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Abstract

We have shown that signed temporal changes of firm size variables follow not only power-

law in the large scale region but also the log-normal distribution in the middle scale one.

In the analyses, we employ three databases: high-income data, high-sales data and positive-

profits data of Japanese firms. It is particularly worth noting that the growth rate distribu-

tions in temporal changes of the firm size data have no wide tail which is observed in assets

and sales of firms, the number of employees and personal income data. An extended-Gibrat’s

law is also found in the growth rate distributions of temporal changes of firm size variables.

This leads the power-law and the log-normal distributions in the temporal changes of firm

size under the detailed balance.
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1 Introduction

Power-law distributions are frequently observed in economic data such as assets, sales, profits

and income of firms, the number of employees, personal income, and so forth (denoted by x).

This law is known as Pareto’s law (Pareto 1897) and the probability density function (pdf) is

represented as

PPL(x) = Cx
−μ−1 for x > xth , (1)

where C is a normalization and the power μ is called Pareto index. In general, the power-law is

valid only in the large scale region (Badger 1980; Montrll and Shlesinger 1983). The threshold

of the large scale region is denoted by xth. In the middle scale region below the threshold xth,

the pdf allegedly follows the log-normal distribution:

PLN(x) =
1

x
√
2πσ2

exp

"
− ln

2 (x/x̄)

2σ2

#
x < xth . (2)

Here, x̄ is a mean value and σ2 is a variance. The study for these two distributions is highly

required. Because a large amount of total economic quantities are occupied by a few percent of

firms or persons included in the large scale region. At the same time, a large number of firms

or persons exist within the middle scale region.

Recently it is found that these distributions can be explained by laws observed in massive

amount of digitized economic data. Fujiwara et al. (2003, 2004) point out that the Pareto’s

law can be derived from the law of detailed balance and Gibrat’s law (Gibrat 1932). Along this

line, Ishikawa (2006a, 2007a) shows that the log-normal distribution is also deduced from the

detailed balance and Non-Gibrat’s law. The detailed balance is time-reversal symmetry observed

in the equilibrium system. The Gibrat’s law means that the conditional pdf of the growth rate

is independent of the initial value. On the other hand, the Non-Gibrat’s law describes the

dependence of the initial value. The Gibrat’s law is observed only in the large scale region, and

the Non-Gibrat’s law in the middle scale one.

It is interesting to note that there are two types in growth rate distributions. The figure

of the growth rate distribution of profits or income of firms (Fig. 1) is different from that of

assets and sales of firms, the number of employees or personal income (Fig. 2). This difference

is observed not only in the large scale region but also in the middle scale one. The point is that

the difference might be related to the difference between Non-Gibrat’s laws in the middle scale

region. In Fig. 1, the probability of the positive growth decreases and the probability of the

negative one increases as the classification of x increases in the middle scale region (Ishikawa

2006a, 2007a). On the other hand in Fig. 2, the probability of the positive and negative growths

decreases simultaneously as the classification of x increases (Aoyama 2004a, 2004b). This size

dependence in the middle scale region is significant because a large number of firms or persons

are included in this region.
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In this study, we propose that the figure of the growth rate distribution is determined by

the character of economic variables. In concrete terms, the variables are calculated by any

subtraction or not. By employing sales, profits and income data of firms, we confirm this

proposition.

2 Firm size distributions

In this section, we review the derivation of Pareto’s law and the log-normal distribution from

the detailed balance and (Non-)Gibrat’s law, and confirm the laws by employing data for sales,

profits and income of Japanese firms.

In Japan, firms having an annual income of more than 40 million yen were announced

publicly as “high-income firms” every year, the number of which is about 70 thousand. The

exhaustive database was published by Diamond Inc. Top 500 thousand sales data of Japanese

firms are available on the database “CD Eyes 50” published by TOKYO SHOKO RESEARCH,

LTD. This database is thought to be approximately exhaustive. In the database, positive and

negative profits data are also included. The number of positive data is about 300 thousand and

that of negative data is about 40 thousand. We exclude the negative data, the number of which

is much less than that of the positive data. Because the negative data gathered from high-sales

data are exclusive as profits data. The positive data in the middle scale region are not thought

to be completely exhaustive. In order to investigate the consistency between laws in the data,

however, we employ the positive profits data. In this study, we investigate these three databases:

high-income data (database I), high-sales data (database II) and positive-profits data (database

III).

2.1 Pareto’s law from the detailed balance and Gibrat’s law

Let firm sizes at the two successive points in time be denoted by x1 and x2. The growth rate

R is defined as the ratio R = x2/x1. The detailed balance and the Gibrat’s law (Gibrat 1932)

are represented as follow:

• Detailed balance
The joint pdf P12(x1, x2) is symmetric under the exchange x1 ↔ x2:

P12(x1, x2) = P12(x2, x1) . (3)

• Gibrat’s law
The conditional pdf of the growth rate Q(R|x1) is independent of the initial value x1:

Q(R|x1) = Q(R) , (4)
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where the conditional pdf Q(R|x1) is defined as

Q(R|x1) =
P1R(x1, R)

P (x1)
(5)

by using the pdf P (x1) and the joint pdf P1R(x1, R).

These laws are confirmed in the databases I — III. In order to compare analyses in the next

section, we investigate firms data which exist in successive three years 2003 (x0), 2004 (x1)

and 2005 (x2). In the scatter plot in each database, the detailed balance (3) is approximately

confirmed by taking the one-dimensional Kolmogorov—Smirnov (K—S) test. The details are given

in the Appendix. Figures 3 — 5 show the time-reversal symmetry under the exchange x1 ↔ x2.
1

The Gibrat’s law (4) is also confirmed in each database. Figures 6 — 8 show that the conditional

pdf of the growth rate is approximately independent of the initial value, if the initial value is

larger than some threshold xth. Here the pdf for r = log10R defined by q(r|x1) is related that
for R by

log10 q(r|x1) = log10Q(R|x1) + r + log10(ln 10) . (6)

Note that the large negative growth is not available if there is a lower bound of the data. This is

notably observed in Figs. 3 and 6 for high-income data I. This is also observed in Figs. 4 and 7

for high-sales data II; however, the lower bound is probably obscure.2 The detailed balance and

the Gibrat’s law have been confirmed by employing personal income data in Japan (Fujiwara et

al. 2003), and assets and sales data in France and the number of employees in UK (Fujiwara et

al. 2004).

In the literature (Fujiwara et al. 2003, 2004), Pareto’s law is analytically derived from the de-

tailed balance and the Gibrat’s law. By using the relation P12(x1, x2)dx1dx2 = P1R(x1, R)dx1dR

under the exchange of variables from (x1, x2) to (x1, R), these two joint pdfs are related to each

other

P1R(x1, R) = x1P12(x1, x2) . (7)

From this relation, the detailed balance (3) is rewritten in terms of P1R(x1, R) as

P1R(x1, R) = R
−1P1R(x2, R−1) . (8)

Substituting the joint pdf P1R(x1, R) for the conditional pdf Q(R|x1) defined by Eq. (5), the
detailed balance is expressed as

P (x1)

P (x2)
=
1

R

Q(R−1|x2)
Q(R|x1)

. (9)

1 At the same time, the symmetry under the exchange x0 ↔ x1 is also confirmed in each database.
2 These analyses with respect to the Gibrat’s law are also valid in the analyses from 2003 to 2004.
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By the use of the Gibrat’s law (4), the detailed balance is reduced to

P (x1)

P (x2)
= G(R) , (10)

where we define G(R) ≡ Q(R−1)/(RQ(R)). By setting R = 1 after differentiating Eq. (10) with
respect to R, we obtain the following differential equation

G
0
(1)P (x) = −xP 0

(x) , (11)

where x denotes x1. The solution is given by

P (x) = Cx−G
0(1) . (12)

This is identical to the Pareto’s law (1) with G0(1) = μ+ 1. Note that the Gibrat’s law is valid

only in the case that the initial value is larger than some threshold xth.
3 This threshold is

coincident with the threshold in the Pareto’s law, because there is no threshold in the detailed

balance (Fig. 5 and Appendix).

In order to make the Pareto’s law clear, we consider the cumulative number:

NPL(> x) = NPL(> xth)PPL(> x) = NPL(> xth)

Z ∞
x
dtPPL(t)

= NPL(> xth)

µ
x

xth

¶−μ
for x > xth . (13)

The Pareto’s law is confirmed in the database I — III (Figs. 9 — 11). In Fig. 9 for the cumulative

number plot of income, the Pareto’s law holds over about 100 million yen (The number of firms

in the region is about 25 thousand). This corresponds that the Gibrat’s law is observed for

n = 2, · · · , 5 in Fig. 6. In Fig. 10 for the cumulative number plot of sales, the Pareto’s law holds
over about 200 million yen (The number of firms in the region is about 315 thousand). This

corresponds that the Gibrat’s law is observed for n = 3, · · · , 20 in Fig. 7. Each threshold comes
from the lower bound of the data.

In Fig. 11 for the cumulative number plot of profits, the Pareto’s law holds over about 100

million yen (The number of firms in the region is about 15 thousand). This corresponds to the

fact that the Gibrat’s law is observed for n = 16, · · · , 20 in Fig. 8. This threshold does not come
from the lower bound of the data. For n = 1, · · · , 15, as n increases, the growth rate distributions
change under some law. We call this Non-Gibrat’s law.

2.2 Log-normal distribution from the detailed balance and Non-Gibrat’s law

In the literature (Ishikawa 2006a, 2007a), the log-normal distribution is analytically derived

from the detailed balance and Non-Gibrat’s law. In order to identify the Non-Gibrat’s law in

3 If the Gibrat’s law holds for all x1 ∈ [0,∞], then P (x1) cannot be a pdf (Fujiwara et al. 2004).
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the middle scale region, we approximate log10 q(r|x1) in Fig. 8 by linear functions of r as follows:

log10 q(r|x1) = c− t+(x1) r for r > 0 , (14)

log10 q(r|x1) = c+ t−(x1) r for r < 0 . (15)

These approximations are not appropriate for n = 1, · · · , 5; therefore, we consider the case for
n = 6, · · · , 20. Equations (14) and (15) are expressed as so-called exponential functions:

Q(R|x1) = d R−t+(x1)−1 for R > 1 , (16)

Q(R|x1) = d R+t−(x1)−1 for R < 1 , (17)

where d = 10c/ln 10 . Under these approximations, the detailed balance (9) is reduced to

P (x1)

P (x2)
= R+t+(x1)−t−(x2)+1 (18)

for R > 1 case. Interestingly, t±(x) in the approximations (14) and (15) are uniquely fixed under

the detailed balance.

By setting R = 1 after differentiating Eq. (18) with respect to R, we obtain the following

differential equation h
1 + t+(x)− t−(x)

i
P (x) + x P

0
(x) = 0 , (19)

where x denotes x1. The same differential equation is obtained for R < 1 case. Similarly, from

the second and third derivatives of Eq. (18), the following differential equations are obtained:

t+
0
(x) + t−

0
(x) = 0 , t+

0
(x) + x t+

00
(x) = 0 . (20)

The solutions t±(x) are uniquely fixed as

t±(x) = t±(xth)± α ln
x

xth
. (21)

With Eq. (19), t±(x) also uniquely fix the pdf P (x) as

P (x) = Cx−[t+(xth)−t−(xth)+1] e
−α ln2 x

xth for x > xmin . (22)

The solutions satisfy Eq. (18) beyond perturbation around R = 1 under the restricted assump-

tion of Eqs. (14) and (15).

These analytic results are confirmed in the database III. By applying the linear approxima-

tions (14) and (15) to the data in Fig. 8, the relation between x and t±(x) is obtained (Fig. 12).

Figure 12 shows that t±(x) hardly responds to x for n = 15, · · · , 20. This means that Gibrat’s
law is valid in the large scale region. On the other hand, t+(x) linearly increases and t−(x)

linearly decreases symmetrically with log10 x for n = 6, · · · , 10. This is the Non-Gibrat’s law
(21) derived analytically by the linear approximations (14) and (15).
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The Non-Gibrat’s law (21) and the resultant pdf (22) are considered as Gibrat’s law and

Pareto’s law, respectively, for the case α = 0. We take Eqs. (21) and (22) not only in the

middle scale region but also in the large scale one. In this sense, we call Eq. (21) extended-

Gibrat’s law. The parameters are estimated as follows: α ∼ 0 for x > xth, α ∼ 0.14 for

xmin < x < xth, t+(xth) ∼ 2, t−(xth) ∼ 1, xth ∼ 102+0.2(16−1) = 105 thousand (= 100 million)

yen and xmin ∼ 102+0.2(6−1) = 103 thousand (= 1 million) yen. Rigorously, a constant parameter
α must not take different values. In the database, however, a large number of firms stay in the

same region in two successive years. This parameterization is approximately valid for describing

the pdf. This is confirmed in Fig. 13. In this figure “14,800” firms (about 8.3% of the data), the

profits of which are about 91.6% of the total profits in the data, are included in the large scale

region (x ≥ xth). In the middle scale region (xmin ≤ x1 < xth), there are “130,018” firms (about
73.3% of the data), the profits of which are about 8.3% of the total profits in the database.

Similar analysis is confirmed in the data from 2003 (x0) to 2004 (x1).

3 Distributions in temporal change of firm size

In analyses in the previous section, we have investigated growth rate distributions of income,

sales and profits. There is a noteworthy difference between them. As depicted in Fig. 1, the

growth rate distributions of profits can be approximated by linear functions (14) and (15). The

validity of the approximations is confirmed by the results. In Fig. 6, these approximations are

also appropriate for the growth rate distributions of income. The growth rate distributions of

sales are, however, hardly approximated by the linear functions because the distributions with

curvature have wide tails (Fig. 7) as depicted in Fig. 2. This difference has been observed

in other literature by employing not only Japanese firms data but also European and North

American firms data (Amaral et al. 1997, Okuyama et al. 1999, Matia et al. 2004, Gabaix

2005 for instance). This aspect has been also observed in other quantities. In the literature

(Canning et al. 1998 for instance), the growth rate distributions of GDP have no wide tail. In

the literature (Fujiwara et al. 2003), the growth rate distributions of personal income in Japan

have wide tails. In the literature (Fujiwara et al. 2004), the growth rate distributions of assets

and sales in France and the number of employees in UK have also wide tails.

Where does this difference between figures of the growth rate distributions come from?

Income and profits of firms are calculated by a subtraction of total expenditure from total sales

at a rough estimate. The values can be both positive and negative. On the other hand, assets

and sales of firms, the number of employees and personal income are not calculated by any

subtraction. The values cannot be negative. From these facts, we make a simple assumption

that the difference between figures of growth rate distributions comes form a subtraction. In

order to verify this assumption, we investigate the temporal change of firm size data. If the

assumption is appropriate, the growth rate distributions in the temporal change of firm size
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data are approximated by linear functions.

Firstly, we analyze the temporal change of sales data, the number of which is the largest

in three databases I — III. In the analysis, we take sales data more than 400 million yen, the

value of which is sufficiently larger than the obscure lower bound of the data (Figs. 4 and 7).

These sales data are in the Pareto’s law region (Fig. 10). Let us consider two temporal changes

v12 = x2 − x1 and v01 = x1 − x0. Here, v12 is the change between 2004 (x1) and 2005 (x2),
and v01 is between 2003 (x0) and 2004 (x1). The temporal changes v01 and v12 can be both

negative and positive. The data are classified into the following four cases: (v01 > 0, v12 > 0),

(v01 > 0, v12 < 0), (v01 < 0, v12 > 0) and (v01 < 0, v12 < 0).

In each case, distributions in the growth rate of temporal sales changes R = |v12/v01| are
shown in Fig. 14. In four cases, no wide tail is observed as expected. The assumption is valid

at least in this database. The distributions are approximated by linear functions as

log10 q(r||v01|) = c− t+(|v01|) r for r > 0 , (23)

log10 q(r||v01|) = c+ t−(|v01|) r for r < 0 . (24)

Here, we take the absolute value of v because it can be negative. Furthermore, the extended-

Gibrat’s law is approximately confirmed in each case (Fig. 15) as follows:

t±(|v01|) = t±(|vth|)± α ln
|v01|
|vth|

. (25)

The distributions in the temporal sales changes |v01| and |v12| are shown in Fig. 16, in
which not only Pareto’s law in the large scale region but also the log-normal distribution in

the middle scale region is observed. Figure 16 represents that Pareto indices for |v01| and |v12|
are approximately the same value in each figure. This fact and the extended-Gibrat’s law (25)

suggest that there is a detailed balance under exchange |v01|↔ |v12| in each case.4 The scatter

plots of the temporal sales changes are shown in Fig. 17. In each case, by using the K—S test

given in the Appendix, the following detailed balance is approximately observed:

P12(|v01|, |v12|) = P12(|v12|, |v01|) . (26)

In the temporal sales change data, the detailed balance (26) and the extended-Gibrat’s law

(25) are observed. The distribution of the temporal sales change data, therefore, follows the

Pareto’s law in the large scale region and the log-normal distribution in the middle scale one:

P (|v|) = Cv−[t+(|vth|)−t−(|vth|)+1] e−α ln
2 |v|
|vth| for |v| > |vmin| . (27)

As the same manner in profits data, we confirm this in Fig. 18. The parameters are estimated

as follows: α ∼ 0 for |v| > |vth|, α 6= 0 for |vmin| < |v| < |vth|, t+(|vth|) − t−(|vth|) ∼ 1,

|vth| ∼ 104+0.5(5−1) = 106 thousand (=1 billion) yen and xmin ∼ 104+0.5(2−1) = 104.5 thousand
4 If Pareto indices vary, there is thought to be a detailed quasi-balance (Ishikawa 2006b, 2007b).
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(=10 million) yen. In each case, about 5∼10% data are included in the large scale region and

about 65∼70% data exist within the middle scale one.

Similar phenomena are observed in the database I and II. In the analysis of the temporal

high-income change in the database I, this phenomenon is confirmed for the case that the growth

rate distribution of firm size has no wide tail and the data are completely exhaustive. In the

analysis of the temporal positive-profits change in the database II, this phenomenon is also

confirmed for the case that the growth rate distribution of firm size has no wide tail and the

data cover the middle scale region.

4 Conclusion and future issues

In this study, we have shown that the signed temporal change of firm size data follows not

only power-law in the large scale region but also the log-normal distribution in the middle scale

one. In the analyses, we employ three databases: high-income data (database I), high-sales

data (database II) and positive-profits data (database III) of Japanese firms. It is particularly

worth noting that the growth rate distributions in the temporal change of firm size have no

wide tail which is observed in assets and sales of firms, the number of employees and personal

income data. The growth rate distribution with no wide tail can be linearly approximated. This

property is mutually observed in the temporal change of the firm size, such as income and profits

of firms. From these observations, we conclude that the quantity calculated by any subtraction

has no wide tail in the growth rate distribution and vice versa.

In the data of temporal firm size changes, the detailed balance is also confirmed. This

leads the extended-Gibrat’s law. At the same time, Pareto indices are almost the same value

in the large scale regions of two successive temporal change data. The detailed balance and

the extended-Gibrat’s law lead the Pareto’s law in the large scale region and the log-normal

distribution in the middle scale one. This is consistently confirmed in the empirical data.

From the growth rate distribution in the temporal firm size changes with no wide tail, it is

conceivable to derive the followings analytically or numerically (Tomoyose et al. 2008). (a) The

growth rate distribution of x which cannot be negative (assets and sales of firms, the number of

employees and personal income) has wide tails (Fig. 2). (b) The growth rate of distribution x

which can be negative (profits and income of firms) has no wide tail (Fig. 1). In addition, the

difference of Non-Gibrat’s laws might be clear. In the firm size growth rate distributions with

no wide tail (Fig. 1), the probability of the positive growth decreases and the probability of the

negative growth increases symmetrically as the classification of x increases in the middle scale

region. On the other hand in the firm size distributions with wide tails (Fig. 2), the probability

of the positive and negative growth decreases simultaneously as the classification of x increases.

The data analyses in this study are presumably important for a credit risk management, and

they should be considered in a system of taxation. Furthermore, the mechanism in this paper
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might be useful for understanding aggregate phenomena in macro-economics (Gabaix 2005).

Acknowledgments

The author is grateful to the Yukawa Institute for Theoretical Physics at Kyoto Univer-

sity, where this work was initiated during the YITP-W-07-16 on “Econophysics III—Physical

Approach to Social and Economic Phenomena—” and especially to Dr. S. Fujimoto for a lot of

useful discussions and comments about K—S test. Thanks are also due to Professor H. Kasama

for careful reading of the manuscript. This work was supported in part by a Grant—in—Aid for

Scientific Research (C) (No. 20510147) from the Ministry of Education, Culture, Sports, Science

and Technology, Japan.

10



Appendix

We approximately confirm the detailed balance (3) by taking the one-dimensional Kolmogorov—

Smirnov (K—S) test. For the scatter plot in high-income database I (Fig. 3), we compare

the distribution sample for P (x1 ∈ 4 × [104+0.4(n−1), 104+0.4n), x2) with another sample for
P (x1, x2 ∈ 4 × [104+0.4(n−1), 104+0.4n)) (n = 1, 2, · · · , 10) by making the null hypothesis that
these two samples are taken from the same parent distribution. Each p value is shown in Fig 19.

In most cases, the null hypothesis is not rejected in 5% significance level. We recognize that the

detailed balance (3) in Fig. 3 is approximately observed.

For the scatter plot in high-sales database II (Fig. 4), we compare the distribution sample for

P (x1 ∈ 2×[105+0.4(n−1), 105+0.4n), x2) with another sample for P (x1, x2 ∈ 2×[105+0.4(n−1), 105+0.4n))
(n = 1, 2, · · · , 10). Each p value is shown in Fig 20. For the scatter plot in positive-profits
database III (Fig. 5), we compare the distribution sample for P (x1 ∈ [103+0.25(n−1), 103+0.25n), x2)
with another sample for P (x1, x2 ∈ [103+0.25(n−1), 103+0.25n)) (n = 1, 2, · · · , 20). Each p value is
shown in Fig 21. We also recognize that the detailed balances in Fig. 4 or Fig. 5 are approxi-

mately observed.

In these data analyses, we should take into account the trends in the average growth to test

the detailed balance truthfully. However, there are many same data at round figures in the

database originally. If we subtract the trends from data, the values are displaced. As a result, p

values are underestimated by the displacements. In the databases, the effect of the trends in the

average growth is not too large, so we can confirm the detailed balance approximately without

subtracting the trends.

From this reason, we do not subtract the trends from the scatter plots in the temporal sales

changes (Fig. 17). We compare the distribution sample for P (|v01| ∈ [104+0.5(n−1), 104+0.5n), |v12|)
with another sample for P (|v01|, |v12| ∈ [104+0.5(n−1), 104+0.5n)) (n = 1, 2, · · · , 10) by making the
null hypothesis that these two samples are taken from the same parent distribution. Each p value

is shown in Fig 22. We also recognize that the detailed balances in Fig. 17 are approximately

observed.
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Figure 1: The growth rate distribution of prof-

its or income of firms. The horizontal axis is

the logarithm of the growth rate and the ver-

tical axis is the logarithm of its pdf.

Figure 2: The growth rate distribution of as-

sets and sales of firms, the number of employ-

ees or personal income.

Figure 3: The scatter plot of firms in the database I, the income of which in 2003 (x0), 2004 (x1)

and 2005 (x2) exceeded 4× 104 thousand yen: x0 > 4× 104 and x1 > 4× 104 and x2 > 4× 104.
The number of firms is “40,829”.
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Figure 4: The scatter plot of firms in the database II, the sales of which in 2003 (x0), 2004 (x1)

and 2005 (x2) exceeded 0 yen: x0 > 0 and x1 > 0 and x2 > 0. The number of firms is “406,385”.

Figure 5: The scatter plot of firms in the database III, the profits of which in 2003 (x0), 2004

(x1) and 2005 (x2) exceeded 0 yen: x0 > 0 and x1 > 0 and x2 > 0. The number of firms is

“177,492”.
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Figure 6: Conditional pdfs q(r|x1) of the log income growth rate r = log10 x2/x1 from 2004 to

2005. The data points are classified into five bins of the initial income with equal magnitude in

logarithmic scale, x1 ∈ 4 × [104+0.4(n−1), 104+0.4n] (n = 1, 2, · · · , 5) thousand yen. The data for
large negative growth, r ≤ 4+ log10 4− log10 x1, are not available because of the lower bound of
the high-income data, 4× 104 thousand (= 40 million) yen.

Figure 7: Conditional pdfs q(r|x1) of the log sales growth rate r = log10 x2/x1 from 2004 to

2005. The data points are classified into twenty bins of the initial sales with equal magnitude

in logarithmic scale, x1 ∈ [105+0.2(n−1), 105+0.2n] (n = 1, 2, · · · , 20) thousand yen.
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Figure 8: Conditional pdfs q(r|x1) of the log profits growth rate r = log10 x2/x1 from 2004 to

2005. The data points are classified into twenty bins of the initial profits with equal magnitude

in logarithmic scale, x1 ∈ [102+0.2(n−1), 102+0.2n] (n = 1, 2, · · · , 20) thousand yen.

Figure 9: Cumulative number plots of income in the database I, the income of which in 2003

(x0), 2004 (x1) and 2005 (x2) exceeded 4×104 thousand yen: x0 > 4×104 and x1 > 4×104 and
x2 > 4 × 104. In the large scale region over about 105 thousand (=100 million) yen, Pareto’s
law is observed. Each Pareto index is estimated to be nearly 1.
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Figure 10: Cumulative number plots of sales in the database II, the sales of which in 2003 (x0),

2004 (x1) and 2005 (x2) exceeded 0 yen: x0 > 0 and x1 > 0 and x2 > 0. In the large scale

region over about 2 × 105 thousand (=200 million) yen, Pareto’s law is observed. Each Pareto
index is estimated to be nearly 1.

Figure 11: Cumulative number plots of positive-profits in the database III, the profits of which

in 2003 (x0), 2004 (x1) and 2005 (x2) exceeded 0 yen: x0 > 0 and x1 > 0 and x2 > 0. In the

large scale region over about 105 thousand (=100 million) yen, Pareto’s law is observed. Each

Pareto index is estimated to be nearly 1.
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Figure 12: The relation between the lower bound of each bin x1 ∈ [102+0.2(n−1), 102+0.2n] and
t±(x1). From the left, each data point represents n = 1, 2, · · · , 20. The values are measured by
the least square method in the region 0 ≤ |r| ≤ 2 in Fig. 8.

Figure 13: The pdf of positive-profits in the database III.
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Figure 14: Conditional pdfs q(r||v01|) in the log growth rate of the temporal sales change r =
log10 |v12/v01| for cases (v01 > 0, v12 > 0), (v01 > 0, v12 < 0), (v01 < 0, v12 > 0) and (v01 <

0, v12 < 0). The number of data is “54,181”, “32,959”, “35,218” and “35,272”, respectively.

In each figure, data points are classified into five bins of the initial temporal sales change with

equal magnitude in logarithmic scale, |v01| ∈ [104+0.5(n−1), 104+0.5n] (n = 1, 2, · · · , 5) thousand
yen. Here, v12 = x2 − x1 is the change between 2004 (x1) and 2005 (x2), and v01 = x1 − x0
is between 2003 (x0) and 2004 (x1). Each sales data x0, x1 and x2 exceeded 4 × 105 thousand
(=400 million) yen: x0 > 4× 105 and x1 > 4× 105 and x2 > 4× 105.
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Figure 15: The relation between the lower bound of each bin |v01| ∈ [104+0.5(n−1), 104+0.5n] and
t±(|v01|). In each figure, from the left each data point represents n = 1, 2, · · · , 5. The values are
measured by the least square method in the region 0 ≤ |r| ≤ 2 in Fig. 14.
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Figure 16: Cumulative number plots in the temporal sales changes for cases (v01 > 0, v12 > 0),

(v01 > 0, v12 < 0), (v01 < 0, v12 > 0) and (v01 < 0, v12 < 0).
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Figure 17: Scatter plots in the temporal sales changes for cases (v01 > 0, v12 > 0), (v01 > 0, v12 <

0), (v01 < 0, v12 > 0) and (v01 < 0, v12 < 0).
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Figure 18: The pdf of the temporal sales change data.
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Figure 19: Each p value of the one-dimensional

K—S test for the scatter plot of high-income

data points (Fig. 3).

Figure 20: Each p value of the one-dimensional

K—S test for the scatter plot of high-sales data

points (Fig. 4).

Figure 21: Each p value of the one-dimensional

K—S test for the scatter plot of positive-profits

data points (Fig. 5).
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Figure 22: Each p value of the one-dimensional K—S test for the scatter plots in the temporal

sales changes (Fig. 17).
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