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RESPONSE TO REFEREE REPORT NUMBER 2 
 
Thank you for the comments.  They are excellent.  I greatly appreciate the effort the 
reviewer put into them.  It will result in a much improved revision.  
 
1)  COMMENT:  “The paper shows by simulation that if data for (xt; yt); t = 1,...,T are 

generated by a cointegrated VAR in two dimensions, then various univariate tests 
for unit roots of xt and yt have rejections probabilities which deviate seriously from 
the nominal levels. This is of course a nice observation and should be followed up 
by an analysis of the two dimensional VAR to find out whether it helps to analyse 
the variables jointly.” 

 
 RESPONSE:  Thank you. I was surprised by the results -- as are most researchers 

when I share this finding with them.  It is apparent from the applied literature that 
this problem is not widely known.  I will address the last comment about finding a 
solution to the problem below. 

 
 
2)  COMMENT:  “As a check on the calculations it would also be interesting to see 

whether you get the correct rejection probability when you simulate a very long 
series. This would also be a safeguard against the possibility of programming 
errors.”  

 
 RESPONSE:  I followed the reviewer’s advice and simuated the DGP used in TABLE 1, 

except that the samples now had 1000 observations rather than 100 (and I increased 
the number of lagged dependent variables from 4 to 10 to accommodate serial 
correlation).  The results are presented below.  The ADF and DF-GLS Type I error 
rates are close to their nominal sizes, though the Phillips-Perron continues to 
perform poorly.   

 

TEST X Y Z 

ADF 0.051 0.088 0.050 
Phillips-Perron 0.178 0.997 0.0657 

DF-GLS 0.031 0.035 0.025 
BREUSCH-GODFREY TEST: 0.057 0.068 0.070 

 
 As the possibility of programming errors is a serious issue, I have also gone much 

further than the reviewer asked to address his/her concerns.  I am making available 
all the programs that I used to simulate the data and check whether the data are 
cointegrated.  The respective programs are briefly described below.  The Appendix to 
this response provides a much longer explanation of how one can use the programs 
to confirm that the simulations are done correctly: 

• The Excel spreadsheet “Parameter Values”.  This allows one to calculate 𝛽 
and 𝛾 values that produce cointegrated y and x time series. 
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• The Stata .do file “CharRoots”.   This program solves for the characteristic 
roots of the CVAR system to check that 𝜆1 = 1, |𝜆2| < 1. 

• The Stata .do file “VECrank”.  This program checks the rank of (𝐴 − 𝐼) =

�𝑎11 − 1 𝑎12
𝑎21 𝑎22 − 1�.   A rank of 1 corresponds to the y and x variables being 

cointegrated. 
• The Stata .do file “VECstable”.  This program simulates 1000 observations of 

the data and estimates a VEC model to check that the estimated values of 
𝛿𝑦, 𝛿𝑥,  and 𝜃 are close to their analytical values. 

• The Stata .do files “function_data”, “Table3A”, and “Table3B”.  These 
programs are used to create the results for TABLE 3 in the paper. 

• The Stata .do files “function_data”, “Table4A”, and “Table4B”.  These 
programs are used to create the results for TABLE 4 in the paper. 

Together, these programs allow one to not only check all the programing in the 
paper, but to derive other combinations of coefficient values for the DGP to check 
the performance of the corresponding unit root tests. The links to the respective 
data files are given below: 
 

http://www.economics-ejournal.org/dp-2015-57-charroots.do/view 

http://www.economics-ejournal.org/dp-2015-57-function_data.do/view 

http://www.economics-ejournal.org/dp-2015-57-parameter-values.xls/view 

http://www.economics-ejournal.org/dp-2015-57-table3a.do/view 

http://www.economics-ejournal.org/dp-2015-57-table3b.do/view 

http://www.economics-ejournal.org/dp-2015-57-table4a.do/view 

http://www.economics-ejournal.org/dp-2015-57-table4b.do/view 

http://www.economics-ejournal.org/dp-2015-57-vecrank.do/view 

http://www.economics-ejournal.org/dp-2015-57-vecstable.do/view 

 
3)  COMMENT:  “Some pages are spent calculating back and forth between the CVAR 

in (6) and the ARDL formulation in (1). This is of course well known and some space 
would be saved by sticking to only one representation.”  

 
 RESPONSE:  I would like to keep the current presentation the way that it is.  The cost 

is approximately half a page of derivations and discussion (from the bottom of page 
3 to the top of page 4).  The benefit of the ARDL representation is that it allows one 
to connect the theory to the accompanying programs (more on the accompanying 
programs above).  The benefit of the CVAR representation is that it provides some 
intuition about the long-run relationship between the variables and the dynamic 
return to equilibrium. 

 
 
  

http://www.economics-ejournal.org/dp-2015-57-charroots.do/view
http://www.economics-ejournal.org/dp-2015-57-function_data.do/view
http://www.economics-ejournal.org/dp-2015-57-parameter-values.xls/view
http://www.economics-ejournal.org/dp-2015-57-table3a.do/view
http://www.economics-ejournal.org/dp-2015-57-table3b.do/view
http://www.economics-ejournal.org/dp-2015-57-table4a.do/view
http://www.economics-ejournal.org/dp-2015-57-table4b.do/view
http://www.economics-ejournal.org/dp-2015-57-vecrank.do/view
http://www.economics-ejournal.org/dp-2015-57-vecstable.do/view
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4)  COMMENT:  “It is unclear what you mean when saying that a VEC model is well 
behaved.”  

 
 RESPONSE:  I agree that the original manuscript needs to be clearer by what I mean 

by “well-behaved.”  𝛿𝑦, the speed of adjustment parameter in the ∆𝑦𝑡 equation, 
identifies the change in y that accompanies a one-unit increase in y from its 
equilibrium value at time t-1. The condition −1 < 𝛿𝑦 < 0 guarantees that yt adjusts 
by returning to its equilibrium value by a fraction of the original deviation.  Likewise, 
 𝛿𝑥𝜃  identifies the change in x that accompanies a one-unit increase in x from its 
equilibrium value at time t-1.  The condition −1 <  𝛿𝑥𝜃 < 0, guarantees that xt 
adjusts by returning to its equilibrium value by a fraction of the original deviation.  
These conditions are more restrictive than they need to be, for example, they do not 
allow for overshooting, but they are sufficient to guarantee that deviations from 
long-run equilibrium cause the series to smoothly return to their long-run 
equilibrium values.  

 
 
5)  COMMENT:  For cointegrated I(1) data we know that 𝒚𝒕 + 𝜽𝒙𝒕 is an AR(1) process 

with coefficient 𝟏 +  𝜹𝒚 + 𝜹𝒙𝜽 which satisfies −𝟏 < 𝟏 +  𝜹𝒚 + 𝜹𝒙𝜽 < 𝟏.  The right 
hand side is satisfied if 𝜹𝒚 + 𝜹𝒙𝜽 < 𝟎; so it is not suffcient that either 𝜹𝒚 or 𝜹𝒙𝜽 is 
negative, but certainly sufficient that they both are.  

 
 RESPONSE:  I thank the reviewer for clarifying this.  The revised manuscript will 

explicitly state this condition.  I note that the simulations all satisfy this condition. 
 
 
6)  COMMENT:  “You write "The first two columns of TABLE 2 describe the model 

parameters." This is obviously not so, as the constant terms 𝛽10 and 𝛽20 in 
equation (1) do not appear in TABLE 2. However, based on the text of TABLE 1, and 
"Case 1" on page 4, it appear that the constant terms are set to zero. Presumably 
they are also zero in the other simulations. This is of course important as under the 
null of nonstationarity, a constant term would generate a trend in the process, and 
change the asymptotic behaviour of the test statistics, see (1).  

 
 RESPONSE:  The reviewer is correct.  The constant terms 𝛽10 and 𝛽20 equal zero for 

all the simulations.  The revised manuscript will make this clear.  
 
 
7)  COMMENT:  You write "The Z column is useful for illustrating the range of 

deviations that can be expected from a sampling error." This is clearly not correct. 
The Z column illustrates the deviation you can get from testing in a true random 
walk model, but you are simulating much more complex structures which have 
many more lags.”  

 
 RESPONSE:  I don’t think we disagree here.  The reviewer is correct that the sampling 

error associated with unit root tests of z cannot be applied to the sampling error 
associated with the unit root tests of the cointegrated variables.  Indeed, the main 
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point of the paper is that the distribution of sample statistics from unit root tests for 
cointegrated data is different than those for univariate random walk variables. The 
revised manuscript will avoid any confusion by dropping this statement.  

 
 
8)  COMMENT:  “...you estimate and calculate test statistics from models that are 

misspeciifed because of the lags chosen.”  
 
 RESPONSE:  I am not sure what the reviewer means by the last statement, “because 

of the lags chosen.”  The revised manuscript will emphasize that the reason 
univariate unit root tests perform so poorly is because they are misspecified for 
cointegrated data.  

 
 
9)  COMMENT:  “It is unclear how from these equations you can derive that 𝝆𝒚 = 𝜹𝒚 

and 𝝆𝒙 = 𝜽𝜹𝒙.”  
 
 RESPONSE:  I agree with the reviewer that one cannot conclude from the derivations 

that  𝜌𝑦 = 𝛿𝑦 and 𝜌𝑥 = 𝜃𝛿𝑥.  However, I still think that the juxtaposition of the two 
sets of equations highlights the misspecification of the univariate unit root tests.  
The univariate unit root tests are specified as below: 

 
 The test for unit root consists of testing that 𝜌𝑦 ,𝜌𝑥 = 0.  In other words, changes in y 

and x are unrelated to their levels in the previous period.   
  In contrast, the true relationship between changes in y and x and their levels 

is given by the CVAR equations below: 

  
 Clearly, changes in y and x ARE related to their levels in the previous period.  In 

particular, deviations from their equilibrium values cause y and x to change in such a 
way as to return them to their equilibrium values.  

 
 
10)  COMMENT:  “In fact it follows from the Granger representation theorem that 

 
 This shows that for the investigations to work you need the restriction 𝜹𝒙𝒂𝟏𝟏 =

𝜹𝒚𝒂𝟐𝟐 to avoid a linear trend in the process, which otherwise would change the 
limit distributions of the statistics you work with.”  

 
 RESPONSE:  I thank the reviewer for pointing this out.  The revised manuscript will 

set 𝛽10 = 𝛽20 = 0 in the equations below, so that the DGP changes from this: 
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 𝑦𝑡 = 𝛽10 + 𝛽12𝑥𝑡 + 𝛾11𝑦𝑡−1 + 𝛾12𝑥𝑡−1 + 𝜀𝑦𝑦  ,  

 𝑥𝑡 = 𝛽20 + 𝛽21𝑦𝑡 + 𝛾21𝑦𝑡−1 + 𝛾22𝑥𝑡−1 + 𝜀𝑥𝑥  ; 

 to this: 
 𝑦𝑡 = 𝛽12𝑥𝑡 + 𝛾11𝑦𝑡−1 + 𝛾12𝑥𝑡−1 + 𝜀𝑦𝑦  ,  

 𝑥𝑡 = 𝛽21𝑦𝑡 + 𝛾21𝑦𝑡−1 + 𝛾22𝑥𝑡−1 + 𝜀𝑥𝑥  .  

 As the reviewer has noted, the analysis already does this de facto, as all the 
simulations set 𝛽10 = 𝛽20 = 0.  It follows that 𝑎10 = 𝑎20 = 0, so that the condition 
𝛿𝑥𝑎10 = 𝛿𝑦𝑎20 is met in all the simulations.  

 
 
11)  COMMENT:  “"This suggests that researchers should..., opting for a more holistic 

approach." It is a fact that although the CVAR methodology has been available for 
more than 30 years by now including the necessary software, many users still 
prefer to use unit root tests on individual variables. The standard (CVAR) approach 
suggests finding the rank first, and test for the stationarity of the individual 
variables by testing that a unit vector is a "cointegrating vector". I assume that this 
is what the author calls a "holistic" approach, and I find that the follow up analysis 
of the 2 dimensional CVAR is needed to show how the problems of the univariate 
unit roots can be solved.  

 
 RESPONSE:  The implication of the reviewer’s comment is that I should not suggest a 

more “holistic” approach until I can confirm that a more “holistic” approach would 
produce satisfactory outcomes.  I agree.  The revised manuscript will drop this 
recommendation and suggest it instead as a topic for future research.  With respect 
to his/her recommendation that my analysis be extended to show how the problems 
of univariate unit roots can be solved, I believe that this lies outside the purview of 
the current paper for two reasons. 

  First, a proper analysis of how best to address the problems of univariate unit 
roots involves a substantial expansion of the scope of my paper.  Such an 
investigation would involve a comparison of numerous cointegration tests.  The 
reviewer mentions “finding the rank,” but there are many tests/procedures for 
identifying the rank of the system.  There is the trace test, the maximum eigenvalue 
test, and numerous information criteria for rank selection.  In addition, there are 
Engle Granger single equation tests for cointegration, and Pesaran and Shin (1999) 
and Pesaran et al. (2001) ARDL Bounds tests.  In addition, there is a strand of 
research that suggests that univariate unit root tests can have their power increased 
by including correlated variables in the unit root specification (Hansen, Econometric 
Theory, Vol. 11, 1995: 1148-1171; Westerlund, Journal of Time Series Analysis, Vol. 
34, 2013: 477-495).  As a result, an analysis of how best to handle the problems of 
univariate unit root tests would constitute a separate paper on its own. 

  Second, I believe the contribution of the current paper is sufficient to stand 
on its own.  My paper points out the problems associated with a very common 
procedure for estimating relationships between time series variables.  How 
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common?  The papers below were all recently published in Economics: The Open-
Access, Open-Assessment E-Journal, and they all begin by testing for unit roots in the 
individual variables before going on to estimate a cointegrated relationship: 

• Haertel and Lucke (2008). “Do News Shocks Drive Business Cycles? Evidence from 
German Data.” Vol. 2, 2008-10. 

• Schneider, Chen, and Frohn (2008). “A Long-Run Structural Macroeconometric 
Model for Germany: An Empirical Note.” Vol. 2, 2008-16. 

• Bogoev, Terzijan, Egert, and Petrovska (2008).  “Real Exchange Rate Dynamics in 
Macedonia: Old Wisdoms and New Insights.” Vol. 2, 2008-18. 

• Juselius (2008). “Testing the New Keynesian Model on U.S. and Euro Area Data.” Vol. 
2, 2008-24. 

• Bjornstad and Kalstad (2010).  “Increased Price Markup from Union Coordination – 
OECD Panel Evidence.”  Vol. 4, 2010-30. 

• Elgin and Kuzubas (2013).  “Wage-Productivity Gap in OECD Economies.” Vol. 7, 
2013-21. 

• Kleeman (2014).  “Knowing Where Organic Markets Move Next – An Analysis of 
Developing Countries in the Pineapple Market.” Vol. 8, 2014-4. 

• Herzer and Nunnenkamp (2015).  “Income Inequality and Health: Evidence from 
Developed and Developing Countries.” Vol. 9, 2015-4. 

 I emphasize that these are just from the journal Economics: The Open-Access, Open-
Assessment E-Journal.  

  Further evidence is given in Peter Kennedy’s Guide to Econometrics, 6th 
edition, 2008, p. 303: 

 “These results suggest the following methodology for practitioners.  First, use unit 
root tests to determine the order of integration of the raw data series.  Second, run 
the cointegrating regression suggested by economic theory.  Third, apply an 
appropriate unit test to the residuals from this regression to test for cointegration.  
Fourth, if cointegration is accepted, use the lagged residuals from the cointegrating 
regression as an error correction term in an ECM.”   

 Kennedy goes on to discuss alternative estimation procedures, such as estimation of 
VEC models.  But the key thing to note is that the first step is to use univariate unit 
root tests to determine the order of integration of the respective time series 
variables.  And researchers are unaware of the problems with following this 
approach. 

  As a result, I believe that my paper’s focus should be maintained on the 
inappropriateness of applying univariate unit root test to cointegrated data.  To 
underscore the paper’s main finding, I am thinking of changing the title of the paper 
to: “Univariate Unit Root Tests Perform Poorly When Applied to Cointegrated 
Variables”.  I would appreciate the reviewer’s opinion about this title change. 
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APPENDIX 

 
 The Excel spreadsheet “Parameter Values”.  The worksheet “ParameterValues” 

allows one to select parameter values that produce CI(1,1) series.  The yellow-highlighted 

cells identify where the researcher enters values for 𝑎22 (STEP ONE), and 𝑎12 and 𝑎21 

(STEP TWO) and gives instructions to ensure they satisfy the necessary conditions.   

 

From here, the spreadsheet calculates the corresponding value of 𝑎11 that guarantees that the 

largest eigenvalue = 1 (STEP THREE). 

 

 The next step works backwards to calculate the values of 𝛽 and 𝛾 that will produce 

the values of 𝑎11,𝑎12,𝑎21 and 𝑎22 that one selected in STEPS ONE through THREE.  It is 

straightforward to show that the values of 𝑎11,𝑎12,𝑎21 and 𝑎22 in Equation (2) are related to 

the values of 𝛽 and 𝛾 in Equations (1) and (2) by the following: 

(8a) 𝑎11  =  
𝛾11+𝛽12𝛾21
1−𝛽12𝛽21

 

(8b) 𝑎12  =  
𝛾12+𝛽12𝛾22
1−𝛽12𝛽21

 

(8c) 𝑎21  =  
𝛾21+𝛽21𝛾11
1−𝛽12𝛽21

 

(8d) 𝑎22  =  
𝛾22+𝛽21𝛾12
1−𝛽12𝛽21
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(8a) – (8d) provide 4 equations with 6 unknowns, 𝛽12, 𝛽21, 𝛾11, 𝛾12, 𝛾21, and 𝛾22.  

Accordingly, the yellow-highlighted cells in STEP FOUR allow one to set 𝛽12 and 𝛽21 to any 

value so long as their product does not equal 1. 

 

Once 𝛽12 and 𝛽21 have been set, one can use Equations (8a) – (8d) to solve for the 

corresponding values of 𝛾11, 𝛾12, 𝛾21, and 𝛾22 (STEP FIVE).1 

 

Note that these parameter values will be entered into the Stata .do files.  The values need to 

be exact in order for the series to be cointegrated.  Approximate values, such as 0.333 for 1/3, 

will not suffice.  So this section warns that the user must be sure that the respective parameter 

values do not have trailing values. 

 The last part of the worksheet reports the corresponding values of 𝜃, 𝛿𝑦, and 𝛿𝑥. 

 

This allows one to check that the speed of adjustment parameters satisfy the conditions (i) 

 −1 < 𝛿𝑦 < 0,  and (ii)  −1 < 𝛿𝑥𝜃 < 0, which are imposed to guarantee that the series return 

smoothly to their equilibrium values following shocks to the system. 

                                                      
1 Note that g11, g12, g21, and g22 represent 𝛾11, 𝛾12, 𝛾21, and 𝛾22, respectively. 



9 
 

 Also included in the Excel spreadsheet is a worksheet by the name of “PasteValues.”  

It summarizes all the parameter values that were calculated on the “ParameterValues” 

worksheet (see below). 

 

These are formatted for easy copy-and-pasting into the subsequent .do files. 

 The Stata .do file “CharRoots”.   The .do file “CharRoots” takes the parameter values 

from the spreadsheet and calculates the associated eigenvalues.  It also provides a plot of 

some of the 𝑦𝑡 and 𝑥𝑡 values so that one can visualize how they relate.  All one has to do is 

copy the appropriate cells from the “PasteValues” worksheet, paste them into the 

corresponding section of the .do file, and then run the program (see below). 

 

The associated output confirms that the two eigenvalues satisfy the conditions 𝜆1 = 1, |𝜆2| <

1: 
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 The Stata .do file “VECrank”.  The .do file “VECrank” takes the parameters from the 

spreadsheet and uses the respective testing procedures in Stata to test for the rank of the 

matrix (𝐴 − 𝐼) = �𝑎11 − 1 𝑎12
𝑎21 𝑎22 − 1�.  A rank of 1 is consistent with the variables 𝑌 and 𝑋 

being cointegrated.  To run this program, follow the same procedure as above and copy and 

paste the parameter values from the “PasteValues” worksheet into the appropriate section of 

the .do file, as discussed above. 

 This program produces output in two parts.  The first part calculates the rank of 

(𝐴 − 𝐼) directly from the population parameter values of the DGP:  

 

The second part simulates 1000 observations of X and Y and performs (i) the trace test, (ii) 

the maximum eigenvalue test, and (iii) presents a series of information criterion values using 

the Schwarz Bayesian information criterion (SBIC), the Hannan and Quinn information 

criterion (HQIC), and the Akaike information criterion (AIC).  All the results from the table 

below indicate that (𝐴 − 𝐼) = �𝑎11 − 1 𝑎12
𝑎21 𝑎22 − 1� has a rank of 1, consistent with the data 

being cointegrated.  
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 The Stata .do file “VECstable”.  The .do file “VECstable” takes the parameters from 

the spreadsheet, simulates 1000 observations using those parameter values, estimates the 

VEC model, and then reports the estimated eigenvalues of the system.  This program also has 

output in two parts.  The first part estimates of the VEC model and allows one to compare the 

estimated values of 𝜃, 𝛿𝑦, and 𝛿𝑥 with their true values, as reported at the bottom of the 

“ParameterValues” worksheet.   
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From the output above, we see that the VEC estimates of  𝛿𝑦, 𝛿𝑥, and 𝜃 are -0.908, -0.935, 

and 0.111.  The true values are reported on the bottom of the “Parameter Values” worksheet: 

 

The last part of the program estimates the value of the second eigenvalue, assuming that the 

larger of the two eigenvalues equals one: 
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|𝜆2| is estimated to be 0.041.  We know from “CharRoots” program above that the true value 

of the second eigenvalue is zero.  While standard errors are not calculated, the estimated 

value of |𝜆2| is well below 1, confirming again that the series are cointegrated. 

 The Stata .do files “function_data”, “Table3A”, and “Table3B”.  The .do files 

“function_data”, “Table3A”, and “Table3B” are a suite of three programs that are designed to 

be used together.  These programs perform the simulation exercises that test each of the series 

for unit root using the (i) ADF, (ii) Phillips-Perron, and (iii) DF-GLS tests.  The programs 

simulate 10000 data sets of 100 observations each of X, Y, and a third variable Z.  X and Y are 

simulated using the parameter values pasted into the program “Table3B”: 

 

The variable Z is a classic random walk variable: 

(9) 𝑧𝑡 = 𝑧𝑡−1 + 𝜀𝑧𝑧  , 𝜀𝑧𝑧~𝑁𝑁𝑁(0,1)  . 

It is included in the simulations for comparison’s sake.   

 The programs must be run in order (first “function_data”, then “Table3A”, and then 

“Table3B”).  The output consists of two parts.  The first part are the Type I error rates 

associated with the three unit root tests: 
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While the Phillips-Perron and DF-GLS tests automatically select lag lengths, the default 

option in Stata is to include no lagged differenced terms in the Dickey-Fuller specification.  

As serial correlation in the error term distort test results, it is advisable to add lagged 

differenced terms. 

 My simulations add 4 lags to the Dickey-Fuller test.  To ensure that this is sufficient 

to account for serial correlation, I perform a Breusch-Godfrey test following each Dickey-

Fuller test.  The associated rejection rates are reported in the second part of the output: 

 

This provides a check to ensure that I have added sufficient lagged differenced terms to 

ensure that the Dickey-Fuller test results are not distorted by the presence of serial 

correlation. 

 The Stata .do files “function_data”, “Table4A”, and “Table4B”.  The last set of 

programs are designed to illustrate the effect of increasing the number of lagged differenced 

terms to the Dickey-Fuller unit root specification.  As with the TABLE 3 programs, they 

must be run in order (first “function_data”, then “Table4A”, and then “Table4B”).  

 


