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Abstract

We develop a model of cheap talk with two senders in the presence of network

externalities so that their utility functions are inreasing in the network size. We first

show that if there is no noise in private information that each sender receives, the

full information is revealed by the harshest cross-checking strategies, that is, strategies

to punish the senders unless their messages exactly coincide. Then, we show that

with even a small noise cross-checking strategies cannot induce full revelation if utility

functions of senders are linear in the network size, while full revelation is possible if

utility functions are strictly concave. We find a sufficient condition for the existence of

a fully revealing equilibrium which is supported by the cross-checking strategy with a

positive confidence interval independent of each sender’s private information.
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ternality; word-of-mouth communication
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1 Introduction

Is a recommendation letter of a professor credible? Is a car dealer selling used cars trust-

worthy? Is a lawyer’s legal advice reliable? Since the seminal paper by Crawford and Sobel

(1982) – hereafter, abbreviated to CS – it is quite well known that partial (not full) infor-

mation of the informed can be transmitted to the uninformed if their interests are similar

enough.

In many cases, however, an uninformed party refers not to a single informed party but to

multiple informed parties. Then, a natural question will be whether or not the uninformed

can really elicit more accurate information by doing so. Why do universities require multiple

letters of recommendation from applicants? Why do major academic journals make it a rule

for multiple referees to review an unsolicited article? Why do wealthy people hire more than

one attorney at a time? What made two independent opinions of Siskel and Ebert, two

famous movie critics, appear side by side?

One obvious answer is to elicit more accurate information from the informed. It may

be true if the informed always provide honest opinions. If the interests of the informed are

not aligned with the interest of the uninformed, however, it can be only a partial answer,

especially when university professors, article referees, attorneys, movie critics have some

common interests with the students, article authors, the opposite legal party, movie produc-

ers/directors, because it does not take into account the effect on the incentive of the informed

to misrepresent their information. Therefore, a more satisfactory answer should address how

the presence of other speakers discipline the incentive of a speaker to distort information.

There are many articles on information transmission by multiple informed parties whose

interests possibly differ with the interest of the uninformed.1 Each of them provides different

1A short list, if not comprehensive, includes Gilligan and Krehbiel (1989), Austen-Smith (1993), Krishina

and Morgan (2001), Battaglini (2002), Ambrus and Takahashi (2008), Li (2010), Galeotti et al. (2013),

McGee and Yang (2013) and Li et al. (2016). In particular, Ambrus and Takahashi (2008) assume that the

state space is multi-dimensional and bounded, both of which critically depart from our model that assumes

a unidimensional and unbounded state space. Galeotti et al. (2013) consider multiple senders who send

messages to some or all of the others. So, each player can be both a sender and a receiver. However, there

is no network externality assumed in the paper. McGee and Yang (2013) is closest to our model, but again,

no network externality is assumed. The network externality is the very unique feature of our model in cheap

talk literature.
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models basically addressing the question of whether or not the uninformed is enabled to get

more accurate information by multiple informed parties than by a single informed party.

All of the analyses are, however, based on the preference assumption that the uninformed’s

actions that are favorites to the informed and the uninformed are both increasing in private

information. That is, in all of the models, it is an essential ingredient for credible commu-

nication that the informed with different private information have different preferences over

the actions by the uninformed.

In this paper, we will assert that such a condition on preferences is not necessary for

credible communication in the presence of multiple informed parties. As a matter of fact,

situations where such a condition is not satisfied abound. For instance, suppose there is

an experience good whose quality is not learned before a consumer purchases one. An

uninformed consumer who has to decide whether to buy one or not may refer to informed

consumers for the quality. If the purchasing decision by this potential consumer does not

affect the utility of existing consumers at all, that is, no consumer externalities are involved,

existing consumers who are referred to will have no incentive to garble their own information

about the quality. In this case, it would not be surprising that all references were truth-

revealing.2 However, if it does affect the utility of other existing consumers, that is, there

are network externalities, they might have an incentive to exaggerate the quality of the good

to boost the demand for it. In fact, it was often observed that old-time Mac-users alleged

ultra-superioity of Macintosh even though they felt that inconvenience due to the limited

network size exceeded the benefit from the relative quality advantage after the advent of the

window system. In this situation, a consumer may wonder if word-of-mouth communication

can be a reliable source of information regarding the quality of an experience good with

network externalities.

In this paper, we show that even in such a situation where there is no room for coordi-

nation between an informed party and an uninformed party, truthful revelation is possible

if the uninformed party solicits references from multiple informed parties. The intuitive

reason for this is that, in this case, the uninformed has a means of checking the truth of

the message from one informed party probabilistically, which is the message from the other

informed parties. Also, the situation is like a coordination game among informed parties.

2This argument will be more convincing if the reputational effect is taken into account.
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Even though coordination is in fact realized by the action of the uninformed, communica-

tion messages of the informed parties are a vehicle of implementing coordination, and more

fundamentally, correlation among them is the genuine source of their coordination. That

is, in this situation, word-of-mouth communication is not a way of coordination between an

informed party and an uninformed party, but a way of coordination among informed parties

with correlated private information.

To support the truth-revealing outcome as an equilibrium, we will use a specific form

of strategy of the uninformed – what will be called “cross-checking strategies”. By a cross-

checking strategy, we mean a strategy to reward senders if their messages are similar to each

other and otherwise punish them.

We consider two cases: the noiseless information case and the noisy information case. If

there is no noise in private information that each sender receives, the cross-checking strategy

takes the following form; the uninformed believes that either one of the informed parties was

fibbing as far as their messages are not exactly the same, and then takes a punishing action

harsh to both of them, and otherwise the uninformed believes them literally and takes the

optimal action given the updated posterior belief. If there is some noise in their information,

the cross-checking strategy takes a rather complicated form. If the messages sent by the

informed are observed not to be too far apart, more specifically, to be within a certain

distance, the uninformed believes them thereby taking a rewarding action, i.e., choosing the

maximum amount that the updated posterior belief allows, and otherwise punish them by

choosing the minimum amount that the posterior belief allows.

We first show that if there is no noise in private information that each sender receives,

the full information is revealed by the harshest cross-checking strategies, that is, strategies

to punish the senders unless their messages exactly coincide. Then, we show that with

introducing even a small noise, the cross-checking strategy cannot induce full revelation if

the utility functions of senders are linear in the network size. The difficulty in this case arises

mainly because even a small noise makes off-the-equilibrium messages vanish completely

under the normal distribution of the noise. Even if a message is too high or too far from the

other messages, it is a possible event, although the likelihood is very low. So, the uninformed

receiver cannot believe that it is a consequence of a sender’s lying. This makes it difficult to

penalize a sender who sends a higher message than the true value strongly enough. However,
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we also show that if the utility functions are strictly concave, full revelation is possible with

the cross-checking strategy. In this case, strict concavity of utility functions can make the

penalty from inflating the message exceed the reward from it, so that it can discipline senders

to be tempted to lie.

In Section 2, we briefly review related literature. In Section 3, we introduce the model.

In Section 4, we analyze the noiseless case in which both senders receive exactly the same

information. In Section 5, we analyze the noisy case. Section 6 contains concluding remarks

and an avenue for future research.

2 Related Literature

It was earlier noticed by Seidmann (1990) and Gibbons (1989) that cheap talk could influence

the receiver’s equilibrium actions even if all the types of the sender share a common preference

ordering over the actions of the receiver. Seidmann (1990) shows, in a setting with one sender,

that if either the receiver is itself privately informed, or his action is multi-dimensional, the

sender’s types may disagree in their preferences over distributions of actions generated by

the distribution of the receiver’s types or over the pair of actions by the receiver due to their

different trade-offs between the actions. Gibbons (1989) presents a model that is closest to

ours. He analyzes a model of conventional arbitration in which the employer and the union

simultaneously submit offers and then the arbitrator imposes a settlement. He also obtains

the truth-revealing result that the parties’ offers perfectly reveal their private information to

the arbitrator. The crucial difference of his model from ours is that the parties observe the

same noisy signal of the underlying state variable and that the arbitrator himself receives

a direct correlated signal. This feature of correlation between senders’ information and the

receiver’s information drives his result of perfect communication.

In a series of papers on legislative decisions (Gilligan and Krehbiel (1989), Austen-Smith

(1993), Epstein (1998)), authors explore the informational role of the committee. Gilligan

& Krehbiel and Epstein both consider models of legislative organization and two committee

members with diverse preferences (presumably from different parties). Gilligan & Krehbiel

assert that, if the committee preferences are symmetric about the floor’s ideal point, floor

members can get better information on the bill reported to the floor when two committee
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members with diverse preferences both agree to support the bill. Epstein shows that the

argument by Gilligan and Krehbiel does not hold under asymmetric committee preferences.

Austen-Smith considers a model in which an informed House multiplely refers legislation to

two committees with diverse preferences. He shows that more information can be commu-

nicated under multiple referral than under single referral.

Farrell and Saloner (1985) explore the role of communication in an industry with network

externalities. They consider a situation in which potential users with independent private

information on valuations of alternative technologies can engage in cheap talk to each other

about which technology to adopt. They find that communication eliminates excess inertia

where the preferences of the users coincide, while it increases inertia where their preferences

differ. Their model assumes that all potential users are informed of their valuations on

technologies before they purchase one without any explicit explanation of how they obtained

the information. In their model, the role of cheap talk by potential consumers is to announce

their intentions of which technology to purchase, while, in our model, it is made by existing

consumers in order to inform the potential consumer of their valuation on the product.

Word-of-mouth communication has been modelled by several authors. In Ellison and

Fudenberg (1995), decision-making agents ask several other individuals randomly chosen

from the population about their current choice and payoff, to make their own choices between

two alternatives, based on their reports, assuming that they are truth-telling. Since they

assumed that each player’s payoff is not influenced by the actions chosen by others, it seems

natural, in their model, not to pay heed to the incentives of the informed consumers to

be honest. Satterthwaite (1979) addresses the question how information about sellers flows

among consumers. However, his analysis is also based on the assumption of naive speakers,

who always speak honestly, and naive listeners, who always take messages for serious.

3 Model

We develop a model of cheap talk with two senders. There are two senders or speakers Si,

i ∈ N ≡ {1, 2} and one receiver or listener R. The state of nature θ is a random variable with

cumulative distribution function, F (θ), and probability density function, f(θ), supported on

Θ ≡ R. For example, senders are consumers using the same computer of quality θ. R can
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be interpreted as a large organization such as a university or a company which is going to

decide to buy a number of same computers.

For simplicity, we assume that θ is uniformly distributed over Θ = R,3 i.e., senders have

no information about θ or no bias a priori. Only Si’s observe a noisy signal on the state of

nature vi ∈ V = R where vi = θ + εi, εi is stochastically independent with θ, and εi’s are

i.i.d. We assume that εi follows a normal distribution with its mean zero and the variance

σ2.

The game proceeds as follows. Si’s send a payoff-irrelevant signal (cheap talk) mi ∈
M = R to R simultaneously.4 Then, receiving a vector of signals m = (m1,m2) ∈ M2, R

updates his posterior belief and chooses an action a ∈ A(= R) which is a network size.5 A

strategy of the receiver determines senders’ payoffs as well as his own payoff. The updated

posterior distribution will be denoted by the conditional density function f(θ | m) or the

corresponding distribution function F (θ | m). Or, if the support of the distribution is a

singleton, we will call the single value the posterior belief and denote it by b(m).

The payoff to Si is given by a continuously differentiable function USi : A×Θ→ R for all

i and the payoff to R is given by twice continuously differentiable function UR : A×Θ→ R.

Throughout the paper, we will assume that (1) USi(a, θ) = u(a)+θ where u′ > 0, u′′ ≤ 0, i.e.,

increasing in a and θ, and (2) UR(a, θ) = −(a − θ)2. Utility functions of senders which are

increasing in a means that the decision of R involves a positive network externality, and the

monotonic increase of the utility functions in θ means that senders care about high θ which

can be interpreted as quality. The receiver’s utility function implies that it has a unique

maximum in a for all θ and the maximizer of UR, denoted by aR(θ), is strictly increasing

in θ. Asymmetry between the utility function of senders and the receiver comes from the

feature that only the receiver (consumer) pays the price. That is, the uninformed consumer

3Note that we are assuming an improper prior distribution.
4Since the cheap talk messages of senders, mi, are payoff-irrelevant by the definition of cheap talk, the

payoffs of the players (USi and UR) which are described below should not depend on mi. Kartik (2009)

considers messages with lying costs. Sine a lying message of a sender affects the payoff of the sender, it is

not cheap talk. In our model, cheap talk affects the payoffs of players not directly, but only through the

belief of the receiver.
5By a network size, we mean the number of products which are same as, or at least compatible to the

product that the senders are using.
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wants to purchase more units as the quality is higher, whereas the informed consumers who

already purchased one want the uninformed consumer to buy as many as possible regardless

of the quality, because of the positive network externality.

A strategy for Si specifies a signaling rule given by a measurable function si : V → M .

A strategy for R is an action rule given by a function α : M2 → A.

The equilibrium concept that we will employ is that of weak Perfect Bayesian equilibrium

(wBPE). An equilibrium of this game consists of a vector of a signaling rule for Si, an action

rule of R and a system of beliefs ((s∗i (vi))
2
i=1, α

∗(m), f(θ |m)) such that

(2-I) s∗i (vi) ∈ arg maxmi
∫∞
−∞

∫∞
−∞ U

Si(α∗(mi, s
∗
j(vj), θ)h(vj, θ | vi)dvjdθ, where h(vj, θ | vi)

is the joint conditional density function of vj and θ given vi, for j 6= i

(2-II) α∗(m) ∈ arg maxa
∫∞
−∞ U

R(a, θ)f(θ |m)dθ

Posterior probability distribution F (θ | m) is updated according to Bayes’ rule on the

equilibrium path.

Before we characterize equilibria, we will adapt some standard definitions often used in

literature.

Definition 1 An equilibrium is communicative iff there exist two different vectors of obser-

vations v, v′ such that s∗(v) 6= s∗(v′) and α∗(m) 6= α∗(m′) where m = s∗(v), m′ = s∗(v′).

An equilibrium is uncommunicative (or babbling) otherwise.

Definition 2 A communicative equilibrium is fully-revealing iff s∗(v) 6= s∗(v′) for any v,v′

such that v 6= v′. In particular, if s∗(v) = v, a fully-revealing equilibrium is a truth-revealing

equilibrium.6

Definition 3 A message vector m induces an action a iff a = α∗(m).

In this paper, we will restrict our attention to symmetric equilibria such that s∗i (vi) = s∗j(vj)

if vi = vj, for all j 6= i. Let the symmetric equilibrium strategy be denoted by s∗(·). Then,

6Since even fully revealing strategies which are vi 6= s∗i (vi) reveal the truth in equilibrium, those strate-

gies are literally truth-revealing, So, in fact, the words “fully-revealing” and “truth-revealing” could be

exchangeable.
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the definition of the fully-revealing equilibrium is reduced to s∗(vi) 6= s∗(v′i) for any vi, v
′
i

such that vi 6= v′i.

Observe that, in this model, unlike the CS model, if only one informed party can engage

in cheap talk, the message sent by him cannot be credible at all. In the CS model, the payoff

function of the sender (S) as well as that of the receiver is single-peaked, so that, given θ,

the favorite actions to S and R do not differ very much even if they do differ. This implies

that, for some low θ, both S and R prefer one action to another, while the reverse is true for

some other high θ. In other words, there is room for coordination between S and R and in

effect cheap talk enables such coordination to occur by conveying the message whether θ is

high or low. In this model, however, the assumption of single-peaked preferences is violated

and all the types of S prefer a higher level of the receiver’s action a. Thus, S would like

to pretend to have observed as highest v as possible to induce R’s highest action possible,

regardless of his type.

We now summarize with

Proposition 1 If n = 1, there exists no communicative equilibrium.

Proof. Suppose, in equilibrium, there exist two different observations v, v′ such that m 6= m′

and a 6= a′ where m = s∗(v), m′ = s∗(v′), a = α∗(m) and a′ = α∗(m′). If we assume a < a′

without loss of generality, S who observes v will have an incentive to deviate to m′ since

US(a, θ) < US(a′, θ), ∀θ.

However, if there is more than one sender, the above argument breaks down. Suppose

there are two senders S1, S2 and the vector of messages (m1,m2) sent by them induces an

action a, while (m′1,m
′
2) induces an action a′ with a < a′. Then, we cannot conclude that

Si will prefer sending m′i to mi, because it does not necessarily induce a higher level of action

a′. In the presence of more than a sender, one sender cannot be sure what message will be

sent by the other sender.

In the next section, we will make a formal analysis of cheap talk with two senders in

the case that v1 and v2 are noiseless, i.e., v1 = v2 = θ. In section 5, the argument will be

extended to the noisy case.
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4 Noiseless Case

We first consider the case that σ2 = 0 so that v1 = v2 = θ. As it is well-known, there always

exists a babbling equilibrium in which senders send a random message and the receiver

ignores any vector of messages whatsoever. In this section, we will see whether there can

exist a communicative equilibrium as well, in particular, a truth-revealing equilibrium where

each type of sender reveals its true information.

Proposition 2 In the noiseless case (σ2 = 0), there exists the following communicative

truth-revealing equilibrium in this game:

(i) s∗i (vi) = vi,

(ii) b(m) =

{
m = m1 = m2 if m1 = m2

m ≡ min{m1,m2} − |m1 −m2| if m1 6= m2,

(iii) α∗(m) = b.

As the proposition says, this equilibrium is supported by the posterior density function

f(θ | m) = δθ(m) if m1 = m2 ≡ m and δθ(m) if m1 6= m2 where δθ(m) is a probability

mass at θ = m. The proof is straightforward. If a sender with vi sends mi > vi, then

mi > vi = vj = mj, given that the other sender sends a truthful message mj = vj. Since

mi 6= mj, U
Si(mi) = u(m) + θ < USi(vi) = u(vi) + θ, because m = vi − |mi −mj| < vi. It is

clear for a sender to have no incentive to send mi < vi. It is also clear that if the messages are

the same, the receiver must believe them as the value of θ, i.e., b(m) = m if m1 = m2 = m,

since senders do not lie in equilibrium and there is no noise in their information. If the

messages differ (m1 6= m2), any belief can be possible, because it is off the equilibrium path,

so b(m) = m is also a perfectly legitimate belief.

Readers may wonder if off-the-equilibrium belief b(m) = min{m1,m2} without subtract-

ing |m1−m2| would suffice to support the above truth-revealing strategies as an equilibrium.

In fact, the strategies could be an equilibrium with the off-the-equilibrium belief but only

with the tie-breaking rule whereby Si’s indifference is resolved in favor of honesty. Under

our belief, Si strictly prefers honesty to exaggerating the information.
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5 Noisy Case

In Section 2, we assumed that vi = θ + εi, where Var(εi) = σ2 > 0. In this section, we

analyze the noisy case.

For our purpose, let us concentrate on the following specific form of strategy profile;

(3-I) Si with vi announces mi = vi.

(3-II) R believes b(m) = max{m1,m2} if |m1−m2| ≤ ρ and believes b(m) = min{m1,m2}
if |m1 −m2| > ρ for some ρ > 0.

(3-III) R chooses α(m) = b.

R’s action rule given by (3-III) will be called a “crosschecking strategy”. Note that there

is no off-the-equilibrium message in this noisy case, because any message can occur even if

both tell the truth, as long as εi follows a normal distribution over (−∞,∞).

Now, consider the optimal strategy rules of senders. Sender 1 will maximize

US1(m1; v1) =

∫ m1−ρ

−∞
u(v2)h(v2 | v1)dv2 +

∫ m1

m1−ρ
u(m1)h(v2 | v1)dv2

+

∫ m1+ρ

m1

u(v2)h(v2 | v1)dv2 +

∫ ∞
m1+ρ

u(m1)h(v2 | v1)dv2. (1)

The economic reasoning behind this formula goes as follows. Given that sender 2 announces

truthfully, the first term and the last term represent the punishment that sender 1 would

get when v2 is very low (v2 < m1 − ρ) and when v2 is very high (v2 > m1 + ρ) respectively.

The second and the third terms indicate his utility when v2 falls under a normal (reward)

region. Suppressing v1, we have

∂US1

∂m1

= u(m1 − ρ)h(m1 − ρ) + u′(m1)

∫ m1

m1−ρ
h(v2)dv2 + u(m1)(h(m1)− h(m1 − ρ))

+u(m1 + ρ)h(m1 + ρ)− u(m1)h(m1)

+

[
u′(m1)

∫ ∞
m1+ρ

h(v2)dv2 − u(m1)h(m1 + ρ)

]
. (2)

The first term is the loss from being punished by increasing his announcement marginally

(when v2 is very low), and the last term is the gain from avoiding punishment (when v2 is
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very high). The remaining terms are just the effect of utility increases in normal cases due

to the inflated announcement.

If u(a) is linear, the first term and the last term are cancelled out due to symmetry, so
∂US1
∂m1

> 0, for all m1, but if u is strictly concave, the loss will be larger than the gain in

absolute values, and thus, it may not be necessarily that ∂US1
∂m1

> 0 for all m1.

Truthful revelation requires ∂US1
∂m1
|m1=v1 = 0. This implies that

∂US1

∂m1

|m1=v1 = h(v1 − ρ)(u(v1 − ρ)− u(v1)) + h(v1)(u(v1)− u(v1))

+h(v1 + ρ)(u(v1 + ρ)− u(v1)) + u′(v1)

(∫ v1

v1−ρ
h(v2)dv2 +

∫ ∞
v1+ρ

h(v2)dv2

)
= 0. (3)

By using h(v1 − ρ) = h(v1 + ρ) and
∫ v1+ρ
v1

h(v2)dv2 =
∫ v1
v1−ρ h(v2)dv2, equation (3) is reduced

to

2h(v1 − ρ)

[
u(v1)−

u(v1 − ρ) + u(v1 + ρ)

2

]
=
u′(v1)

2
. (4)

This equation implies that the equilibrium value for ρ must balance the expected net loss

from inflating the message, which is the left hand side (LHS), with the direct gain from the

inflated message, which is the right hand side (RHS).

If u(·) is linear, LHS is zero, which implies that a sender always has an incentive to inflate

his message, since it incurs no net penalty in expected terms.

Proposition 3 In the noisy case, there is no communicative equilibrium if the utility func-

tion u(a) is linear.

If sender 1 increases m1, there are the gain due to a transition from the punishment

interval to the reward interval (u(m1 +d)−u(m1))h(m1 +d) and the loss due to a transition

from the reward interval to the punishment interval (u(m1 − d) − u(m1))h(m1 − d). The

two conflicting effects due to region changes are cancelled out and thus only the positive

effect of inflating information remains. It is surprising that introducing even a small noise

would overturn the truth-revealing equilibrium. Even a small noise would make all messages

possible in equilibrium by vanishing any off-the-equilibrium path thereby making it difficult

to punish a sender who sends a high message by crosschecking strategy.
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If u′′(·) < 0, however, equation (4) can have a solution for ρ (which is independent of v1),

since u(v1−ρ)+u(v1+ρ)
2

− u(v1) < 0 due to the concavity of u and u′(v1) > 0. We will denote

the solution by ρ∗.

The effect of an increase in σ2 on ρ∗ is ambiguous. First, note that RHS of equation

(4) depends on neither σ2 nor ρ. Now, suppose σ2 gets larger, i.e., the probability that m1

and m2(= v2) fall outside the non-punishment region gets higher. Then, to maintain the

expected loss (LHS) equal to the gain (RHS), one must choose a larger ρ∗ to recover the

penalty probability to the original lower level. That is, as information is less accurate, the

receiver must use a more lenient strategy which allows a wider confidence interval.

On the other hand, increasing ρ has another effect. Raising ρ not only lowers the penalty

probability, but also increases the net loss from the penalty strategy itself, since the expected

utility from increasing m1,
u(m1+ρ)+u(m1−ρ)

2
, decreases in ρ. (See Figure 1.) If this effect

dominates the former effect on the penalty probability, the expected loss due to an increase

in ρ could be larger. Thus, in this case, ρ∗ must be adjusted to a lower level if σ2 is larger.

Now, consider the limiting case of σ2. Given any fixed ρ, if σ2 keeps falling, the penalty

probability approaches zero, while the loss remains the same (because the loss is indepen-

dent of σ2). (See Figure 2.) Therefore, the expected net loss from inflating m converges

to zero, implying that senders will have an incentive to inflate their messages; hence, no

communicative equilibrium for low σ2.

Example Let u(a) = 1− e−a. Note that u′(a) = e−a > 0 and u′′(a) = −e−a < 0. Equation

(4) which characterizes the first order condition of the incentive compatibility constraint can

be written as

2h(v1 − ρ)

[
(1− e−v1)− 1− e−v1+ρ + 1− e−(v1+ρ)

2

]
=

1

2
e−v1 . (5)

This is reduced to

4h(v1 − ρ)(
eρ + e−ρ

2
− 1) = 1, (6)
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where eρ+e−ρ

2
≥ 1 with equality if ρ = 0. This determines the equilibrium confidence interval

ρ. Moreover, since v2(= v1 + ε2 − ε1) has the distribution of N(v1, 2σ
2), we have

H(v1 − ρ) = Prob(v2 ≤ v1 − ρ)

= Φ

(
v1 − ρ− v1√

2σ

)
= Φ

(
ρ√
2σ

)
,

where Φ(x) = 1
2

[
1 + erf

(
x√
2

)]
. Note that this probability does not depend on v1, so ρ∗ does

not, either. Figure 3 shows for this particular utility function that (i) there exists σ̄(> 0)

such that the first order condition is satisfied for some ρ∗(σ) whenever σ ≥ σ̄, (ii) ρ∗(σ) is

increasing in σ for most of the values of σ, and (iii) there does not exist ρ∗(σ) for very low

values of σ. The appendix also shows that this solution satisfies the second order condition

and global optimality.

The following proposition slightly generalizes this numerical example.

Proposition 4 In the noisy case, there exists σ̄ > 0 such that for any σ ≥ σ̄, there exists

a truth-revealing equilibrium for some ρ > 0 which is independent of v1 and v2 if the utility

function u is any negative affine transformation of e−a, i.e., u(a) = γ−βe−a where β, γ > 0.

This proposition says that the utility function u(a) = γ − βe−a satisfies the differential

equation given by (4) for some ρ which is independent of vi, implying that under this utility

function, there is a possibility that there exists ρ∗ characterizing the cross-checking strategy

and moreover, it does not depend on v1 and v2. This utility function enables senders to

reveal truth by making the punishment larger than the reward when a sender inflates his

information.

A drawback of this proposition is that the existence of the truth-revealing equilibrium is

not guaranteed if σ2 is very low. The following proposition strengthens the result.

Proposition 5 In the noisy case, there exists a truth-revealing equilibrium for some ρ > 0

which is independent of v1 and v2 if the utility function is u(a) = γ−βe−a/σ where β, γ > 0.

This proposition says that if u(a) = γ − βe−a/σ, truth-telling is an equilibrium for any

σ, i.e., that no lower bound for σ exists for the truth-revealing equilibrium. The utility
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function reflects the reality that a sender’s utility from consuming network goods is reduced

by the noise of his information. So, we can interpret a/σ as the effective network size which

is discounted by the noise of private information. In fact, this scaling has the effect of

normalizing σ to one. This guarantees the existence of the optimal ρ∗ which turns out to be

ρ∗ = 1.697σ.

6 Conclusion

We have shown that one sender can be disciplined by the presence of the other sender so that

each sender will reveal its information truthfully for fear of being penalized by conveying

false information. In reality, the information of the quality of a newly introduced experience

good is diffused by word-of-mouth communication from existing users. This paper provides

an explanation for why word-of-mouth communication should convey reliable information

on the quality of network goods.

Even though the arguments in this paper have been made within a limited context of

word-of-mouth communication about the quality of an experience good, the general insight

behind them can be carried over to enormous economic situations in which multiple par-

ties possess some information relevant to a certain decision-making. For instance, college

professors may want more students of his own to be admitted to decent graduate schools

- which can be thought of as network externalities. If a professor does not care about his

reputation at all – this is usually the case for a professor from abroad –, he will always write

the most favorable recommendation letters as he can. This is the reason why most graduate

schools do not believe references from foreign countries. Of course, this is one equilibrium

(babbling equilibrium). However, apart from the reputational consideration, a professor –

even a foreign professor – sometimes writes a very sincere and fair letter for fear that his

student may be rejected by the simple reason that his evaluation is too much different from

another professor’s evaluation.

Also, our result can be straightforwardly extended to n senders rather than two senders.

With n senders, the cross-checking strategy will be of the form; α∗(m) = b where

b(m) =

{
max{m1,m2, · · · ,mn} if max{|mi −mj| : i 6= j} ≤ ρ

min{m1,m2, · · · ,mn} if max{|mi −mj| : i 6= j} > ρ,
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for some ρ > 0, although the computations for the equilibrium value of ρ will be very

complicated. It will be left to readers.

An idea analogous with our insight, although using costly signals rather than cheap talk,

was discussed in the industrial-organization literature by Bagwell and Ramey (1991). In their

model, multiple incumbent firms face a potential entrant. They showed that one incumbent

with unfavorable private information on the industry cost level could not pretend to be one

with favorable information by deviating from its static Nash equilibrium price, since it could

not coordinate its defection with the other incumbent sharing the information.

Some may suspect that our finding is not a good representation of the real world. The

source of this suspicion is the assumption that the existence of the other speaker is common

knowledge to both referees as well as the uninformed party. Thus, a more plausible scenario

would be to assume that the number of referees is the private information of the uninformed

party. This may be an interesting research agenda.

Appendix

Proof of the Solution for the Example:

(i) The Second Order Condition of the Incentive Compatibility Constraint: We have

∂2USi

∂m2
i

= h′(mi − ρ)(u(mi − ρ)− u(mi)) + h(mi − ρ)(u′(mi − ρ)− u′(mi))

+h′(mi + ρ)(u(mi + ρ)− u(mi)) + h(mi + ρ)(u′(mi + ρ)− u′(mi))

+u′′(mi)(

∫ mi

mi−ρ
h(vj)dvj +

∫ ∞
mi+ρ

h(vj)dvj)

+u′(mi)(h(mi)− (h(mi − ρ) + h(mi + ρ))), (7)

and thus,

∂2USi

∂m2
i

∣∣∣∣
mi=vi

= h′(vi − ρ)(u(vi − ρ)− u(vi + ρ))

+h(vi − ρ)(u′(vi + ρ) + u′(vi − ρ)− 2u′(vi))

+u′(vi)(−2h(vi − ρ) + h(vi)) +
1

2
u′′(vi). (8)
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By using h(x) = 1
2
√
πσ
e−

(x−vi)
2

4σ2 and h′(x) = − x−vi
4
√
πσ3 e

− (x−vi)
2

4σ2 , we get

∂2USi

∂m2
i

∣∣∣∣
mi=vi

=
ρ

4
√
πσ3

e−
ρ2

4σ2 (e−vi−ρ − e−vi+ρ)

+
1

2
√
πσ

e−
ρ2

4σ2 (e−vi−ρ + e−vi+ρ − 2e−vi))

+e−vi(− 1√
πσ

e−
ρ2

4σ2 +
1

2
√
πσ

)− 1

2
e−vi

= e−vi
1

2
√
πσ

(
ρ

2σ2
(e−ρ − eρ)e−

ρ2

4σ2 + (eρ + e−ρ − 4)e−
ρ2

4σ2 + 1−
√
πσ)

= e−vi
1

2
√
πσ

(− ρ

σ2
e−

ρ2

4σ2 sinh ρ+ (2 cosh ρ− 4)e−
ρ2

4σ2 + 1−
√
πσ). (9)

Therefore, the second order condition requires

− ρ

σ2
e−

ρ2

4σ2 sinh ρ+ (2 cosh ρ− 4)e−
ρ2

4σ2 + 1−
√
πσ < 0. (10)

Figure 4 shows that (4) implies (10), i.e., if ρ satisfies the first order condition, then it

also satisfies the second order condition. In Figure 4, the red curve is the region in which

the first order condition is satisfied, and the interior of the green curve is the region in which

the second order condition is met.

(ii) Global Optimality: Since it is clear that a sender will not deviate to mi < vi, we will

check only the incentive to deviate to mi > vi.

Since u(a) = 1− e−a, equation (2) can be rearranged into

∂USi

∂mi

= e−mi(1− e−ρ)h(mi + ρ)− e−mi(eρ − 1)h(mi − ρ)

+e−mi
[∫ mi

mi−ρ
h(vj)dvj +

∫ ∞
mi+ρ

h(vj)dvj

]
. (11)

We will show ψ(mi) ≡ (1−e−ρ)h(mi+ρ)−(eρ−1)h(mi−ρ)+
∫ mi
mi−ρ h(vj)dvj+

∫∞
mi+ρ

h(vj)dvj <

0, ∀mi > vi.

Note that (1− e−ρ)h(mi + ρ)− (eρ − 1)h(mi − ρ) is decreasing in mi when mi < vi + ρ

due to h′(mi − ρ) > 0 > h′(mi + ρ). It is clear that
∫ mi
mi−ρ h(vj)dvj +

∫∞
mi+ρ

h(vj)dvj is also
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decreasing in mi. Since ψ(vi) = 0, we can conclude that ψ(mi) < 0, ∀mi ∈ (vi, vi + ρ), since
∂ψ
∂mi

< 0.

To check the behavior of ∂ψ
∂mi

when mi ≥ vi + ρ, let us differentiate ψ with respect to

mi. Without loss of generality, we assume that vi = 0. By using h(x) = 1
2
√
πσ
e−

(x−vi)
2

4σ2 and

h′(x) = − x−vi
4
√
πσ3 e

− (x−vi)
2

4σ2 , we obtain

∂ψ

∂mi

= −(1− e−ρ)mi + ρ

4
√
πσ3

e−
(mi+ρ)

2

4σ2 + (eρ − 1)
mi − ρ
4
√
πσ3

e−
(mi−ρ)

2

4σ2

+
1

2
√
πσ

e−
mi

2

4σ2 − 1

2
√
πσ

e−
(mi−ρ)

2

4σ2 − 1

2
√
πσ

e−
(mi+ρ)

2

4σ2

=
1

2
√
πσ

e−
mi

2

4σ2 [−(1− e−ρ)mi + ρ

2σ2
e−

2ρmi+ρ
2

4σ2 + (eρ − 1)
mi − ρ

2σ2
e−

−2ρmi+ρ
2

4σ2

+1− e−
2ρmi+ρ

2

4σ2 − e−
−2ρmi+ρ

2

4σ2 ]

=
1

2
√
πσ

e−
mi

2+ρ2

4σ2 [−(1− e−ρ)mi + ρ

2σ2
e−

2ρmi
4σ2 + (eρ − 1)

mi − ρ
2σ2

e
2ρmi
4σ2

+e
ρ2

4σ2 − e−
2ρmi
4σ2 − e

2ρmi
4σ2 ]

=
1

2
√
πσ

e−
mi

2+ρ2

4σ2 φ(mi), (12)

where φ(mi) ≡ −(1− e−ρ)mi+ρ
2σ2 e

− 2ρmi
4σ2 + (eρ − 1)mi−ρ

2σ2 e
2ρmi
4σ2 + e

ρ2

4σ2 − e−
2ρmi
4σ2 − e

2ρmi
4σ2 .

Observe that ∂ψ
∂mi

> 0 for all sufficiently large mi and ψ → 0 as mi → ∞. This leads us

to conclude that ψ(mi) < 0, ∂ψ
∂mi

> 0 for all sufficiently large mi. Now, if ψ(mi) > 0 for some

mi ≥ ρ, there must be at least three solutions for ∂ψ
∂mi

= 0 in (0,∞). Now, φ can be further

reduced to

φ = (px+ q)ex − (rx+ s)e−x + t, (13)

where x = ρmi
2σ2 , p = eρ − 1, q = −1, r = 1 and t = e

ρ2

4σ2 for σ ≥ σ̄. (σ̄ is determined in

Proposition 4.)

Claim 1 There exists ρ such that (ρ, σ) for σ ≥ σ̄ satisfies the first order condition and

φ(x) = 0 has at most two solutions such that x > 0.

It is reduced to show that (px + p + q)e2x = −rx + r − s has at most one zero such that

x > 0. In the case that p+ q ≥ 0, (px+ p+ q)e2x is increasing for x > 0 and −rx+ r − s is

18



decreasing for x > 0. Hence, it has at most one zero such that x > 0. Now, we can assume

that p+ q < 0. Note that p+ q = eρ(r − s) and p = eρr. Using this, we have

(px+ p+ q)e2x = −rx+ r − s

⇔ (px+ p+ q)e2x − rx− r + s = −2rx

⇔ (px+ p+ q)(e2x − e−ρ) = −2rx.

The y-intercept of (px+ p+ q)(e2x − e−ρ) is (p+ q)(1− e−ρ) which is negative. −2rx is

decreasing for x > 0 and passes (0, 0). So it is enough to show that (px+ p+ q)(e2x− e−ρ) is

convex for x > 0, i.e., its second derivative is positive. (Then (px+ p+ q)(e2x− e−ρ) = −2rx

would have only one solution.) Define ψ(x) = (px+ p+ q)(e2x − e−ρ). Then, we have

ψ′ = p(e2x − e−ρ) + 2e2x(px+ p+ q),

ψ′′ = 2pe2x + 2pe2x + 4e2x(px+ p+ q) = 8pe2x + p+ q ≥ 9p+ q,

whenever x > 0.

So it is enough to show that 9p+ q > 0 i.e. 9 e
ρ−1
ρ
− ρ(eρ−1)

2σ2 − 1 > 0. Note that the upper

region of the green curve in Figure 5 satisfies 9p+ q > 0. This completes the proof.

Figure 6 shows the global optimality of mi = vi, i.e., ∂USi
∂mi

< 0 for all mi > vi.

Proof of Proposition 4:

We can rewrite u(a) as following:

u(a) = γ − βe−a = γ(1− β

γ
e−a) = γ(1− e−(a−lnβ/γ)). (14)

The graph of u(a) is obtained simply by scaling of the vertical axis and transition of the

a-axis. This does not change the first order condition and second order condition given by

(6) and (10).

Proof of Proposition 5:

Let X = x/σ. Since Var(X) = Var(x/σ) = 1, the proof is immediate.
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