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Abstract 
 

Non-spherical errors, namely heteroscedasticity, serial correlation and cross-sectional 
correlation are commonly present within panel data sets.  These can cause significant 
problems for econometric analyses.  The FGLS(Parks) estimator has been demonstrated 
to produce considerable efficiency gains in these settings.  However, it suffers from 
underestimation of coefficient standard errors, oftentimes severe.  Potentially, jackknifing 
the FGLS(Parks) estimator could allow one to maintain the efficiency advantages of 
FGLS(Parks) while producing more reliable estimates of coefficient standard errors.  
Accordingly, this study investigates the performance of the jackknife estimator of 
FGLS(Parks) using Monte Carlo experimentation.  We find that jackknifing can -- in 
narrowly defined situations -- substantially improve the estimation of coefficient standard 
errors.  However, its overall performance is not sufficient to make it a viable alternative 
to other panel data estimators.   
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I.  INTRODUCTION 
 
Panel data commonly suffer from a variety of nonspherical error behaviours, including 

heteroscedasticity, serial correlation, and cross-sectional correlation.  As is well known, 

the simultaneous occurrence of serial and cross-sectional correlation bedevils existing 

estimation procedures.  The Parks model (Parks, 1967) remains the most commonly used 

estimation procedure for simultaneously handling cross-sectional and serial correlation.  

For example, the options available with the Stata command “xtgls” are all variations of 

the Parks model.  Recent applications include Congleton and Bose (2010); Stallman and 

Deller (2010); Kebede, Kagochi, and Jolly (2010); and Roll, Schwartz, and 

Subrahmanyam (2009).  A quick search of papers in Web of Science that cite Parks 

(1967) produces hundreds more.  However, while FGLS(Parks) is consistent and 

asymptotically efficient, it can produce notoriously bad estimates of coefficient standard 

errors in finite samples.   

 The only other parametric estimator that simultaneously addresses both serial and 

cross-sectional correlation is Beck and Katz’s PCSE estimator (Beck and Katz, 1995).  

Beck and Katz (1995) propose a two-step estimator that they claim produces reliable 

standard error estimates at no cost to estimator efficiency when compared to 

FGLS(Parks).   In a recent paper, Chen, Lin and Reed (2010) show that the latter claim 

does not generally hold.  Specifically, the PCSE estimator compares poorly with 

FGLS(Parks) on efficiency grounds when data are characterized by both serial and cross-

sectional correlation.  There remains, therefore, a demand for an estimation procedure 

that produces both relatively efficient coefficient estimates and reliable standard errors. 
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 This paper uses Monte Carlo experiments to study whether jackknifing the 

FGLS(Parks) estimator provides a solution to this problem.  On the face of it, jackknifing 

would appear to be a promising avenue.  As a result of increased computer processing 

speeds, jackknifing has become increasingly feasible (Breunig, 2002; Sunil, 2002).  

Further, it has been shown to reliably estimate coefficient standard errors in a variety of 

settings (Schucany, 1989; Jennrich, 2008).  Potentially, jackknifing would allow one to 

maintain the efficiency advantages of FGLS(Parks) while producing more reliable 

estimates of coefficient standard errors.   

 While jackknifing with panel data characterized by both serial and cross-sectional 

correlation is not without its challenges (as we discuss below), it stands in contrast with 

bootstrapping.  To date, no successful bootstrapping procedures have been developed for 

the Parks model.  For example, block bootstrapping techniques have been developed for 

one-way clustering such as serial correlation or cross-sectional correlation (e.g., 

Cameron, Gelbach, and Miller, 2008).  However, there are no block bootstrapping 

procedures that are valid for the simultaneous occurrence of both of these.  One can 

resample “blocks” of observations, where the blocks are clusters based on groups or 

clusters based time, but one cannot do both.  Relatedly, newly developed techniques exist 

for calculating robust standard errors with multi-way clustering such as both group and 

time (Cameron, Gelbach, and Miller, 2006), but these procedures do not allow cross-

sectional and serial correlation to interact, as in the Parks model.1  A further attraction of 

jackknifing is that it easily incorporates unbalanced panels.    

                                                 
1 We explain this in further detail below. 
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 Unfortunately, our Monte Carlo simulations find that while jackknifing can 

improve estimation of coefficient standard errors, its overall performance is not sufficient 

to make it a viable alternative to other panel data estimators.   

 
II.  THE PARKS ERROR STRUCTURE AND THE PROBLEM WITH  
      ESTIMATING STANDARD ERRORS 
 
The data generating process.  This paper analyzes the following panel data problem.  Let 

the DGP be represented as follows: 

(1)   εXβεxiy 









x

0

β

β
 , 

where N and T are the number of cross-sectional units and time periods; 0  and x  are 

scalars; and y , i , x , and ε  are, respectively, 1NT   vectors of observations of the 

dependent variable, a constant term, observations of the exogenous explanatory variable, 

and unobserved errors, where  ~ N(0, NT ).   

 The NTNT   error variance-covariance matrix, NT , is structured according to 

the Parks model (Parks, 1967).  It assumes (i) groupwise heteroscedasticity; (ii) first-

order serial correlation; and (iii) time-invariant cross-sectional correlation.2  This implies 

the following specification for NT : 

(2)  NT ,  

                                                 
2  In its most general form, the Parks model assumes groupwise, first-order serial correlation.  In contrast, 
our experiments model the DGP with a common AR(1) parameter,  , that is the same across groups.  We 

do this to facilitate comparison with previous Monte Carlo studies of this problem that have also assumed a 
common AR(1) parameter (cf., Chen, Lin, and Reed, 2010) 
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 The GLS estimators for β  and var( β̂ ) are given by the usual formulae: 

β̂ =   yΩXXΩX 1
NT

11
NT

   and  β̂Var =   11
NT XΩX

 .  In the case of Feasible 

Generalized Least Squares (FGLS), NTΩ  is replaced with ΠΣΩ ˆˆˆ  , so that 

 FGLSβVar ˆ =   11 XΩX
 ˆ .  In other words, FGLS does not adjust coefficient standard 

errors for the additional uncertainty that arises from the fact that the elements of NTΩ  are 

unknown and must be estimated.  This causes FGLS to underestimate coefficient 

standard errors.  As there are a total of 
 

1
2

1NN



 unique elements in NTΩ , the degree 

of underestimation can be quite substantial.   

 
III.  JACKKNIFING THE FGLS(PARKS) ESTIMATOR 

Let β̂  be the FGLS(Parks) estimator given NT data points.  Define iβ̂  as the 

FGLS(Parks) estimate derived from dropping the ith observation, 

iβ̂ =   yΩXXΩX 1
NT

11
NT





  11

ˆˆ , where X  and y  are the data observations 

corresponding to the NT-1 observations, and 1NTΩ̂  is the estimate of the corresponding 

error variance-covariance matrix.   

                                                 
3 Note that cross-sectional and serial correlation “interact” in the error variance-covariance matrix of 
Equation (2).  This is evidenced by the fact that all the elements in the TT  , off-diagonal blocks are 
nonzero in the presence of serial correlation.  In contrast, with two-way clustering of group and time 
effects, only the main diagonal of the off-diagonal blocks are nonzero. 
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 The ith “pseudovalue” is defined by   ii ββ*β ˆˆˆ 1)(NTNT  .  The jackknife 

estimate of β  is given by 



NT

1iNT

1
*β*β i

ˆˆ , and the corresponding standard error for 

each of the elements of  *β̂  is given by  
 
 1NTNT

*β*β
*βs.e.

NT

1i

2

i








ˆˆ
ˆ . 

 A complication arises when constructing 1NTΩ̂ .  Not only must the values of   

and the ijε,σ s be re-estimated with the deletion of an observation, but Ω̂  now has 

dimensions    1NT1NT  .  Let the deleted observation be indexed by it.  For the ith 

group, Π  must be modified to account for the deleted tth observation.  To illustrate, if 

T=5 and t=3, iΠ  becomes 

                

 

.   

 

 

 
IV.  DESCRIPTION OF THE MONTE CARLO EXPERIMENTS 

As noted above, there are 
 

2

1NN 
 unique ijσ  elements, and one unique value of ρ  in 

NTΩ .  The Monte Carlo experiments require that population values be set for each of 

these parameters.  In addition, a distribution must be determined for the explanatory 

variable, x.   An innovation of our study is that we set these parameters to match that of 

actual panel data.   

  iΠ = 

1 ρ ρ3 ρ4 

ρ 1 ρ2 ρ3 

ρ3 ρ2 1 ρ 

ρ4 ρ3 ρ 1 
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 Our artificial statistical environments consist of four families of data sets: (i) 

annual, U.S. state data and the level of real Per Capita Personal Income (PCPI); (ii) 

annual, U.S. state data and the growth of real PCPI; (iii) annual, international data and the 

level of real per capita Gross Domestic Product (GDP); and (iv) annual, international data 

a the growth of real per capita GDP.   

 We suppose that a researcher is interested in identifying the relationship between 

either the level or growth of the respective PCPI/GDP variables and a single explanatory 

variable.  For the U.S. state income data, we use “tax burden” for the explanatory 

variable.4  Tax burden is defined as the ratio of state and local taxes over personal income 

and is commonly used as a measure of state tax rates (Helms, 1985; Wasylenko, 1997).  

The explanatory variable for the international GDP data is “government expenditure 

share,” measured by the share of government expenditures over GDP (Mankiw, 1995; 

Fölster and Henrekson, 2004).5 

 Each of the data set families consists of various-sized (balanced) data sets 

characterized by the number of cross-sectional units (N) and time periods (T).  The idea is 

to set the underlying Monte Carlo parameter values so that the resulting, simulated data 

sets “look like” the kind of panel data that a researcher would encounter while estimating 

the relationship, say, between taxes and U.S. state PCPI levels, or between government 

expenditures and national GDP growth.   

 For example, to create an artificial statistical environment that is patterned after 

real data on U.S. income (PCPI) growth and taxes (tax burden) and, we start with 40 

years of PCPI and tax burden data on 48 states (omitting Alaska and Hawaii), covering 

                                                 
4  PCPI data come from the Bureau of Economic Analysis.  Tax data comes from the U.S. Census. 
5  Real per capita GDP and government consumption data are taken from the Penn World tables, TABLE 
6.1. 
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the period 1960-1999.  A long time series is crucial for our approach because we want to 

have multiple observations for each element of the error covariance matrix.  Most studies 

use time series where T is between 10 and 25 years.  By having a data series substantially 

longer than that, we can sample multiple T-year, TSCS data sets in order to construct a 

“representative” error structure for a T-year, TSCS data set.   

 The first step consists of determining “representative” values for ρ  and the ijσ ’s.  

We begin by creating a sample using the first N states in our data set.6  Next, we choose 

the T-year period, 1960 to (1960+T-1).  We then estimate a fixed effects regression model 

for this sample, relating the dependent variable Y (= U.S. state PCPI) to a set of state 

fixed effects ( jD ) and the explanatory variable X (= tax burden). 

(3) itit1N
j

it

N

1j
jit termerror  XDY  


  , 

where i=1,2, … ,N; t=1960,1961,…,1960+T-1; and jD is a state dummy variable that 

takes the value 1 for state j.   Equation (3) is the basic “residual generating function.”   

 The residuals from this estimated equation are used to estimate ρ  and the iju,σ ’s 

in the usual manner, where the iju,σ ’s are the covariances associated with the error term in 

the AR(1) equation, it1-ti,it uρεε     Denote the associated estimates from this sample as 

î  and 
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6 For example, since our data are organized alphabetically, the first fives states would be Alabama, Arizona, 
Arkansas, California, and Colorado. 
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 We repeat this process for every possible, T-contiguous year sample contained 

within the 40 years of data from 1960-1999 [i.e., 1960-(1960+T-1), 1961-(1961+T-1), 

1962-(1962+T-1), …, (1999-T+1)-1999].  This produces a total of 40–T+1 estimates of 

ρ  and  , one for each T-contiguous year sample.  We then average these to obtain 

“grand means” ρ  and  .  Our “representative” NTNT  error structure, NT , is then 

constructed as follows: 

(4)  NT ,  

where 

(5)  
21

1


 , 

 and 

(6) 
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This becomes the population error covariance matrix used for the associated Monte Carlo 

experiment.  Note that every element of NT  is based on error variance-covariance 

matrices estimated from actual panel data.  In this sense, NT  can be said to be 

“representative” of the kinds of error structures one encounters in “real world” data.  

“Real world” values of x are constructed similarly. Without loss of generality, we set  

0ββ x0  . 

Given values for 0 , x , ρ , the ijσ ’s, and the distribution of x, experimental 

observations are generated in the usual manner.  Define u as an 1NT   vector of standard 
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normal random variables.  Define Q  such that NTQQ .  Error terms are created by 

uQε  .  These simulated errors are added to the deterministic component, ix0 x   , to 

calculate stochastic observations of iy , where iix0i x y   ,  i=1,2,…,NT.  Given 

an experimental data set of NT observations of  ii xy , , we estimate β̂ .  We then perform 

the jackknifing procedure described above.   

This procedure can be modified in a straightforward manner to conduct Monte 

Carlo experiments for alternative N and T values.  We also employ a two-way fixed 

effects “residual generating function” (see Equation 3), where time dummy variables are 

also included.  In the same way, we create artificial data for the other three data set 

families. 

 
V.  RESULTS AND DISCUSSION 

The focus of our study is the “coverage rates” produced by the FGLS(Parks) and 

jackknife estimators, where the respective coverage rates are defined as the percent of 

95% confidence intervals that contain the true population value of xβ .  Coverage rates 

should be close to 95%.   

 Our main findings are: 

1. The jackknife estimator can produce substantial improvements in coverage rates 
over FGLS(Parks).   

 
2. Coverage rates for the jackknife estimator are unsatisfactory, except when N=T, 

and then only for some types of data. 
 
TABLE 1 demonstrates the improvement that can come from jackknifing FGLS(Parks) 

estimates.   



11 
 

 The numbers in the table represent the difference in coverage rates between 

FGLS(Parks) and the jackknife estimator.  For example, using a population error 

variance-covariance matrix patterned after International GDP data (Level, Specification 

1) and data sets of size N=5 and T=5, we find that FGLS(Parks) and the jackknife 

estimator produce coverage rates of 45.4  and 84.5 percent, respectively.  Thus, the 

jackknife estimator has coverage rates that are 39.1 percentage points higher than the 

FGLS(Parks) estimator.  It is the latter number that is reported in the table.   

 In general, the performance advantage of the jackknife estimator diminishes, and 

is sometimes reversed, as 
N

T
 increases.  This is primarily due to the better performance 

of FGLS(Parks).  The last row of TABLE 1 averages the difference in coverage rates for 

values of N and T across the different population data sets.  This generally confirms the 

observation that jackknifing results in greatest performance improvements when N=T. 

 To be a viable estimator, jackknifing should not only produce more reliable 

estimates of coefficient standard errors, but it should also have satisfactory coverage rates 

of its own.  Unfortunately, TABLE 2 makes clear that this is not the case.  Coverage rates 

are rarely close to 95 percent and are frequently less than 50 percent.  When N=T, the 

jackknife estimator does slightly better.  Overall, the coverage rates of the jackknife 

estimator compare poorly with alternative panel data estimators, such as the PCSE 

estimator (Beck and Katz, 1995).7 

 One disadvantage of our experimental methodology is that we do not directly 

control the values of cross-sectional and serial correlation.  This is outweighed by the 

advantage of being able to measure estimator performance in simulated data 
                                                 
7 See Reed and Webb (2010) for coverage rates of the PCSE estimator using simulated data similar to that 
employed in this study. 
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environments patterned after the “real world.”  The fact that the jackknife estimator 

performs poorly under these conditions eliminates it as a viable alternative to existing 

panel data estimators.  Until a better approach is developed, the recommendation of Reed 

and Ye (2010) remains valid: Researchers should use FGLS(Parks) if the goal is 

estimator efficiency, and another estimator (e.g. the PCSE) if the concern is reliable 

hypothesis testing.   
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TABLE 1 
Difference in Coverage Rates for FGLS (Parks) and Jackknife Estimators 

 

Spec.a Experimental Data Patterned After…a N=5 N=10 N=20 

T=5 T=10 T=15 T=20 T=25 T=10 T=15 T=20 T=25 T=20 T=25

1  International GDP Data (Level) 39.1 -8.6 -34.7 -45.6 -54.1 60.2 25.6 -3.4 -29.6 57 48.7 

1  International GDP Data (Growth) 32.6 -18.5 -30.5 -42.3 -44.6 50.6 -9.1 -35.3 -44.2 70.6 42.6 

1  U.S. State PCPI Data (Level) 42.1 22.7 3.7 5 -2.1 52.9 37.6 32.5 33.6 44.5 62.3 

1  U.S. State PCPI Data (Growth) 39.7 9.4 -2.7 -14.8 -18.4 51.1 27.4 10.7 -9.5 53.2 57.7 

2  International GDP Data (Level) 45.9 4.6 -23.4 7.1 -16.3 64.3 34.5 70.7 36.6 61.9 81.5 

2  International GDP Data (Growth) 45.6 -13.2 -38.4 1.8 -67.4 58.9 20.6 61 49.5 69.5 84 

2  U.S. State PCPI Data (Level) 39.1 -9.4 34.8 0.5 -25.5 69.5 45.1 82.4 13.6 64.1 88.5 

2  U.S. State PCPI Data (Growth) 35.9 -21.3 5.5 -32.3 -21.9 65.6 24.9 54.4 17.8 67.9 89.7 

AVERAGE 40 -4.3 -10.7 -15.1 -31.2 59.1 25.8 34.1 8.5 61.1 69.4 

 
a See text for an explanation of the two specifications of the “residual generating function” and the methodology used to produce 
simulated data sets patterned after the respective data.
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TABLE 2 

Coverage Rates for FGLS (Parks) with Jackknifed Standard Errors 
 
 

RGF Model Data 
N=5 N=10 N=20 

T=5 T=10 T=15 T=20 T=25 T=10 T=15 T=20 T=25 T=20 T=25

1  International GDP Data (Level) 84.5 57.6 35.7 28.7 21.4 81.3 71.4 50.9 33.4 66 73 

1  International GDP Data (Growth) 81.7 59.7 52.1 44.4 43.3 83.7 53.8 37.9 34.5 85.5 79 

1  U.S. State PCPI Data (Level) 89.7 87 74.3 76.5 69.6 82.3 91 89.5 87.5 53.1 74.5 

1  U.S. State PCPI Data (Growth) 89.5 83.5 79 70.5 67.4 86.3 90.4 82.9 67.5 70.2 93.2 

2  International GDP Data (Level) 52.4 42.5 38.4 80 62.4 64.4 40.6 81.7 53.2 61.9 81.5 

2  International GDP Data (Growth) 54.1 34.7 28.1 84.5 21 59.2 27.4 79.4 79.3 69.5 84 

2  U.S. State PCPI Data (Level) 45.8 24.9 87.6 64.9 47.1 69.7 49.7 89.9 34.2 64.1 88.5 

2  U.S. State PCPI Data (Growth) 44.1 18.8 70.7 45 66.6 65.9 31.4 70.6 47.6 67.9 89.7 

 
 


