the quality of the firm’s patents.   As measure of patent quality we use 

the number of forward citations received.  Past research has shown that the number of citations 

                                                 
13 Small sample size is clearly an issue to obtain robust results. 
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a patent receives is highly correlated with its technological importance and social value 

(Trajtenberg, 1990). Moreover, forward citations are correlated with the renewal rate of patents, 

the estimated economic value of inventions and patent opposition (Lanjouw and Schankerman, 

1999; Harhoff et al, 1999; Hall et al, 2000).  

 

We have also computed two additional quality indicators related to the technological impact of 

the patent based on forward citations: generality of the technology and geographical dispersion 

of the technology. A high generality score indicates that the patent had a broad technological 

impact where it influenced subsequent innovations in a broad set of technological fields (Hall et 

al, 2001). This indicator is build as a Herfindahl index (Jaffe et al, 1993; Hall et al, 2001): 

2
1 ∑−= in

i ijsgenerality , where sij denotes the percentage of citations received by patent j that 

belong to patent class i, out of ni patent classes.14 If the patent receives all of its future citations 

from a single patent class, the index is equal to zero. A higher generality index implies a more 

technologically diverse the set of patents that cite the focal patent. The index of geographical 

dispersion is built in a similar way:
2

1 ∑−= in

i ijsdispersionalgeographic , where sij denotes the 

percentage of citations received by patent j that come from country i, out of ni countries. The 

index is based on the country location of the inventors. A higher index means that future 

citations come from a more diverse set of countries, which relates to the notoriety of the 

technology.  

 

We test the impact of industry science links on patent quality at two levels: the invention level 

and the firm level.  For the invention level, we compare patent quality – number, technical and 

geographical scope of citations to the patent - of patents with scientific NPRs, as our measure 

of industry science link at the invention level,  to the quality of patents without scientific NPRs. 
                                                 
14 Patents are classified according to a system of technological patent classes (IPC-codes). 
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For the firm level, we compare the quality of patents of firms with ISL (such as publishing, 

cooperating or scanning public knowledge) to the quality of patents of firms without ISL.  

 

The analysis is performed on the 79 Flemish firms which hold granted patents from the 

European Patent Office with grant dates between 1995 and 2001.  These 79 firms together 

account for 1186 patents.  The forward citations to these patents – the number of citations 

received by the patent from future patents – are computed until 2003.  

 

The breakdown of patent quality measures across the firms distinguished according to the 

different types of ISL they use, is reported in Table 5a.   As expected, firms having at least one 

ISL to scientific communities report a higher likelihood of their patents being cited (dummy for 

having at least one forward citation), their patents appear more general in scope (are cited more 

across different technology classes) and have a higher geographical dispersion. However, the 

difference in means is significant (at 10%) only for geographical dispersion and the frequency 

of being cited at least once (dummy for forward citation). Firms that cooperate or use public 

sources of information report on average 0,69 and 0,71 citations to their patents respectively 

and firms involved directly in science through own publication activity report an average 0,72 

forward citations to their patents. These effects are only marginally significant. But they seem 

to confirm the superior performance in terms of patent quality from firms engaged in science 

linkages. No particular type of ISL seems to stand out in this relation. 

 

Table 5b reports the comparison of patents with scientific references (NPRs) to patents without 

scientific references.   Contrary to our expectations, we find that patents without NPRs are more 

likely to be cited (33% versus 24%) and have a higher mean of forward citations.  But patents 

with NPRs are more general and more geographically dispersedly cited. Although the results 
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are on a small sample and not robust15, they suggest that while patents with scientific NPRs 

protect more general technologies, more applied patents – patents without scientific NPRs – 

actually capture the value for the firm. Patents citing a scientific publication appear to cover 

more fundamental knowledge and they are therefore more likely to be cited across a broad 

range of technology classes and across different countries. But this kind of patent is not 

different from the rest of patents based on the average count of citations received. 

 

Finally, in Table 6 we combine the invention and the firm level of analysis.  Controlling for 

firm level ISL, we compare the quality of patents with and without NPRs.   In the first panel we 

consider only firms with scientific publications and look at the quality of patents with and 

without scientific NPRs (cols (1) and (2)). We confirm the results from Table 5b that patents 

with scientific NPRs are more general and their citations are more geographically dispersed, but 

these patents are less likely to be cited. However, and more interestingly, comparing the 

forward citations of patents without NPRs of these firms that publish with patents without 

scientific NPRs of other firms that have no publications (cols (2) and (4)), we find that the 

patents of publishing firms are more likely to be cited and receive more citations (0,36 versus 

0,27) and (0,72 versus 0,55) respectively. Our interpretation is that firms with scientific 

publications not only are more likely to have patents with scientific NPRs, but also have higher 

quality applied patents (patents without scientific NPRs) thanks to their more fundamental 

knowledge of the technology. This result is confirmed in the panels below for firms that 

cooperate in R&D with public research institutions, or, for firms that consider public sources of 

information very important. We conclude that controlling for the firm level science links when 

evaluating patent quality is crucial to pick up the innovation performance effect of these science 

links – the higher new to market innovation content of these innovations. Patents from firms 

                                                 
15 Only for generality and the likelihood of receiving a forward citation, these differences are significant, but only 
at the 10% level.    
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engaged in ISL will be more valuable and are more likely to lead to innovations that are new to 

the market. 

 

IV. Conclusions   

This paper examines the diversity of the types of links to science and their association to 

innovation performance for a sample of Flemish firms. We identify different ways to access 

scientific knowledge, using information from the Eurostat, Community Innovation Survey, and 

add additional measures on the use of science by firms by analyzing publication data and 

citations to science in these firms’ patents.  

 

We confirm previous findings in the literature that firms with science linkages seem to enjoy a 

superior innovation performance. However, contrary to our expectation we find that different 

types of ISL are not complementary.  While firms engage in different forms of ISL, the positive 

effect of these links cannot be related to a particular type of linkage.    

 

Furthermore, the causality does not necessarily run as expected. Patents that directly cite 

science are actually less likely to be cited, presumably because of their more basic nature. But if 

cited, these citations are more likely to come from a broader set of technologies and 

geographies, consistent with their more basic nature. Patents from firms that are actively 

engaged in ISL at the firm level through cooperative R&D agreements, publishing or scanning 

public information sources are more highly cited, especially those that do not refer to science 

directly. We speculate that firms with active ISL develop more basic technologies and have a 

better understanding of the fundamental technologies. As a result their regular patents (i.e. not 

directly linked to science) are also more valuable. 
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While our sample of firms is limited, we can nevertheless provide some policy suggestions.  

Our results indicate that several indicators need to be tracked to obtain a representative picture 

of the ISL activity of a firm, an industry and a country. In addition, to bring out the true effect 

of these links, firm and invention level indicators need to be interacted. Furthermore, our results 

indicate that further research is needed to understand the process of how the link with science 

affects the productivity of applied research internal to the firm. Understanding this process 

would open the door to develop more relevant measures related to the effect of science on 

innovation at the micro-level. 
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Figure 1: Overlap between Types of ISL 

Firms with scientific NPR 
7 (2 involved in scientific 
publication) 

Use of public sources of 
information 
74 

Cooperation with public institutions 
60 (2 involved in scientific 
publication) 

40 

Firms without linkage to science  
649 (1 involved in scientific publication) 

2 
5 (4 involved in 
science) 

5 
(1 involved 
science) 
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Table 1: Distribution of Firms across Industries and Type of ISL

Industry

Number 
of Firms

Firms 
without 
links to
science

% 
Cooperation 
with public
institutes=1

% 

Use of
public 
informati
on=1

% 

Cooperation 
and Use of
public 
information

% Firms with
patents %

Scientific 
NPR in
patents=1

% Firms with
publications %

Food and tobbaco 74 59 79,73% 9 12,16% 8 10,81% 2 2,70% 3 4,05% 0 0,00% 0 0,00%

Textiles 68 55 80,88% 9 13,24% 8 11,76% 4 5,88% 2 2,94% 0 0,00% 0 0,00%

Wood, printing, publishing 82 69 84,15% 3 3,66% 9 10,98% 1 1,22% 4 4,88% 1 1,22% 0 0,00%

Chemicals, coke, petroleum 85 54 63,53% 14 16,47% 16 18,82% 7 8,24% 10 11,76% 5 5,88% 3 3,53%

Rubber and plastic 84 63 75,00% 13 15,48% 14 16,67% 7 8,33% 10 11,90% 1 1,19% 1 1,19%

Glass, ceramic 39 31 79,49% 3 7,69% 4 10,26% 1 2,56% 2 5,13% 1 2,56% 1 2,56%

Metals, metallurgy 121 91 75,21% 14 11,57% 19 15,70% 7 5,79% 15 12,40% 3 2,48% 3 2,48%

Machinery, equipment 114 85 74,56% 14 12,28% 16 14,04% 6 5,26% 16 14,04% 4 3,51% 0 0,00%

Electronics 56 33 58,93% 14 25,00% 11 19,64% 4 7,14% 9 16,07% 2 3,57% 0 0,00%

Medical and precision instruments 18 8 44,44% 4 22,22% 8 44,44% 4 22,22% 4 22,22% 2 11,11% 0 0,00%

Vehicles 62 48 77,42% 10 16,13% 5 8,06% 1 1,61% 3 4,84% 0 0,00% 0 0,00%

Furniture 39 34 87,18% 3 7,69% 3 7,69% 1 2,56% 1 2,56% 0 0,00% 0 0,00%

Total 842 630 74,82% 110 13,06% 121 14,37% 45 5,34% 79 9,38% 19 2,26% 8 0,95%

Table 2: Distribution of Firms across groups of Industries and Type of ISL

Industry Group

Number 
of Firms

Firms 
without 
links to
science

% 
Cooperation 
with public
institutes=1

% 

Use of
public 
informati
on=1

% 

Cooperation 
and Use of
public 
information

% Firms with
patents %

Scientific 
NPR in
patents=1

% Firms with
publications %

Low R&D Intensive Industries 263 217 82,51% 24 9,13% 28 10,65% 8 3,04% 10 3,80% 1 0,38% 0 0,00%

Medium Low R&D Intensive Industr 257 197 76,65% 31 12,06% 38 14,79% 16 6,23% 28 10,89% 5 1,95% 5 1,95%

Medium High R&D Intensive Indust 271 194 71,59% 42 15,50% 38 14,02% 13 4,80% 31 11,44% 7 2,58% 2 0,74%

High R&D Intensive Industries 51 22 43,14% 13 25,49% 17 33,33% 8 15,69% 10 19,61% 6 11,76% 1 1,96%

Total 842 630 74,82% 110 13,06% 121 14,37% 45 5,34% 79 45,74% 19 2,26% 8 0,95%
Note: We follow criteria used by the OECD (OECD, 2002). High-technology industries include (ISIC. 3): Aerospace, Office & computing equipment; Drugs & medicines, Radio, TV & communication equipment. Medium
Technology groups the two classes : Medium-high-technology industries (Scientific instruments, Motor vehicles, Electrical machines excl. commun. equip., Chemicals excl. drugs, Other transport, and Non-electrical
machinery) and Medium-low-technology industries (Rubber & plastic products, Shipbuilding & repairing, Other manufacturing, Non-ferrous metals, Nonmetallic mineral products, Metal products, Petroleum refineries &
products, Ferrous metals). Low-technology industries are: Paper, products & printing; Textiles, apparel & leather; food, beverages & tobacco and wood.

Note: Only Cooperation with Public Institutes: firms that declare cooperating with universities and/or public research institutes (either national and international) as the only mean of accessing scientific knowledge. Only
Use of Public sources: firms that consider public information sources as very importante for innovation (score=3). The sources of information are: from universities or other higher education institutions, government or
private non profit research institutes and from professional conferences, meeting and journals.
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Table 3: Types of ISL and Firm Performance

Variable No linkage to
science

At least one
linkage to
science

Cooperation 
with public
institutes

Use of public
information

Cooperation and
Use of public
information

Scientific 
References in
patents

Firms with
publications

1 2 3 4 5 6 7
R&D Intensity (per employee) 76.49672 210.15*** 258.46*** 191.804** 290.29** 540.31** 510.0542
Employees 122.0722 440.373*** 637,69*** 259,84 477,04** 1739,37*** 2309.125**

Turnover sales 1117340,00 5649051*** 8279243*** 3477041* 7210230** 22100000** 3.12e+07**
Turnover due to Innovation .1002181 .2010638*** 0,1851818** 0,194*** 0,15 0,2452632** .1125
Turnover due to new market introductions .0295483 .0843085*** 0,0959091*** 0,0703306** 0,082* 0,1336842* .04125

New Market Introductions 0.38 0.47 0.42 0,36 0,44 0,63 0,57
Note:  The significance of the t-tests (Pr(T<t) on the comparison of means between the group and the rest of firms lacking such a link are noted by: * at 10%, ** 5%, *** 1 

 
 

Table 4: Correlation matrix

1 2 3 4 5 6 7 8 9 10 11 12

At least one link to science 1 1.0000 

Cooperation with public institutes 2 0.7109* 1.0000 

Use of public information 3 0.7512* 0.2933* 1.0000 

Coperation and use of public info. 4 0.4357* 0.6130* 0.5800* 1.0000 

Scientific references in patents 5 0.2786* 0.1784* 0.0973* 0.1417* 1.0000 

Firms with publications 6 0.1631* 0.1653* 0.0891* 0.1807* 0.5286* 1.0000 

R&D intensity (employee) 7 0.0696 0.0673 0.0410 0.0572 0.1520* 0.0906 1.0000 

Employees 8 0.2458* 0.3190* 0.0484 0.1250* 0.4391* 0.3638* 0.0977* 1.0000 

New Market Introduction 9 0.2228* 0.1963* 0.1527* 0.1356* 0.1564* 0.0593 0.0714 0.1133* 1.0000 

Turnover sales 10 0.2303* 0.2943* 0.0675 0.1490* 0.3746* 0.3299* 0.1295* 0.7913* 0.1080* 1.0000 

Turnover due to Innovation 11 0.2001* 0.1170* 0.1424* 0.0259 0.0898* -0.0029 0.0532 0.1553* 0.2769* 0.0603 1.0000 

Turnover due to new market introductio 12 0.1808* 0.1712* 0.0957* 0.0793* 0.1138* -0.0042 0.1100* 0.0584 0.5836* 0.0451 0.5004* 1.0000 

Note: * significant correlation at 5% and better.  
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Table 5a: Patent quality and Types of ISL: the firm level
All No link At least 

one link

Cooperation with 
Public 

Institutions

Use of 
Public 

Sources

Cooperation and 
use of public 
information

Scientific 
firm 

(publication
1 1 2 3 4 5 6

Dummy forward citationa 0,33 0,30 0,33* 0.34* 0.34* 0.34* 0.35**

Forward Citationb 0,67 0,70 0,67 0.69* 0.71* 0,65 0.72*

generalityb 0,10 0,09 0,10 0,10 0,10 0,09 0,10

geographical impactb 0,22 0,14 0.188* 0,19 0,19 0,20 0.194*
Note: * significance at 10%, ** at 5%. At least one link: firms that cooperate or use public information or are involved in scientific publications. 
The forward citations contitute the number of citations received from other EPO patents. The measures of generality and geographical impact as 
well as the tests for the comparison of means (and proportions) are calculated only on the patents having received forward citations. a: Pearson 
Chi-square test on the significance of the relationship between the two groups (categorical variables); b: t-test on the significance of difference in 

 
Table 5b: Patent quality and NPR: the invention(patent) level

All
Patents 
with NPR

Patents 
without 
NPR

7 vs 8

1 7 8 9

Dummy forward citationa 0,33 0,24 0,33 4.26*

Forward Citationb 0,67 0,64 0,67 0,193

generalityb 0,10 0,17 0,08  -2.14*

geographical impactb 0,22 0,23 0,18  -1.14
Note: * significance at 10%, ** at 5%. The forward citations contitute the number of 
citations received from other EPO patents. The measures of generality and 
geographical impact as well as the tests for the comparison of means (and 
proportions) are calculated only on the patents having received forward citations. a: 
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Table 6: Effects of NPR and other Types of ISL on Patent Quality

Patent Indicators With NPR Without NPR With NPR Without NPR

1 2 3 4

Forward dummya 0,25 0.36** 0,22 0,27

Forward citationb 0,71 0.72* 0,407 0,55

generalityb 0,16 0,09 0,24 0,084

geographical impactb 0,21 0.19* 0,32 0,14

Patent Indicators With NPR Without NPR With NPR Without NPR

1 2 3 4

Forward dummya 0.27* 0.35* 0,058 0,27

Forward citationb 0.73 0,69 0,11 0,57

generalityb 0.16c 0,091 0,5 0,072

geographical impactb 0,23 0,18 0,22 0,15

Patent Indicators With NPR Without NPR With NPR Without NPR

1 2 3 4

Forward dummya 0,25 0.355* 0,22 0,29

Forward citationb 0,71 0.71* 0,407 0,57

generalityb 0,16 0,09 0,24 0,08

geographical impactb 0,21 0.189* 0,32 0,15
Note: * significance at 10%, ** at 5%.The measures of generality and geographical impact as well as the tests for
the comparison of means are calculated only on the patents having received forward citations. a: Pearson Chi-
square test on the significance of the relationship between the two groups (categorical variables); b: t-test on the
significance of difference in the means. c: the t-test has not been calculated since there is only one observation for
patents with non patent references from firms that do not cooperate.

Firms with scientific Publications Firms without scientific Publications

Firms that cooperate with public 
institutions

Firms that do not cooperate with public 
institutions

     Firms that consider public 
sources of information as very 

important

     Firms that do not consider public 
sources of information as very 

important

 




