The Possible Trinity: Optimal interest rate, exchange rate, and taxes on capital flows in a DSGE model for a Small Open Economy

Guillermo J. Escudé

March 10, 2017

Model modifications due to the detection by Jiang Xu (of Jilin University, China) of an algebraic mistake in the FOC for d in the case of a tax/subsidy scheme whereby $\left(1+i_{t}^{*}\right) \phi_{t}^{*}$ incorrectly multiples $\operatorname{taxsu}_{t+1}^{D}$ (Equation (15) in the text).

Changes in model equations Form 2 (change in level):
Equation (15) in the text:

$$
\begin{aligned}
& \lambda_{t}\left(1-\operatorname{taxsub}_{t}^{D}\right) e_{t} \\
& =\beta\left(1+i_{t}^{*}\right) \phi_{t}^{*} E_{t}\left\{\frac{\lambda_{t+1} e_{t+1}}{\pi_{t+1}^{*}}\left[\varphi_{D}\left(\frac{e_{t} d_{t}}{Y_{t}}, \frac{e_{t} r_{t}}{Y_{t}}\right)-\operatorname{taxsub}_{t+1}^{D}\right]\right\}
\end{aligned}
$$

should instead be:

$$
\begin{aligned}
& \lambda_{t}\left(1-\operatorname{taxsub}_{t}^{D}\right) e_{t} \\
& =\beta E_{t}\left\{\frac{\lambda_{t+1} e_{t+1}}{\pi_{t+1}^{*}}\left[\left(1+i_{t}^{*}\right) \phi_{t}^{*} \varphi_{D}\left(\frac{e_{t} d_{t}}{Y_{t}}, \frac{e_{t} r_{t}}{Y_{t}}\right)-\operatorname{taxsub} b_{t+1}^{D}\right]\right\}
\end{aligned}
$$

Equation (21) in the text:

$$
1=\beta\left(1+i_{t}^{*}\right) \phi_{t}^{*} E_{t}\left\{\left(\frac{\lambda_{t+1}}{\lambda_{t}} \frac{1}{\pi_{t+1}}\right)\left(\frac{\varphi_{D}\left(\gamma_{t}^{D}, \gamma_{t}^{R}\right)-\operatorname{taxsub}_{t+1}^{D}}{1-\operatorname{taxsub}_{t}^{D}} \delta_{t+1}\right)\right\}
$$

should instead be:

$$
1=\beta E_{t}\left\{\left(\frac{\lambda_{t+1}}{\lambda_{t}} \frac{1}{\pi_{t+1}}\right)\left(\frac{\left(1+i_{t}^{*}\right) \phi_{t}^{*} \varphi_{D}\left(\gamma_{t}^{D}, \gamma_{t}^{R}\right)-\operatorname{taxsub}_{t+1}^{D}}{1-\operatorname{taxsub}} \delta_{t+1}^{D}\right)\right\}
$$

The equation that follows:

$$
\begin{aligned}
& \left(1+i_{t}\right) E_{t}\left(\frac{\lambda_{t+1}}{\lambda_{t}} \frac{1}{\pi_{t+1}}\right) \\
= & \left(1+i_{t}^{*}\right) \phi_{t}^{*} E_{t}\left\{\left(\frac{\lambda_{t+1}}{\lambda_{t}} \frac{1}{\pi_{t+1}}\right)\left(\frac{\varphi_{D}\left(e_{t} d_{t} / Y_{t}, e_{t} r_{t} / Y_{t}\right)-\operatorname{taxsub}_{t+1}^{D}}{1-\operatorname{taxsub}_{t}^{D}} \delta_{t+1}\right)\right\} .
\end{aligned}
$$

should instead be:

$$
\begin{aligned}
& \left(1+i_{t}\right) E_{t}\left(\frac{\lambda_{t+1}}{\lambda_{t}} \frac{1}{\pi_{t+1}}\right) \\
= & E_{t}\left\{\left(\frac{\lambda_{t+1}}{\lambda_{t}} \frac{1}{\pi_{t+1}}\right)\left(\frac{\left(1+i_{t}^{*}\right) \phi_{t}^{*} \varphi_{D}\left(e_{t} d_{t} / Y_{t}, e_{t} r_{t} / Y_{t}\right)-\operatorname{taxsub}_{t+1}^{D}}{1-\operatorname{taxsub}_{t}^{D}} \delta_{t+1}\right)\right\} .
\end{aligned}
$$

The equation that follows:

$$
\begin{aligned}
& \left(1+i_{t}\right) E_{t}\left(\frac{\lambda_{t+1}}{\lambda_{t}} \frac{1}{\pi_{t+1}}\right) \\
= & \left(1+i_{t}^{*}\right) \phi_{t}^{*}\left\{\begin{array}{c}
E_{t}\left(\frac{\lambda_{t+1}}{\lambda_{t}} \frac{1}{\pi_{t+1}}\right) E_{t}\left(\frac{\varphi_{D}\left(e_{t} d_{t} / Y_{t}, e_{t} r_{t} / Y_{t}\right)-t a x s u b_{t+1}^{D}}{1-t a x s u b_{t}^{D}} \delta_{t+1}\right) \\
+\operatorname{Cov}_{t}\left(\frac{\lambda_{t+1}}{\lambda_{t}} \frac{1}{\pi_{t+1}}, \frac{\varphi_{D}\left(e_{t} d_{t} / Y_{t}, e_{t} r_{t} / Y_{t}\right)-\text { taxsub }_{t+1}^{D}}{1-\operatorname{taxsumb}_{t}^{D}} \delta_{t+1}\right)
\end{array}\right\} .
\end{aligned}
$$

should instead be:

$$
\begin{aligned}
& \left(1+i_{t}\right) E_{t}\left(\frac{\lambda_{t+1}}{\lambda_{t}} \frac{1}{\pi_{t+1}}\right) \\
= & \left\{\begin{array}{c}
E_{t}\left(\frac{\lambda_{t+1}}{\lambda_{t}} \frac{1}{\pi_{t+1}}\right) E_{t}\left(\frac{\left(1+i_{t}^{*}\right) \phi_{t}^{*} \varphi_{D}\left(e_{t} d_{t} / Y_{t}, e_{t} r_{t} / Y_{t}\right)-t a x s u b_{t+1}^{D}}{1-\operatorname{taxsu} b_{t}^{D}} \delta_{t+1}\right) \\
+\operatorname{Cov}_{t}\left(\frac{\lambda_{t+1}}{\lambda_{t}} \frac{1}{\pi_{t+1}}, \frac{\left(1+i_{t}^{*}\right) \phi_{t}^{*} \varphi_{D}\left(e_{t} d_{t} / Y_{t}, e_{t} t_{t} / Y_{t}\right)-\operatorname{taxsu} b_{t+1}^{D}}{1-t a x s u b_{t}^{D}} \delta_{t+1}\right)
\end{array}\right\} .
\end{aligned}
$$

Equation (22) in the text:

$$
\left.\begin{array}{rl}
1+i_{t} & =\left(1+i_{t}^{*}\right) \phi_{t}^{*} E_{t}\left(\frac{\varphi_{D}\left(e_{t} d_{t} / Y_{t}, e_{t} r_{t} / Y_{t}\right)-\operatorname{taxsub}_{t+1}^{D}}{1-\operatorname{taxsub} b_{t}^{D}} \delta_{t+1}\right) \\
& =\left(1+i_{t}^{*}\right) \phi_{t}^{*} E_{t}\left[\left(1+\frac{\bar{\varphi}_{D}\left(e_{t} d_{t} / Y_{t}, e_{t} r_{t} / Y_{t}\right)-\Delta \operatorname{taxsub}}{t+1} D\right.\right. \\
1-\operatorname{taxsub}_{t}^{D}
\end{array} \delta_{t+1}\right]
$$

should instead be:

$$
\begin{aligned}
1+i_{t} & =E_{t}\left(\frac{\left(1+i_{t}^{*}\right) \phi_{t}^{*} \varphi_{D}\left(e_{t} d_{t} / Y_{t}, e_{t} r_{t} / Y_{t}\right)-\operatorname{taxsub}_{t+1}^{D}}{\left.1-\operatorname{taxsub_{t}^{D}} \delta_{t+1}\right)}\right. \\
& =E_{t}\left[\left(1+\frac{\left[\left(1+i_{t}^{*}\right) \phi_{t}^{*} \varphi_{D}\left(e_{t} d_{t} / Y_{t}, e_{t} r_{t} / Y_{t}\right)-1\right]-\Delta \operatorname{taxsub}}{1-\operatorname{taxsub}_{t}^{D}}\right) \delta_{t+1}^{D}\right]
\end{aligned}
$$

where in the second equality $\varphi_{D}(.) \equiv 1+\bar{\varphi}_{D}($.$) is used.$
[This notation is no longer useful here]
 interest rate (ceteris paribus), while an expected increase in the next period has the opposite effect. Hence, if $\operatorname{taxsub_{t}^{D}\text {increasesinitiallyandissubsequently}}$ expected to fall, both have the effect of increasing the domestic interest rate (ceteris paribus).
[This remains valid]

Appendix B: The system of nonlinear equations Risk-adjusted uncovered interest parity

$$
\begin{aligned}
1+i_{t}= & \left(1+i_{t}^{*}\right) \phi_{t}^{*} E_{t}\left(\frac{\varphi_{t}^{D}-\operatorname{taxsub}_{t+1}^{D}}{1-\operatorname{taxsub}_{t}^{D}} \delta_{t+1}\right) \\
& \text { or } \\
1+i_{t}= & \left(1+i_{t}^{*}\right) \phi_{t}^{*}\left(\frac{\varphi_{t}^{D}}{1-\operatorname{tax}_{t}^{D}}\right) E_{t} \delta_{t+1}
\end{aligned}
$$

should instead be:

$$
\begin{aligned}
1+i_{t}= & E_{t}\left(\frac{\left(1+i_{t}^{*}\right) \phi_{t}^{*} \varphi_{t}^{D}-\operatorname{taxsub}_{t+1}^{D}}{1-\operatorname{taxsub}_{t}^{D}} \delta_{t+1}\right) \\
& \text { or } \\
1+i_{t}= & \left(1+i_{t}^{*}\right) \phi_{t}^{*}\left(\frac{\varphi_{t}^{D}}{1-\operatorname{tax}_{t}^{D}}\right) E_{t} \delta_{t+1}
\end{aligned}
$$

Conclusion This slight change in the specification of this variant of the model should have some effect on the numerical exercises. I am confident, however, that none of the conclusions of the paper are affected.

