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The paper proposes a procedure for modeling the volatility process of returns on 
financial assets. The work is motivated by the fact that the widely adopted 
(geometric) Brownian motion (Bm) blatantly violates commonly observed empirical 
characteristics of financial return series. The paper is particularly motivated by the 
well-known volatility-clustering properties. Specifically, the paper introduces the 
particular volatility process, namely fractional Brownian motion (fBm), under 
consideration; it illustrates empirical evidence; and, finally, presents results on option 
valuation when volatility follows an fBm process.  

General Comments 

The paper addresses an important topic in theoretical and empirical finance. 
Conventional models are commonly based on simplifying assumptions, such as Bm-
type data generating processes, in order to facilitate analytical and or statistical 
tractability. Especially with respect to the question of modeling volatility of asset-
return processes, numerous modeling strategies, allowing for the observed empirical 
regularities, have been suggested in the literature. Clearly, a somewhat unifying 
approach would be highly desirable in this line of research; and it may well be the 
fBm-type models could be a step in that direction.  

Unfortunately, neither the theoretical motivation nor the empirical analyses reported 
in the paper provide sufficient informational value, so the reader cannot assess the 
relevance of the results (see specific comments below). Especially, the empirical 
findings are poorly described and, thus, are irreproducible―a minimum requirement 
in scientific work. In view of the shortcomings in the presentation of the proposed 
volatility process, it is difficult to judge the value of the results on option pricing. 

Specific Comments 

1. It is difficult for the reader to place the results presented in the paper in the 
broader context of the existing literature in this field. For example, there has been 
quite extensive work on the use fBm in the finance literature. Also, how do the 
results relate to the class of fractionally integrated GARCH models? In short, a 
suitable review of the related literature in financial econometrics and quantitative 
finance would be highly desirable. 

2. The variance process is defined in Eqn. (5) as a limiting process, and it is suggested 
that (5) can be used to derive the variance process empirically. It amounts to the 
commonly used unconditional moving-window sample estimate. However, when 
implemented according to the definition, σt2 is defined in a forward-looking 
fashion, representing future dispersion.   
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3. Instead of (5), the authors suggest to estimate the variance of the log-price 
process, Eqn. (6), rather than the squared difference of log-price process, since 
the former may yield more reliable estimates. However, the justification is not 
clear. In fact, Eqn. (2) is the data generating process, it is not clear if the log-price 
variance is finite. Most empirical evidence, suggests that it is difficult to reject the 
infinite-variance hypothesis for log asset prices – and Eqn. (9) suggest this is here 
also the case. 

4. The difficulties raised in the previous comment may be the reason why the authors 
perform a detrending procedure prior to their analysis. They fit a polynomial in 
time (presumably to the log-price series) to induce stationarity and apply their 
procedure to the residuals of that fit. It is not clear in what way the detrending 
step affects the results of the subsequent analysis. By design, the assumed data 
generating process has a stochastic trend, but the authors remove a deterministic 
trend. How should one interpret the deterministic polynomial trend? Does it mean 
stock prices follow a deterministic pattern and are slightly perturbed by some 
additive noise? 

The authors do not report what degree the polynomial tends to have. The criterion 
“no longer well conditioned” (p. 4) is vague and suggests a lack of robustness. It is 
to be suspected, that the fitted polynomial varies greatly when applied to 
different subsamples of the data. Also, isn’t there a mismatch in the concepts of 
“mathematical simplicity” and “no longer well conditioned”? 

Given that the polynomial detrending typically induces strong temporal 
dependence in the residuals, it is questionable what we really learn about the 
memory properties of the data. Also, given that the detrending step involves the 
whole sample, it is not plausible to refer to the residual variance as a local 
variance estimate.  

5. The reported estimate for the Hurst coefficient for the NYSE index is H ≈ 0.8 (p. 9). In 
addition to the point estimate, the confidence interval should be reported. 
Moreover, the variation of the H-estimate with respect to different polynomial-
trend specifications should be reported.  

6. A particular parameter setting is used to generate Figure 2 (p. 8). Are the choices 
for H, k and β the result of an estimation from data or a, more or less, ad-hoc 
choice? 

7. The authors speak of “a reasonable fit” when referring to Figure 2. In the statistics 
literature there are numerous goodness-of-fit measures for density estimation. 
Results of such  measures would be more informative for the reader. More 
importantly, it is of little value to see in an isolated fashion how the authors’ 
approach compares to the naïve normal model. Many alternative models for 
capturing distributional and memory properties have been suggested in the 
literature since Mandelbrot (1963) and are being applied in practice. Only in 
comparison to existing alternatives to geometric Bm-type models the reader can 
assess the usefulness of the proposed strategy. For example, a comparison with 
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FIGARCH-type models seems to be in order here. Ideally, out-of-sample 
forecasting comparisons should be conducted. 

8. Better definitions and descriptions of what the figures really display would be 
extremely helpful. 


