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Abstract 

 

The Boltzmann-Gibbs distribution is currently widely used in economic modeling. 

One of the applications is integrated with the DSGE (Dynamic Stochastic General 

Equilibrium) model. However, a question that arises concerns whether the 

Boltzmann-Gibbs distribution can be directly applied, without considering the 

underlying social network structure more seriously, even though the social network 

structure is an important factor of social interaction. Therefore, this paper proposes 

two kinds of agent-based DSGE models. The first one belongs to mesoscopic 

modeling in formulating the social interaction with the Boltzmann-Gibbs machine, 

and the other one belongs to microscopic modeling in that it is augmented by the 

network-based ant machine. By comparing the population dynamics generated by 

those different agent-based DSGE models, we find that the Boltzmann-Gibbs machine 

offers a good approximation of herding behavior. However, it is difficult to envisage 

the population dynamics produced by the Boltzmann-Gibbs machine and by the 

network-based ant machine as having the same distribution, particularly in popular 

empirical network structures such as small world networks and scale-free networks. 

Thus, the social interaction behavior may not be replaced by the Boltzmann-Gibbs 

distribution. 
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1. Introduction 

 

While DSGE models have been widely used by central banks for policy analysis, 

the credibility of these models has apparently been challenged by the global financial 

crisis, and thus it may be risky for governments to use DSGE models as a tool in 

policy making. In fact, it is not easy to generate a crash or a bubble using a traditional 

DSGE model with its incredible assumptions such as those of a representative agent 

and rational expectations. To apply DSGE models to situations closer to real world 

situations, many researchers have added heterogeneity, bounded rationality and 

adaptive learning mechanisms to them, in the hope of calibrating the modified DSGE 

models to match the real world economy (Bask, 2007; Chang et al., 2010; Wen, 2010; 

Evans and Honkapohja, 2001; Orphanides and Williams, 2007a, b; Milani, 2009; 

Branch and McGough, 2009; Chen and Kulthanavit, 2010). Besides the 

aforementioned modified models, Branch and McGough (2009) have also pointed out 

that further research should focus on the social interactions of learning behaviors.  

Therefore, in order to describe how the social interactions affect the actions of 

agents, some economists have tried to introduce the statistical mechanics which have 

been developed by physicists into traditional economic models. The most popular 

form of statistical mechanics is the Boltzmann-Gibbs distribution. In the world of 

physics, the system is composed of many interacting particles and different statistical 

mechanics are developed to deal with the relationships between the macro and micro 

states. Thus, through the Boltzmann-Gibbs distribution, the proportion of different 

behavioral rules can evolve over time. For this reason, the Boltzmann-Gibbs 

distribution can be thought of as a tool for evolving the market-sentiment in the 

economic system. In general, the Boltzmann-Gibbs distribution is often used to deal 

with expectation behavior; it can, therefore, be applied to models incorporating 
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expectations, such as the cobweb model, asset pricing model and positive versus 

negative feedback model, etc. Brock and Hommes (1997, 1998) can be regarded as 

the pioneers of this kind of research, also known as the adaptive belief system model. 

During the last decade, the Boltzmann-Gibbs distribution has been widely used for 

modeling financial markets especially in the study of financial markets’ anomalies. A 

detailed survey of the use of the Boltzmann-Gibbs approach can be found in Chen et 

al. (2012).  

So far, the Boltzmann-Gibbs distribution has gradually been included in DSGE 

models (Bask, 2007; De Grauwe, 2010a, 2010b; Assenza et al., 2009; and Lengnick 

and Wohltmann, 2010). Bask (2007) combined a small open economic model with a 

Boltzmann-Gibbs distribution. He imposed technical and fundamental analyses as 

different rules in currency trade and found that chaotic dynamics and long swings 

may occur in the exchange rate. Assenza et al. (2009) combined human expectations 

in a standard DSGE model. They asked the subjects to provide two-period ahead 

forecasts of the inflation rate and the output gap for 50 periods. Thus, the realized 

inflation and the output gap could be determined by average individual expectations. 

In this experiment, subjects had only qualitative information about the macro 

economy, and did not know the underlying law of motion. They then separated the 

experimental data into four different forecasting rules: ADA (Adaptive Expectations), 

WTR (Weak Trend Followers), STR (Strong Trend Followers) and LAA (Learning 

Anchoring Adjustment). They found that the Boltzmann-Gibbs machine could 

successfully calibrate the macroeconomic variables dynamics generated by the human 

subjects experiment. Lengnick and Wohltmann (2010) combined the 

Boltzmann-Gibbs distribution and the DSGE macroeconomic model with the 

financial market. They found that stock market developments are more realistically 

described by the Boltzmann-Gibbs machine than rational DSGE models, and that the 
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negative impact that the speculative behavior of financial market participants exerts 

on the macro economy can be reduced by the introduction of a transaction tax. In 

addition, a closed economic DSGE model is augmented with the Boltzmann-Gibbs 

distribution in De Grauwe (2010a, 2010b), who developed a stylized DSGE model in 

which agents use simple rules of heuristics to forecast the future inflation and output 

gap. The simulation results show that the dynamic behaviors of macroeconomic 

variables are more volatile in the Boltzmann-Gibbs machine than in stylized DSGE 

models, and endogenous economic cycles can be generated in the Boltzmann-Gibbs 

distribution.  

The number of applications combining the Boltzmann-Gibbs distribution and the 

DSGE macroeconomic model has been increasing, but the question is whether the 

Boltzmann-Gibbs distribution can be directly applied, without considering the 

underlying social network structure more seriously, even though the social network 

structure is an important factor of social interaction. Methodologically, models 

connected with the Boltzmann-Gibbs distribution machine belong to the mesoscopic 

genre, i.e., individual details are considered irrelevant. Of course, the social network 

structure is also not described in those models. However, the social interaction should 

generally be based on some kind of social network structure. In this case, we seem to 

know in-depth about the tool that we use. Thus, we need a deep fundamental insight 

into the economic system’s dynamics and how it can be traced back to the structural 

properties of the underlying social interaction network. 

In actual fact, the impact of social networks on economic behavior has become an 

important issue recently. In order to describe a specific network structure, a social 

network is broadly understood as a collection of nodes and links between nodes. The 

extant literature can be roughly classified into three kinds. The first kind treats 

networks as endogenously determined, and studies the process of formation of 
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networks. In this regard, agents add or delete their links for maximizing utility (or 

profit) according to a network formation game. In this area, the social network can be 

applied to free trade networks, market sharing agreements, labor markets and the 

co-author model. A detailed survey can be found in Jackson (2005).  

The second kind of literature regards networks as exogenous. In this case, network 

structures can be generated with different stochastic algorithms, such as random, 

scale-free or small world networks; these network structures have been applied to real 

social networks, i.e., collaborations (Vega-Redondo, 2007) and international trade and 

financial integration (Schiavo et al., 2010). According to the empirical results, 

economic networks may also reflect similar universality. Indeed, the connections of 

banks in an interbank network (Iori et al., 2008) show that the network structure of 

banks represents a scale-free system where only a few banks interact with many 

others. In this example, banks with similar investment behaviors cluster in the 

network. Similar regularities can be traced in many examples, including international 

trade networks and financial networks (Schiavo et al., 2010). In addition to the 

empirical approach, applying exogenous network structures to economic models and 

studying their economic implications is another direction of research. In the last few 

years, several macroeconomic models have combined heterogeneous expectations 

with social network structures for modifying the setting of interaction behaviors. For 

example, Westerhoff (2010) proposes a simple agent-based macroeconomic model 

with a scale-free and lattice network structure in which firms hold heterogeneous sales 

expectations. Thus, each firm has fixed social relations with other firms, and they are 

either optimistic or pessimistic. The probability of a firm adopting an optimistic view 

increases not only during a boom, but also with the number of its optimistic neighbors. 

The change in firms’ sentiment causing change in national income has been observed 

for both a square lattice network and a scale-free network. Alfarano and Milakovic 
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(2009) and Alfarano et al. (2009) discuss how to overcome the N-dependence 

problem in agent-based financial models. By investigating a class of network 

structures in a generalized model that presumably reflect the institutional 

heterogeneity of financial markets, they show that these network structures in fact 

overcome the problem of N-dependence. However, at the same time they also 

increase system-wide volatility. Their results indicate that the network structure can 

be the source of volatility in addition to the behavioral heterogeneity of interacting 

agents. 

According to the above, both the Boltzmann-Gibbs machine and the network 

approach have been important platforms for expressing social interaction behavior, 

although to this day it seems that few scholars have discussed the relationship 

between social networks and the Boltzmann-Gibbs distribution. In order to construct a 

social interactive DSGE model with a network structure, we have to choose a model 

which can be combined with different social network structures. The ant model of 

Kirman (1991, 1993), inspired by the ants’ foraging behavior, is one of the choices. 

The ant model endogenously creates swings and herding behavior in aggregate 

expectations through interaction and has successfully replicated stylized facts of 

financial markets (Chen et al., 2012). Therefore, this paper proposes a network-based 

ant model and attempts to compare the population dynamics between the 

Boltzmann-Gibbs machine and network-based ant models that we apply to stylized 

New Keynesian DSGE models. 

 In order to focus on the population dynamics generated by the Boltzmann-Gibbs 

machine and network-based ant models, we follow De Grauwe (2010a, 2010b) and 

adopt the stylized New Keynesian DSGE model for simplicity. Nevertheless, our 

model leads to a number of interesting insights. We find that both the 

Boltzmann-Gibbs machine and network-based ant machine can generate herding 
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behavior. However, it is rather difficult to envisage the population dynamics generated 

by the Boltzmann-Gibbs model and the network-based ant models with the same 

distribution, particularly in popular empirical network structures such as small world 

networks and scale-free networks. In addition, our simulation results further suggest 

that the population dynamics of the Boltzmann-Gibbs model and the circle network 

ant model can be considered with the same distribution under specific parameters 

settings. This finding is consistent with the study of physics for which the 

Boltzmann-Gibbs distribution is based on the local interaction. Although the circle 

network structure is not the acknowledged social network structure, according to the 

relative entropy between the population dynamics of the Boltzmann-Gibbs machine 

and network-based ant machine, the Boltzmann-Gibbs model with intensity of choice 

equal to 10,000 is a good approximation of the herding behavior of our network-based 

ant model with any given network structure. 

The remainder of this paper is organized as follows. In Section 2, we describe the 

stylized New Keynesian DSGE model. Next, we present a version of the agent-based 

DSGE model with the Boltzmann-Gibbs machine. In Section 4, we discuss the 

agent-based DSGE model with the network-based ant machine. Following that, we 

simulate different network structures and present the results. Section 6 concludes. 

 

2. The stylized New Keynesian DSGE model  

 

This section describes the stylized New Keynesian DSGE model. New Keynesian 

DSGE models are widely used in macroeconomics because they are derived from 

individual optimization so that both parameters and shocks can be structural. The 

model consists of the following three equations: 

ttttttt ErayaEyay    )()1( 121111  (1) 
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*
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(3) 

Equation (1) is referred to as the standard aggregate demand that describes the 

demand side of the economy. It is derived from the Euler equation which is the result 

of the dynamic utility maximization of a representative household and market clearing 

in the goods market. The notation for aggregate demand is as follows: ty  denotes the 

output gap in period t, tr  
is the nominal interest rate and t  is the rate of inflation. 

Here, we add a logged output gap in the aggregate demand equation to describe habit 

formation. tE  is the expectations operator, which we use to describe how people 

form their expectations. In the standard New Keynesian DSGE model, the 

representative agent always has rational expectations.  

Equation (2) is a New Keynesian Phillips curve that represents the supply side in 

the economic system. Under the assumption of nominal price rigidity and 

monopolistic competition, the New Keynesian Phillips curve can be derived from the 

profit maximization of a representative final goods producer and the profit 

maximization of intermediate goods producers which are composed of a number of 

heterogeneous households. To reflect the price rigidity, the intermediate goods 

producers can adjust their prices through the Calvo pricing rule. By combining the 

first-order conditions of the final goods producer, the intermediate goods producer 

and the Calvo pricing rule, we can obtain the New Keynesian Phillips curve (Equation 

2). 

Equation (3) represents the Taylor rule commonly used to describe the behavior of 

the central bank in the standard New Keynesian DSGE model. The central bank reacts 

to deviations of inflation and output from targets. In Equation (3), 
*  refers to the 
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inflation target of the central bank. For convenience, *  is set to be equal to 0. In 

addition, the lagged interest rate in Equation (3) represents the smoothing behavior.  

Finally, as the DSGE model is the DGE (Dynamic General Equilibrium) model 

with stochastic terms, t , t  and tu  are all white noise disturbance terms.  

According to the aforementioned equations, we can substitute Equation (3) into 

Equation (1) and rewrite the matrix notation. Thus, the reduced form can be written 

as: 

 

 
    

          
   

  

  
   

     
     

   
      

      
   

     
     

   
    

    
  

  
 

    
        

  

       
  (4) 

or 

                            (5) 

 

According to the above, we can have the solution    for the system. 

 

                               (6) 

 

We can derive the solution only if matrix A is non-singular. In other words, matrix A 

has to satisfy                  . After obtaining the inflation rate (  ) and 

output gap (  ) through Equation (6), we have to substitute the solution for Equation 

(3) and to arrive at the interest rate (  ). 

Finally, we must emphasize that the difference between the stylized New 

Keynesian DSGE model and the agent-based DSGE models is the difference between 

the expectations of the output gap and inflation. Although agents also make forecasts 

of inflation, we simply assume that all agents perceive the central bank’s announced 
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inflation target *

t  to be fully credible. In other words, we set *

1
E  tt =0 in all 

simulation experiments, including the Boltzmann-Gibbs machine and the 

network-based ant model.  

 

3. Agent-based DSGE Model with Boltzmann-Gibbs machine 

 

To make the macroeconomic models more realistic, economists have started 

relaxing the standard New Keynesian DSGE model and built the agent-based version 

(De Grauwe, 2010a, 2010b). In actual fact, the Boltzmann-Gibbs distribution is 

developed by physicists. The beginning of the story is that some physicists found the 

collision of particles to be similar to the interaction of people. For example, 

Boltzmann (1872) showed that molecules are similar to many individuals. In addition, 

De Rosnay (1975) stated that: “In relation to society: we are the particles … our 

glance must be directed towards the systems which surround the particles in order to 

better understand their interactive and evolutionary dynamics.” and Ball (2004) also 

argued that to develop a physics of society one must use a model in which particles 

will become people to designate human particles in computer simulations. The logic 

that derives from the development of physics is the collision of constituent particles 

under specific structures that is analogous to the interaction of people under specific 

social networks. In addition, although each particle (agent) is affected by only a few 

closed particles (agents/friends), the aggregate outcome could result in a huge change. 

This holds in both the world of particles and human society
1
. Since physicists have 

been dealing with the systems of many interacting particles for more than a century, 

they have developed many mature theories by using statistical mechanics such as the 

                                                        
1
 We, of course, are aware that whether or not human agents can be regarded as atoms can be an issue 

that is much more subtle and controversial then the statement presented above. See Galam (2012) for a 

thorough discussion. 
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Boltzmann-Gibbs distribution that was developed to investigate the relationship 

between macroscopic and microscopic phenomena in the physical sciences. Thus, its 

focus has not been on the details of individual particles, but on the relationships and 

dynamics between particles. In terms of the methodology, the modeling concept is 

referred to as mesoscopic
2
 which means that the individuals’ details are considered to 

be irrelevant, i.e., interaction is what matters. Based on this, the setting of 

heterogeneity is relatively simple. Each cluster represents a behavioral rule, agents 

have the same behavior in the same cluster and the population dynamics can be 

evolved through the Boltzmann-Gibbs distribution over time. Therefore, the 

Boltzmann-Gibbs distribution can be thought of as a tool for evolving the micro 

structure of market participants. It can give the proportion of a particular rule of the 

system. 

For describing the different behavioral rules of the expected output gap, we assume 

that the agents do not fully understand how the output gap is determined, and so the 

agents use simple rules, say, the optimistic rule and the pessimistic rule, to forecast 

the future output gap. Therefore, in our Boltzmann-Gibbs machine DSGE model, 

forecasts of optimistic agents systematically bias the output upwards and forecasts of 

pessimistic agents systematically bias the output downwards. Specifically, the 

optimists’ rule is defined by            and the pessimists’ rule is defined by 

           , where 0g  denotes the degree of bias in the estimation of the 

output gap. 

Furthermore, the population dynamics is not static. It evolves over time in most 

                                                        
2
 In this type of study, how individual agents decide what to do may not matter very much. What 

happens as a result of their actions may depend much more on the interaction structure through which 

they act—who interacts with whom, and according to what rules. Therefore, they ignore the decision 

details of human beings and only assume that agents follow some simple rules and care about how 

individual forecasting rules interact at the micro level and which aggregate outcome they co-create at 

the macro level. 

. 
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cases. According to the Boltzmann-Gibbs machine, the population dynamics and the 

fractions of optimists (    ) and pessimists (    ) can be derived from the following 

equations:  

 

                   
          

                     
 (7) 

 

                         
          

                     
 (8) 

 

There are two alternatives o (optimist) and p (pessimist) in the two-type agent-based 

DSGE model. Each will produce some gains to the agent. In this formulation, the 

agent’s current choice is mainly determined by the utilities which he experienced 

when choosing different alternatives. In this model, these experienced utilities have 

been constantly updated with time t, and Vo,t and Vp,t represent the experienced 

utility of being an optimist and pessimist, respectively, updated at time t. Equations (9) 

and (10) show how the agents compute the utility, Vo,t and Vp,t, for the optimists’ and 

pessimists’ rules. The parameters    govern the geometrically declining weights. 

 

         
 
                      

 
 (9) 

         
 
                      

 
 (10) 

 

Parameter λ is carried over from the assumed random component. In addition, there is 

a new interpretation for parameter λ, namely, the intensity of choice, because it 

basically measures the extent to which agents are sensitive to additional profits gained 

from choosing optimism instead of pessimism. According to the above, we can obtain 
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the aggregate expected output gap of period t+1 through Equation (11). 

 

                                 (11) 

 

In sum, the agent-based DSGE model with the Boltzmann-Gibbs distribution machine 

can be regarded as the first step in preparing the standard DSGE model based on its 

agent-based variants. 

 

4. Agent-based DSGE model with network-based ant machine  

  

According to the above, the structure of networks is hidden in our economic lives 

and a vast amount of research has been carried out during the last few decades. For 

example, network analysis is not only applied to examine the transmission of 

information regarding job opportunities, trade relationships, how diseases spread, how 

people vote and which languages they speak, but is also used in empirical works, such 

as the World Trade Web, the Internet, ecological networks and co-authorship networks. 

There is no doubt that a network structure is quite important for social interaction. 

Thus, we would like to introduce a network-based ant model for the New Keynesian 

DSGE framework
3
. Kirman characterized the switching potential of each individual 

by two parameters, namely, a probability of self-conversion and a probability of 

imitation. The self-conversion probability represents the probability that the agent 

changes the rule for personal reasons, whereas the probability of imitation refers to 

the agent changing the rule because of the influence of friends. Thus, the probability 

of agent i switching from the pessimistic rule to the optimistic rule could be 

                                                        
3 There are many agent-based models that can be embodied with network structures. However, one of 

the purposes in introducing the Boltzmann-Gibbs distribution to DSGE models is to calibrate the crash 

and the bubble. In the research on agent-based modeling, both the Boltzmann-Gibbs machine and 

Kirman’s ant model can easily generate herding behavior (Chen et al. (2012)). For this reason, we build 

up the network-based ant model. 
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represented by Equation (12): 

 

                              (12) 

 

where    denotes the self-conversion (due to idiosyncratic factors) rate, and    

refers to the imitation rate. To simplify our model, we let both the self-conversion rate 

and imitation rate be constant. In other words,       and       for each    , 

and     denotes the interaction strength between i and friend j. Equation (13), 

       , is an indicator function that counts the number of i’s friends who are 

optimists. 

 

         
                                         
            

  (13) 

 

Symmetrically, if the agent uses the optimistic rule in period t, the probability of agent 

i converting to a pessimist person could be represented by Equation (14): 

 

                              (14) 

 

         
                                         
            

  (15) 

Finally, variable      is used to describe the interaction strength between i and j. In 

this paper, we assume that the interaction scheme should follow some specific 

network structures and the details of social network topologies will be described in 

the appendices. To consider the utility of different rules for each agent, we connect the 

interaction strength between i and friend j,    , and the performances of different 

rules for each agent. Therefore, according to Equations (9) and (10), we can assign 
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different scores for each rule and then have the score matrix S, with dimensions N N. 

In this case, if the agent is an optimist, it gets the score for the optimistic rule, and 

vice versa. By using the score matrix and the specific social network structure 

recorded by N, we can have     through Equation (16). 

 

    
    

        
   

 (16) 

 

N.  S means that the element of S is multiplied by the corresponding element of N 

and, therefore, we can have a new matrix which contains only friends’ scores. Then, 

each agent assigns a weight to all its friends. Thus, the agent has to sum up the scores 

of all friends, i.e., we have to compute         
    for each row. Finally, the friends’ 

score matrix should be divided by         
   , and after that,     can be generated. 

 

5. Collaborations and simulation results 

 

5.1 Parameters Setting 

In simulations, we follow the parameters setting of De Grauwe (2010a) for the 

stylized New Keynesian DSGE model. Details of parameters in the stylized New 

Keynesian DSGE model, Boltzmann-Gibbs machine, network-based ant model and 

parameters values of different network structures can be found in Table 1. In order to 

find out the distribution of the population dynamics, we run 100 experiments for a 

given collaboration. For each experiment of a specific collaboration, we set the 

number of agents equal to 100 (1,000
4
) and run 300 periods. In addition, one of the 

                                                        
4 To make the model easier to operate with large number of runs, a size of 1,000 agents seems to be a 

practical choice.  In fact, in the current state of agent-based computational economics, this size seems 

to be above the average. It is true that some agent-based models do encounter the scaling-up problem 

(see Lux and Schornstein, 2005), and whether the property which we derive from this economy can be 

carried over to a larger economy is an issue for a further study. 
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purposes in combining the Boltzmann-Gibbs machine and the stylized New 

Keynesian DSGE model is to generate booms and busts. For this reason, the focus is 

on self-conversion and imitation rates which can produce the herding behavior in the 

network-based ant model. In this case, the self-conversion rate equals 0.15 and the 

imitation rate equals 0.7, which meet the requirements. The details can be found in 

Table 1. 

 

Table 1: Parameters setting of the calibrated models 

Parameters setting of the stylized New Keynesian DSGE model 

*  0 the central bank’s inflation target 

1a  0.5 coefficient of expected output in output equation 

2a  -0.2 the interest elasticity of output demand 

1b  0.5 coefficient of expected inflation in inflation equation 

2b  0.05 coefficient of output in inflation equation 

1c  1.5 coefficient of inflation in Taylor equation 

2c  0.5 coefficient of output in Taylor equation 

3c  0.5 interest smoothing parameter in Taylor equation 

g 0.01 output forecasts of optimists 

   0.5 the speed of declining weights omega in mean squared errors 

         0.005 standard deviation shocks of output gap, inflation and Taylors’ rule  

Parameters setting of the Boltzmann-Gibbs machine 

  100 

500 

1000 

 

intensity of choice 
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 5000 

10000 

50000 

 

 

 

Parameters setting of the network-based ant machine  

s 0.15 self-conversion rate 

m 0.7 imitation rate 

 

Parameters setting of the network-based ant machine  

k 1 number of neighbors from the left (right) in circle network structure 

k 2 number of neighbors from the left (right) in regular network structure 

   20 initial nodes of scale free network structure 

p 0.1 

0.3 

0.5 

0.7 

0.9 

1 

cutting (rewiring) probability of small world network structure 

Others 

N 100 

/1000 

number of agents 

T 100 number of simulation periods for each experiment of calibrations 

R 100 Number of experiments for each calibration 
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5.2 Simulation Results 

 

For the Boltzmann-Gibbs machine design, we try different values of intensity of 

choice. In this case, if we increase the intensity of choice (λ ), then the strength of 

social interaction is increased. According to Figure 1, we can observe that if λ  is 

low enough, say,      , the fraction of optimists is very close to 0.5. As λ  gets 

larger, the states of the probability density function of the optimistic ratio in the 

Boltzmann-Gibbs machine become divergent. Therefore, we can obtain bell-shaped 

probability density functions if λ  is between 500 and 1,000. In such cases, herding 

behavior (animal spirits) cannot be generated. However, if the value of λ  is larger 

than 5,000, the probability density functions of the optimistic ratio are U-shaped. In 

other words, to generate the herding behavior (or animal spirits),
5
 the value of λ  

has to be set above 5,000. Then, we can have a boom or bust situation easily. The 

similarity of the two population dynamics generated by the Boltzmann-Gibbs machine 

and the network-based ant model can be explained in three different ways. Firstly, the 

probability density function of the optimistic ratio for different models is sketched in 

order to observe the distribution types. Secondly, the Kolmogorov-Smirnov test is 

applied for all models. Finally, the relative entropy is introduced to measure the 

similarity between the two population dynamics distributions. 

 

 

 

 

 

 

                                                        
5
 It means that all agents adopt the same behavior, and the phenomenon is referred to as ‘animal spirits’ 

in De Grauwe (2010a, 2010b). 
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5.2.1 Qualitative Analysis: Distribution Types 

Figure 1 presents the probability density function of the optimistic ratio for the 

Boltzmann-Gibbs machine. The first row refers to the probability density function of 

the optimistic ratio in the 100
th
 period, the second row represents the probability 

density function of the optimistic ratio in the 200
th
 period, and the third row denotes 

the probability density function of the optimistic ratio in the 300
th
 period. Next, 

Figures 2 and 3 depict the probability density function of the optimistic ratio for the 

network-based ant model with 100 agents and 1,000 agents, respectively. 

A comparison of Figures 1 and 2 shows the difference between the probability 

density functions of optimistic ratios for the Boltzmann-Gibbs machine and the 

network-based ant model. According to Figure 1, the herding behavior can be 

observed when the value of the intensity of choice is large enough, say, larger than 

5,000. However, Figure 2 shows that if the values of the self-conversion rate and 

imitation rate are, say, 0.15 and 0.7, respectively, it is not difficult to produce herding 

behavior (animal spirits) in the network-based ant model. Figure 3 (which results 

from a large sample) shows the same property as Figure 2. In other words, the 

proposed network-based ant model can generate U-shaped probability density 

functions of the optimistic ratio with any given network structure. 

 

Figure 1. Probability density function of the optimistic ratio of the Boltzmann-Gibbs machine. 
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Figure 2. Probability density function of the optimistic ratio of the network-based ant machine 

(N=100). 
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Figure 3. Probability density function of the optimistic ratio of the network-based ant model 

(N=1000). 
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5.2.2 Quantitative Analysis: the Kolmogorov-Smirnov Statistic 
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cannot be rejected. The results of the Kolmogorov-Smirnov test are presented in 

Tables 2 and 3. The simulation results show that the circle network can produce 

population dynamics most similar to the Kolmogorov-Smirnov test. This finding is 

consistent with the study of physics for which the Boltzmann-Gibbs distribution is 

based on the local interaction. However, it is difficult to treat the population dynamics 

generated by the Boltzmann-Gibbs machine and network-based ant machine as being 

from the same distribution, particularly in the popular empirical network structures 

such as the small world network and scale-free network. Furthermore, we have to 

mention that if we decrease the number of bins to 2, the results indicate that the 

p-values of most cases are larger than 0.05. Otherwise, if we increase the number of 

bins to 100, none of the cases can pass the null hypothesis. Since the results of the 

Kolmogorov-Smirnov test will be significantly affected by the number of bins, we 

further employ a similarity measure, relative entropy, to check whether the 

Boltzmann-Gibbs machine is a good approximation for the herding behavior for any 

given network structure.  

Table 2: Kolmogorov-Smirnov test results (N=100) 

  Fully Circle Regular SW01 SW03 

λ=100 3.70E-12 2.95E-11 4.41E-15 3.70E-12 1.06E-11 

λ=500 3.70E-12 8.08E-11 1.43E-14 1.06E-11 1.06E-11 

λ=1000 2.95E-11 3.70E-09 1.40E-13 2.95E-11 2.17E-10 

λ=5000 0.013112 0.193042 0.000322 0.008216 0.008216 

λ=10000 2.75E-07 2.21E-08 1.33E-06 6.12E-07 5.22E-08 

λ=50000 4.52E-14 4.41E-15 4.52E-14 4.52E-14 4.52E-14 

  SW05 SW07 SW09 Random Scale-free 

λ=100 1.40E-13 3.70E-12 4.41E-15 3.96E-16 1.40E-13 

λ=500 4.26E-13 3.70E-12 4.41E-15 3.96E-16 1.40E-13 

λ=1000 2.95E-11 1.06E-11 4.52E-14 3.96E-16 1.40E-13 

λ=5000 0.193042 0.003031 0.001029 0.000174 0.001785 

λ=10000 2.85E-06 5.22E-08 1.21E-07 2.45E-05 5.96E-06 

λ=50000 1.40E-13 1.34E-15 1.43E-14 1.40E-13 3.96E-16 
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Table 3: Kolmogorov-Smirnov test results (N=1,000) 

  Fully Circle Regular SW01 SW03 

λ=100 1.43E-14 3.70E-12 1.06E-11 1.06E-11 1.06E-11 

λ=500 1.43E-14 2.95E-11 1.06E-11 1.06E-11 1.06E-11 

λ=1000 1.43E-14 1.47E-09 1.06E-11 1.06E-11 1.06E-11 

λ=5000 4.81E-05 0.099376 0.008216 0.005043 0.008216 

λ=10000 9.12E-09 2.21E-08 9.12E-09 9.12E-09 9.12E-09 

λ=50000 3.96E-16 3.96E-16 3.96E-16 3.96E-16 3.96E-16 

  SW05 SW07 SW09 Random Scale-free 

λ=100 1.06E-11 1.06E-11 1.06E-11 1.06E-11 1.40E-13 

λ=500 1.06E-11 1.06E-11 1.06E-11 1.06E-11 1.40E-13 

λ=1000 1.06E-11 1.06E-11 1.06E-11 1.06E-11 1.40E-13 

λ=5000 0.008216 0.003031 0.001785 0.005043 0.008216 

λ=10000 9.12E-09 9.12E-09 9.12E-09 9.12E-09 2.21E-08 

λ=50000 3.96E-16 3.96E-16 3.96E-16 3.96E-16 1.15E-16 

 

5.2.3 Quantitative Analysis: Relative Entropy 

According to the distribution type analysis, it seems that the Boltzmann-Gibbs 

machine is a robust approximation of herding behavior in a network-based ant model. 

However, none of the population dynamics produced by the network-based ant model 

with different network structures could pass the Kolmogorov-Smirnov test, besides 

the circle network structure. For this reason, we introduce the relative entropy. Before 

we refer to the relative entropy for measuring the similarity between two population 

dynamics distributions, we have to introduce the concept of Shannon entropy 

(Shannon, 1948), used to describe the uncertainty in the information theory 

represented by Equation (17). 

 

                  
 
          (17) 

 

where               is a continuous function, and    is the frequency 
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(probability) of state i. If            
 

 
 , we obtain the maximum H. It 

means the highest uncertainty exists in the system. However, if   =1 and     =0, H 

will equal zero, and in this case, state i always occurs and the degree of uncertainty in 

the system is 0. In our population dynamics case, we group the optimistic ratio into 10 

groups and calculate the frequency for each group. The 1
st
 group represents an 

optimistic ratio larger than 0 and less than 0.1, the 2
nd

 group includes an optimistic 

ratio between 0.1 and 0.2,…, and so on. Therefore, we can obtain the Shannon 

entropy of our model through Equation (17), where n=10. 

  Based on the definition of Shannon entropy, Kullback and Leibler (1951) proposed 

relative entropy, which is also known as cross entropy or Kullback-Leibler divergence. 

Relative entropy is a measure of similarity, where it is assumed that the baseline 

distribution is G and the alternative distribution is S. However, it is not entirely clear 

if S is a good approximation of the distribution of G. Thus, the relative entropy can be 

used to measure the similarity between two population dynamics distributions. The 

more dissimilar G and S are, the larger the relative entropy is. 

Therefore, if we have two density vectors                   (G is the 

frequency of the optimistic ratio derived by 100 experiments with the 

Boltzmann-Gibbs machine) and                   (S is the frequency of the 

optimistic ratio derived by the network-based ant model of a given social network 

structure), the definition of relative entropy is given as Equation (18). In this case, 

H(G|S) will always be larger than or equal to zero; if G and S are identical, H(G|S) 

equals zero. 

 

               
 
    

  

  
     

 
             

 
          (18) 

where                  
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However, relative entropy is asymmetric. In other words, H(G|S)≠H(S|G). This is 

why it is the Kullback-Leibler divergence rather than the Kullback-Leibler distance. 

 Table 4 shows the results of the relative entropy procedure. The absolute values of 

relative entropy are all less than 0.5 for all different social network structures if the 

intensity of choice equals 10,000. Therefore, the result indicates that the 

Boltzmann-Gibbs machine (with an intensity of choice equal to 10,000) offers a good 

approximation of the herding behavior of our network-based ant model with any 

given network structure. 

Table 4: Relative entropy 

Intensity of 

choice 
λ=100 λ=500 λ=1000 λ=5000 λ=10000 λ=50000 

Fully 0.810  0.597  -0.267  -1.160  -0.318  0.501  

Circle 1.448  1.235  0.372  -0.522  0.320  1.139  

Regular 1.066  0.852  -0.011  -0.905  -0.062  0.757  

SW01 0.977  0.763  -0.100  -0.993  -0.151  0.668  

SW03 1.000  0.787  -0.076  -0.970  -0.128  0.692  

SW05 1.082  0.869  0.006  -0.888  -0.046  0.773  

SW07 1.088  0.875  0.012  -0.882  -0.040  0.780  

SW09 0.974  0.761  -0.102  -0.996  -0.154  0.666  

SW10 0.985  0.772  -0.091  -0.985  -0.143  0.677  

Scale-free 0.797  0.583  -0.280  -1.174  -0.331  0.488  

 

6. Conclusion 

This paper compares the population dynamics between the Boltzmann-Gibbs 

machine and network-based ant model under a stylized New Keynesian DSGE 

framework. We find that both the Boltzmann-Gibbs model and network-based ant 

model can generate herding behavior. However, as stated earlier, it is hard to envisage 
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population dynamics generated by the Boltzmann-Gibbs model and the 

network-based ant model being from the same distribution, particularly in the popular 

empirical network structures such as a small world network and scale-free network. In 

addition, our simulation results further suggest that the population dynamics of the 

Boltzmann-Gibbs model and circle network ant model can be considered to be from 

the same distribution under specific parameter settings. The finding is consistent with 

the study of physics for which the Boltzmann-Gibbs distribution is based on the local 

interaction. Although the circle network is not the acknowledged social network 

structure, according to the relative entropy between the population dynamics of the 

Boltzmann-Gibbs machine and the network-based ant model, the Boltzmann-Gibbs 

machine with an intensity of choice equal to 10,000 is a good approximation of the 

herding behavior of our network-based ant model with any given network structure. 

In addition to the population dynamics, there are some other questions regarding the 

use of the Boltzmann-Gibbs machine to describe social interaction in the stylized New 

Keynesian DSGE model. For example, the frequency of herding behavior in financial 

markets and macroeconomic systems may be different. The change of opinion could 

occur very rapidly in financial markets but could be slower in the macroeconomic 

system. In this case, we have to consider whether an intensity of choice equal to 

10,000 produces a change of opinion that is too heavy. Thus, we may have to further 

confirm whether the Boltzmann-Gibbs machine is a suitable tool for calibrating social 

interaction under a stylized New Keynesian DSGE framework. 
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Appendices 

 

In order to depict the social network’s formation and its structure, we apply the 

concept of graph theory. Thus, a network G (V,E) is defined by a set of agents N and a 

set of links E. More specifically, V = {1, . . . , n} denotes all agents connected in some 

network relationship, and the number n refers to the size of the network. E denotes 

which pairs of agents are linked to each other so that               encodes the 

relationship between any two agents in the network. Customarily, we use       to 

indicate that there exists an edge (connection, relation) between i and j; otherwise it is 

zero. For this reason, we can use an N N matrix to describe the network structure. 

However, we set        , which is known as a non-directed network in our model. 

Therefore, we can have a symmetric network matrix and the network formation 

algorithm for each specific social network structure as follows. The graph of these 

different network structures can be found in Figure A.1. 

 

(1) Fully-connected network structure 

The fully-connected network has the feature that agents are completely connected 

with each other. In other words, each agent has (n-1) links.  

(2) Circle and regular network structures 

In a regular network structure, all agents are connected to their respective k-nearest 

neighbors and k is a constant number. Thus, each agent connects with k neighbors on 

both the left and the right. The simplest case, k=1, would be a circle network structure. 

In our model, the regular network structure refers to k=2, i.e., each agent makes 

friends with the 2-nearest neighbors from the left and the 2-nearest neighbors from the 

right. 
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(3) Small world and random network structures 

Watts and Strogatz (1998) first proposed a model of small-world networks. They 

started with random and regular graphs, and looked at two properties of these graphs, 

namely, clustering and path length. Clustering is a measurement of the set of friends 

who all know each other. Thus they developed a clustering coefficient which provides 

the number of pairs of two nodes that are connected to the same node, and are also 

connected to each other. Path length is used to measure the average distance between 

two nodes, which corresponds to the degrees of separation in a social network. Their 

initial results showed that regular graphs have high clustering and high path lengths; 

random graphs of the same size tend to have low clustering and low path lengths. 

However, neither of these was considered to be a good model of social networks 

which seem to combine high clustering with short path lengths. Therefore, Watts and 

Strogatz tried to create a network generating algorithm to establish a network which 

has the same property as a social network in the real world. First, they started with a 

regular graph with n nodes and k neighbors. Then, each agent had a rewiring 

probability, p, to cut off the link with each neighbor and build up a new link with one 

of the strangers. The probability, p, controls how random the graph is. With p=0, the 

network structure is regular; with p=1, it is random. In our simulations, we consider 

the regular network structure and set the rewiring rate, p, equal to 0.1, 0.3, 0.5, 0.7, 

0.9 and 1 to generate different random network structures. 

(4) Scale-free network structure 

A scale free network is a network with the power law property. Thus, the number of 

links originating from a given node denotes a power law distribution represented by 

         where k denotes the number of links. The idea of a scale-free network 

comes from observations of many social contexts, e.g., the citation network among 

scientific papers (Redner, 1998), the World Wide Web and the Internet (see, e.g., 
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Albert et al., 1999; Faloutsos et al., 1999), telephone call and e-mail graphs (Aiello et 

al., 2002; Ebel et al., 2002), or the network of human sexual contacts (Liljeros et al., 

2001). All of them show that only a few agents have many friends; most agents in the 

network have only a few friends. The most popular method to construct a scale-free 

network is the preferential attachment of Barabási and Albert (1999), which starts 

with    agents and then progressively adds one new agent, i, to an existing network 

and builds links to existing agents with preferential attachment, according to Equation 

(19). That describes the rich getting richer; the probability of linking to a given agent 

is proportional to the number of existing links that a node has. 

 

                                   
  

   
   
 

  (19) 

 

 

Furthermore, we have to mention that if we decrease the number of bin to 2 then the 

result indicates that the p-values of most cases are less than 0.05. Otherwise, if we 

increase the number of bin to 100 then the result shows that none of the cases can pass 

the null hypothesis. Since the results of Kolmogorov-Smirnov test will be significant 

affected by the number of bins, we, therefore, further employ a similarity measure and 

relative entropy to check whether the Boltzmann-Gibbs machine is a good 

approximation for the herding behavior for any given network structure. 
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Figure A.1 Social network structures 

Fully-connected network Circle network 

  

Regular network Small world network ( rewiring rate of 0.1) 

  

Small world network ( rewiring rate of 0.3) Small world network ( rewiring rate of 0.5) 

  

Small world network ( rewiring rate of 0.7) Small world network ( rewiring rate of 0.9) 

  

Random network Scale free network 

  

 


