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Abstract: 
 
We study the Beaudry and Portier (2006)-hypothesis of delayed-technology diffusion and news-
driven business cycles. For German data on TFP and stock prices we find qualitatively similar 
empirical evidence. Quantitatively, however, an impulse response analysis suggests that a 
substantial part of the total TFP response is immediate rather than delayed. We relate this to 
disembodied technological change and noisy data on TFP. Nevertheless, we confirm the technology 
interpretation of structural shocks by showing that they are Granger-causal for data on patents 
granted by the German patent agency. We also show that these shocks generate comovement of 
macro variables at business cycle horizons and account for a sizable share of the forecast error 
variance of these variables in the medium and long run.  
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1 Introduction 
 
In a recent paper, Beaudry and Portier (2006) have emphasized that stock prices may have relevant 
informational content for understanding macroeconomic fluctuations. New information, their 
argument goes, may alter expectations about future fundamentals. Forward looking variables such 
as stock prices will react to changes in expectations much earlier than the foreseen changes in 
fundamentals affect other macroeconomic time series. In particular, news about technological 
innovations may affect stock prices instantaneously, but due to an implementation lag, it may take 
some time until they actually alter total factor productivity (TFP). Thus, our understanding of 
expectations-driven macroeconomic fluctuations could be enhanced if news about expected changes 
in fundamentals could be properly identified from, among others, stock market data. 
 
For this purpose, Beaudry and Portier (BP) suggest to use structural vector autoregressions (SVAR). 
Imposing different identifying restrictions on the estimated lag polynomial of a moving average 
(MA) representation (cf. Blanchard and Quah (1989)) yields a set of structural shocks for ready 
comparison. If similar shocks are found under different identifying assumptions, then the type of 
identifying assumption reveals important information about the way a specific shock hits the 
economy. This, in turn, allows inference on the validity of competing models and their assumptions. 
 
For instance, in a bivariate vector autoregression for US TFP and stock prices, BP find two almost 
co-linear shocks under two polar identifying assumptions. The first identifying assumption imposes 
that there exists a shock which does not alter TFP in the short run, the alternative identifying 
assumption imposes that there exists a shock which does not alter TFP in the very long-run. The 
two co-linear shocks are consistent with the former but inconsistent with the latter. Hence, BP 
conjecture that they represent a technological innovation which affects TFP with considerable 
delay. However, this technological innovation affects stock prices immediately and may therefore 
cause expectations-driven fluctuations in consumption and investment.  
 
The idea of a prominent role for technology-related news in macroeconomic fluctuations has 
recently given rise to quite a few other papers, e. g. Lorenzoni (2006) and Jaimovich and Rebelo 
(2006). It is therefore very interesting to investigate if the empirical finding of BP in favor of news-
driven business cycles is a robust business cycle fact which can be documented for other countries 
and samples as well. Moreover, one would like to know if there is any kind of direct evidence 
which supports the interpretation of the identified shocks as being technology shocks.  
 
In the first line of research, Beaudry and Portier (2005) took the lead by repeating their analysis 
with Japanese data. Here they came up with essentially the same finding as for the US: Two almost 
co-linear “technology” shocks under alternative identifying assumptions. In this paper, we look at 
Germany as a third country and present a similar, but slightly weaker piece of evidence: There is 
evidence of a gradually increasing response of TFP to certain shocks in excess of a clearly positive 
effect on impact. Therefore, if the identified shocks are indeed technological, the overall evidence is 
quite supportive of a stylized business cycle fact of delayed TFP response to technology shocks. 
 
Going further, we test whether the identified shocks are rightly considered as technology shocks by 
confronting them with data on patents granted by or applied for at the German patent agency. For 
various measures of TFP and patents, we have very robust evidence that the identified shocks 
Granger-cause patents. Conversely, the identified non-persistent shock in the SVAR-approach is not 
Granger-causal in any of the specifications we test. This seems to be fairly strong evidence for the 
hypothesis that the identified shock, which affects TFP on impact and with a delay, is indeed a 
technology shock.  
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The sequel of the paper is organized as follows: In section 2, we illustrate that the BP approach can 
be used to infer key model properties. We present a modified Long and Plosser (1983) model which 
allows for multi-period usage of capital goods. We compute stock prices as the discounted sum of 
expected returns to capital. We then show that a standard specification of TFP shocks has very 
different implications for the shocks identified in the Blanchard-Quah approach than a delayed-
implementation specification. In section 3, we briefly illustrate the econometric approach and apply 
it to German data. We use three different measures of TFP in order to check the robustness of our 
results. In Section 4, we check if these shocks generate macroeconomic comovement and and assess 
their contribution to forecast error variance of macro variables, Section 5 analyzes Granger-
causality between the identified shocks and different measures of patents. Section 6 concludes.  
 

2 The Model  
 
We will illustrate the potential of the BP approach by considering two versions of the same model: 
One with a standard, instantaneous reaction of TFP to a technological innovation, the other with a 
delayed response. This is similar to BP (2005). However, their model assumes 100% depreciation 
on physical capital, which makes it difficult to model stock prices, since, essentially, firms shut 
down each period. Hence, BP (2005) do not consider stock prices but rather focus on bonds whose 
price is inversely related to the return on (one-period) capital goods. By contrast, we use a model 
where the productive use of capital goods extends over many periods and stock prices are computed 
as the discounted sum of expected returns to capital. 
 
The model is taken from Long and Plosser (1983). We aggregate their model to just a single sector, 
but extend its production technology to a multi-period setting. Specifically, investment goods tI  can 
be used for p+1 periods until they are completely worn out. The production elasticities of 
investment of period t-τ is given by aτ and we can allow for any kind of depreciation schedule by 
securing 1a a pτ τ τ+> ∀ < . Labor input is Lt with production elasticity b>0, so that constant 

returns imply .  is TFP of period t+1 and production is given by 
0

1p a bττ =
+ =∑ 1t+Λ
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Maximizing utility under the budget constraint 
 
 t tC I Yt+ =  (3) 
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yields first order conditions 
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Imposing stability, solving (4) forward and using (3) yields 
 
 ( )1 ,t t tC Y I tYγ γ= − = . (6) 
 
This is the policy function, since  is a state variable. For labor, we compute tY
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where  are polynomials in the lag operator L and ( ) ( ),a L A L ( ) ( )0 0, 0a A 1= = . 
 
Net profits are output minus labor and investment costs: 
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Log-linearizing this equation we get: 
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where .  ( )0 0δ ≠
 
Let us now consider two different specifications for the stochastic processes driving the model. The 
standard specification would be a random walk for log TFP: 
 
 1 1t tλ λ η−= +  (13) 
 
Here, 1tη  is assumed to be white noise with unit variance. 
 
The alternative specification would specify a delayed response of log TFP to permanent 
technological innovations. Assume that log TFP is the sum of a random walk component ζ  and a 
stationary process v. There are orthogonal, unit-variance-white noise innovations 1η  and 3η  to ζ  
and v, respectively. The 3η  innovation affects log TFP in the same period in which it becomes 
known, while we assume that the 1η  innovation affects TFP with a delay of one period. Thus, the 
stochastics are described by 
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To preserve the same number of shocks as under the standard specification, we assume that there is 
no preference shock in the delayed-response specification, 2 0t tη = ∀ .  
 
Under the standard specification we derive from (12) 
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where  is a lag polynomial with ( )A L% ( ) ( )0 0 1A A≠ ≠% % . 
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Hence, the moving average representation is given by 
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with . The moving average representation for the first differences is then given by  ( ) ( )0 0 1B ≠ ≠% B%
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From (15) and (16) we infer that the first row of both ( )1 1C  and ( )2 1C  is ( )1,0 , while the first row 

of ( )1 0C  and  are very different: ( )2 0C ( )1,0  and ( )0,1 , respectively. This implies that the 
identification of the structural shocks gives rise to different patterns, too, and these patterns can be 
used to infer what the true underlying model is. We will discuss this in detail in the next section. 
 

3 The Econometric Approach  
 
Consider empirical time series for log TFP and log stock prices, denoted λt and  as before. We 
assume these are integrated of order one and cointegrated with each other, i. e.  is I(0). 

Using Wold’s decomposition theorem, 

tsp
( ,t tspλΔ Δ ) '

( ),t tspλΔ Δ '

⎞
⎟
⎠

 can be written in reduced form 

    with   ( ) 1

2

t t

t t

u
C L

sp u
λΔ⎛ ⎞ ⎛

=⎜ ⎟ ⎜Δ⎝ ⎠ ⎝ 1

( ) : i
i

i

C L I C L
∞

=

= + ∑  (17) 

 
and in structural form 
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Identifying the structural shocks ε requires knowledge of D0. This matrix can be recovered from the 
estimated ( )C L  matrices of the reduced form (17), if one restriction is imposed on the parameters 

of ( )D L . We follow Beaudry and Portier (2005, 2006) by using two alternative assumptions, which 
we call the short-run and the long-run restriction. The former postulates that the (1,2) element of 

 is zero, i. e. the stock market shock ( )0D 2tε  has no effect on TFP on impact. The latter postulates 

that the (1,2) element of  is zero, i. e. the stock market shock ( )1D 2tε  has no long-run effect on 
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TFP. Let us think of (18) as the representation obtained under the short-run restriction and let (19) 
be the representation obtained under the long-run restriction:  
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If the empirical data were generated by the model of section 2 with standard specification, i. e. by 
equation (15), the impact matrix  
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would already fulfill the short-run identifying assumption, hence, as structural shocks we would 
identify 1 1 2, 2ε η ε η= = . On the other hand, the long-run matrix is 
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thus, we would immediately have 1 1 2, 2ε η ε η= =% % . The important point is that under both 
identifying assumptions we would find the same result for 1ε  and 1ε% .  
 
If, conversely, the empirical data were generated by the delayed technology specification, the 
impact matrix would be  
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In this case, the identifying assumptions imply that 1 3 2,t t t 1tε η ε η= = , whereas under the long-run 
restriction we have  
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and hence 1 1 2,t t t 3tε η ε η= =% % . Under this model, we would thus not find the same result for 1ε  and 

1ε% , but rather we would find that 2 1ε ε= % . Therefore, if the empirical analysis suggests that 2 1ε ε≈ %  
we may infer that a model with delayed technology response is more appropriate than a standard 
specification. We now turn to an investigation of this issue for German data.  
 

3.1 Data description  
 
As in Beaudry and Portier (2006), three different TFP variables are calculated: the standard Solow 
residual, the Solow residual adjusted for variable capital utilization and a TFP measure following 
the methodology of Groth et al. (2004) and Oulton (2001). 
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We have quarterly data from 1970(1) to 2005(2). The simple TFP measure (without capital 
utilization) is computed from data on GDP, hours worked and annual capital stock data interpolated 
with constant within-year quarterly growth rates. Under the assumption of constant returns to scale, 
the observed quarterly labor share is used as the production elasticity of labor. The log of this 
measure is denoted TFP_D1. Modifying the capital stock data by multiplying with the capacity 
utilization rate in manufacturing gives a second measure of TFP whose log is denoted TFP_D2.  
 
Computation of the third TFP measure (TFP_D3) takes several criticisms of the standard Solow 
residual into account. Quality aspects are considered when measuring labor input. Under the 
assumption of perfect competition, the quality of work is reflected by wages. Therefore, quality 
adjusted labor input Lt can be constructed as 
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n
it it

t
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where hatted variables are growth rates, n constitutes the number of employee categories, sit 
describes output contribution and hit working hours of group i in period t. In the case of Germany, 
relevant data in terms of gross earnings exist for salaried employees of the service and 
manufacturing sectors, and in terms of gross wages for wage earners of manufacturing and 
agriculture. From microdata, four categories of labor input can be distinguished.  
 
The concept of capital input does not refer to the capital stock but uses a measure of capital 
services. Different types of assets are weighed by their rental prices to represent the value of 
services which can be realized under perfect competition. Rental prices MP of asset type j in period 
t are, in principle, computed as 
 

 , , , ,,ˆj t j t j t j j tj tMP T r p pδ⎡ ⎤⎛ ⎞= ⋅ + − ⋅⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
, (21) 

 
where rj,t are opportunity costs, δj is depreciation and Tj,t expresses taxation and investment 
allowances3.  
 
Stock prices are approximated using the German stock market index DAX deflated by the GDP 
deflator. We follow Beaudry and Portier (2006) and transform into per-capita values by dividing 
through the number of employees. The log of the resulting series is denoted DAX1. See the 
appendix for time series graphs of the constructed series TFP_D1, TFP_D2, TFP_D3 and DAX1. 
 

3.2 Testing, Estimation, Identification 
 
The analysis of German data requires particular care due to the change in the territorial definition 
which took effect in the first quarter of 1991. As unit root and cointegration tests are severely 
affected by structural breaks, we exploit the fact that the break point is known and that time series 
for West Germany and reunified Germany overlap in the first years of the nineties. In particular, the 
level of West German time series is still available in the first quarter of 1991, while growth rates for 
unified Germany are available since the second quarter of the same year. We construct time series 
                                                 
3  As in Oulton (2001) dwellings are excluded from buildings because dwellings may not conform with strict profit 

maximizing behavior. Depreciation rates for machinery and buildings are assumed to be 13% and 2.5%. Market 
prices of both assets result from the ratio of nominal and real values of the respective gross fixed capital formation. 
Rates of return are computed by the ratio of gross operating surplus and capital stock value. The tax factor is 
disregarded due to lack of adequate data. 
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without a unification break by applying the growth rates for unified Germany to West German 
levels in the first quarter of 1991 and denote the break-adjusted series TFP_D1b, TFP_D2b, 
TFP_D3b and DAX1b.  
 
Given the absence of structural breaks, a standard Augmented Dickey Fuller (ADF) test is used to 
check for unit roots. We cannot reject the null hypothesis in any case (cf. Table A1 in the 
appendix), thus, we will treat all variables as I(1). To test for a long-run equilibrium relationship of 
technology and stock market prices we apply the Johansen trace test with an orthogonal trend, cf. 
Table A2 in the appendix. We can reject the null of no cointegration with DAX1b for all versions of 
the TFP variable. This gives rise to the specification of bivariate vector error correction models 
(VECM) whose coefficient estimates are used to compute the reduced form moving average 
representation. For the estimation results, see the appendix.  
 
Going through the identification under both the short- and the long-run restriction, we find for all 
three measures of TFP a pronounced positive correlation between 2ε  and 1ε% , cf. Figure 1. The 
correlation is about 0.78 for TFP_D1b and TFPD2b; it is 0.68 for TFP_D3b. While this falls short 
of the almost perfect co-linearity found by Beaudry and Portier (2005, 2006) for Japan and the US, 
it certainly tends to favor a delayed-technology-diffusion hypothesis over the standard model. 
 
 

Figure 1 
 

Identified structural residuals  
 

SVAR analysis for a measure of TFP and 
DAX1b 

TFP_D1b 
 

 
TFP_D2b 

 

 

TFP_D3b 
 

 
 
To explore this issue further, let us look at impulse response functions. We focus here on the basic 
TFP-version TFP_D1b (without capital utilization) – the results for TFP_D2b (with capital 
utilization are very similar. The quality-adjusted TFP-measure TFP_D3b will be discussed 
separately. 
 
The upper panel in Figure 2 shows the impulse responses of the levels of TFP and stock prices to 

2ε , i. e. the structural shock identified by the requirement that it does not have an immediate effect 
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on TFP. This shock has a strong immediate effect on stock prices, but about 60% of this effect melts 
away over the next ten years. If this shock was a gradually diffusing technology shock, then the 
interpretation of the upper panel would state that stock markets receive new information on a 
technological innovation, which slowly increases TFP. Stock markets anticipate future profits and 
prices rise. But as the innovation diffuses through the economy, competition reduces profits again 
and stock prices adjust to the lower level of remaining future profits. (Note that in BP (2006) the 
impulse response of stock prices rises quickly in the first two or three quarters and stays virtually 
constant thereafter. It is not clear how a higher level of profits can be maintained over the long run 
if the economy is competitive). 
 
 
Figure 2: Impulse-response functions for TFP_D1b and DAX1b4

 
a) Short-run restriction (response to ε2): 

 
 
b) Long-run restriction (response to 1ε% ): 

 
 
 
In the lower panel of Figure 2 we see the response to the shock 1ε%  identified under the restriction 
that the other shock 2ε%  must not affect TFP in the long-run. If 1ε%  and ε2 were perfectly co-linear, 
then the impulse responses in the lower panel of Figure 2 should be equal to those in the upper 
panel. This, however, is not the case. Unlike ε2, the shock 1ε%  is allowed to have an instantaneous 
effect on TFP. If we consider merely the point estimates, the instantaneous effect is substantial and 
equals about 60% of the long-run effect. Nevertheless, about 40% of the innovation seems to 
diffuse gradually. The impulse response of stock prices is slightly weaker on impact – a result 
which is well in line with the interpretation that part of the technological innovation diffuses rather 
quickly so that competition brings profits back to normal faster than with a more delayed 
technology diffusion.  
 

                                                 
4  Confidence intervals are obtained by 2500 replications with the bootstrapping procedure of Hall (1992). They 

represent the 95% quantiles. 
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Results for TFP_D2b are very similar, see the appendix. For the quality-adjusted TFP-measure 
TFP_D3b, however, we find that there is virtually no gradual diffusion of technology to TFP, the 
effect of 1ε%  on TFP and stock prices (lower panel of Figure 3) is almost instantaneous and virtually 
constant over time. Consequently, there is a large difference between the impulse responses in the 
upper and lower panel of Figure 3. Given our discussion on Figure 2, this is not completely 
surprising, since we knew already that the correlation between ε2 and 1ε%  is lower for the quality 
adjusted measures than for the two standard measures. So does this latter finding, which is based on 
methodologically more appealing construction of TFP, constitute evidence against the delayed-
diffusion model? 
 
Figure 3: Impulse-response functions for TFP_D3b and DAX1b5

 
a) Short-run restriction (response to ε2): 

 
 
b) Long-run restriction (response to 1ε% ): 

 
 
Not necessarily. Note that technological innovations are typically embodied in either physical or 
human capital. In fact, this may precisely be the reason why technology diffuses somewhat slowly: 
It is not the mere existence of an idea, which increases standard measures of TFP, but its 
implementation in new machinery or its communication in terms of schooling and training and both 
requires time. Now, as long as a standard measure of TFP is used, advances in the quality of labor 
and capital are incorrectly attributed to TFP and our SVAR exercises show the gradual diffusion of 
a new idea into the production factors. With a quality-adjusted measure of TFP, however, our 
measure comprises just those technological innovations which need not be embodied in either 
production factor. As far as we can see, there is no compelling reason why such innovations should 
not be able to diffuse much faster (and possibly almost instantaneously) than embodied technical 
progress.   
 
One might object to the above argument on the grounds that the quality-adjusted TFP-measure is 
different from standard measures, but captures nevertheless many movements in TFP in a similar 

                                                 
5  Confidence intervals are obtained by 2500 replications with the bootstrapping procedure of Hall (1992). They 

represent the 95% quantiles. 
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way. If most technological innovations are indeed embodied in either labor or capital (or both), then 
one would expect that a quality-adjusted TFP-measure has little resemblance with standard 
measures. However, two counterarguments may be advanced: On the one hand, sticky factor prices 
may induce incomplete quality adjustment. On the other hand, TFP, being computed as a residual, 
is a measure of our ignorance (Abramovitz (1962)) and probably includes many non-technology 
developments which also affect production. Both standard and quality-adjusted measures of TFP 
share these unknown components and may therefore look more similar than they should. 
 
 

4 News Shocks and Macroeconomic Fluctuations 
 
The main finding of the preceding section states that stock prices may contain information about 
technological innovations which diffuse slowly in the economy and affect standard measures of 
TFP only with considerable lags because they must be embodied in new units of capital. In this 
section we check if these type of shocks are relevant for macroeconomic fluctuations. We focus on 
the basic TFP_D1b measure to save space6.  
 
There are two standard approaches to assess the relevance of a shock for macroeconomic 
fluctuations. On the one hand, impulse responses may be used to check if the shock generates 
comovement between the main aggregates such as output, consumption, investment and hours7. On 
the other hand, forecast error variance decompositions (FEVD) may be used to check how 
important the shock is (in terms of the variance of the dependent variable) relative to other shocks. 
We will use both approaches here. 
 
In order to do so, the systems we have analysed in Section 3 must be extended to a trivariate setting 
in which the third variable is one of the main macro aggregates. We first checked the cointegration 
properties of such systems. Running trivariate Johansen tests with lags indicated by the Schwarz 
Criterion we found evidence of two cointegrating vectors if we added output, consumption or hours 
as a third variable. For investment, we did not find any significant statistic in the trivariate system, 
but we found evidence of bivariate cointegration between investment and TFP_D1b at the 5% level. 
In light of our previous finding of cointegration between TFP_D1b and DAX1b we conclude that 
the trivariate Johansen test suffers from insufficient power. Hence, we treat all trivariate systems as 
having two cointegrating vectors. A summary of these tests is found in Table A3 in the appendix. 
 
Next we want to find out if the identified shocks 2ε  and/or 1ε%  generate macroeconomic 
comovement and how much they contribute to the total variance of the third variable. Since 
estimating a trivariate VECM will in general give rise to identified structural residuals which differ 
from the residuals retrieved in a bivariate systems we start by imposing restrictions on the trivariate 
system which make the system recursive in the sense that the (TFP_D1b, DAX1b) subsystem is 
independent of the third variable. Essentially, this amounts to requiring that the equations for 
technology and stock prices are independent of the cointegrating relation between technology and 
the third variable and of lagged growth rates of the third variable. The equation of the third variable, 
by contrast, is completely unrestricted and will, in general, depend on both error correction terms 

                                                 
6  TFP_D2b has very similar properties, while TFP_D3b, if correctly computed, does not capture innovations which 

require embodiment. 
7  The data source is the Statistisches Bundesamt. We eliminated the reunification break by combining level 

information for unified Germany with growth rates for West Germany. The data are available upon request. 
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and on lagged growth rates of all three variables. With this approach, we retrieve the shocks 2ε  and 

1ε%  in the short and long run identification scheme, respectively8. 
 

Figure 4: Impulse responses of third variable in trivariate systems9  
 

a) Short run identification: Responses to ε2

    
output consumption investment hours 

    
 

b) Long run identification: Responses to 1ε%  

    
output consumption investment hours 

 
 
The impulse responses of the third variable to both shocks are displayed in Figure 4. Output, 
consumption, investment and hours all respond positively to ε2 and 1ε% . For the short-run 
identification the response is insignificant on impact. (Note that this finding is not due to imposing 
an identifying assumption). However, for all variables, the response is significantly different from 
zero in the medium term, i. e. for business cycle horizons. For hours and investment the long run 
effects are again insignificant. Under the long-run identification, the responses are significant 
throughout for output, consumption and investment. Hours have a significant positive response in 
the medium run. Hence, the identified shocks clearly cause comovement of the main macro 
variables. 
 
Turning to the corresponding FEVDs, we compute the share of variance explained by ε2 and 1ε%  at 
different horizons. The rest of the variance is, of course, due to the variance of the third shock. The 
results, cf. Table 1, show very clearly that for all dependent variables the explanatory potential of ε2 

                                                 
8  Identification in the trivariate system (ordered as technology, stock prices, third variable) is obatined as follows: In 

the short run identification the (1,2), (1,3) and (2,3) element of D(0) are set to zero. In the long run identification the 
analogous assumption is made for the corresponding long run matrix. But since there are two cointegrating vectors 
(implying two columns of zeros in this matrix), one more restriction is required. Since in all trivariate SVECMs with 
short run identification the estimate of the (unrestricted) immediate impact of innovations in the stock price equation 
on the third variable was virtually zero we also set the (3,2) element of D(0) equal to zero.  

9  Confidence intervals are obtained by 2500 replications with the bootstrapping procedure of Hall (1992). They 
represent the 95% quantiles. 
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and 1ε%  increases gradually over time, as would be expected under the delayed diffusion hypothesis. 
Often, the share of variance explained on impact is close to zero, while it is at least 25% in the long 
term (e. g. for hours) and mostly much larger. Thus, these type of shocks seem to be quite important 
for medium to long-term fluctuations. 
 
 

Table 1 
FEVDs of SVECMs based on restricted VECMs 

 
a) Short run identification  

Forecast 
horizon 

Output Consumption Investment Hours 

 ε1 ε2 ε1 ε2 ε1 ε2 ε1 ε2
1 0.63 0.00 0.26 0.00 0.25 0.02 0.09 0.01 
4 0.74 0.02 0.50 0.02 0.35 0.05 0.26 0.04 
8 0.76 0.09 0.65 0.08 0.39 0.11 0.28 0.11 
16 0.70 0.24 0.68 0.20 0.41 0.19 0.23 0.24 
40 0.54 0.44 0.56 0.40 0.42 0.32 0.23 0.30 
80 0.46 0.53 0.47 0.51 0.42 0.41 0.24 0.30 

 
b) Long run identification 

Forecast 
horizon 

Output Consumption Investment Hours 

 1ε%  2ε%  1ε%  2ε%  1ε%  2ε%  1ε%  2ε%  

1 0.19 0.00 0.10 0.00 0.19 0.00 0.02 0.00 
4 0.38 0.01 0.30 0.03 0.31 0.00 0.22 0.00 
8 0.57 0.01 0.51 0.07 0.43 0.00 0.34 0.00 
16 0.77 0.01 0.72 0.07 0.56 0.00 0.42 0.05 
40 0.92 0.01 0.90 0.03 0.71 0.00 0.40 0.13 
80 0.96 0.00 0.95 0.01 0.81 0.00 0.42 0.13 

 
 
The preceding analysis may be criticized because of the restrictions imposed on the trivariate 
VECMs. While these are necessary to reproduce the structural residuals from the bivariate 
SVECMs, one might suspect that unrestricted trivariate SVECMs do not support the same 
conclusions. Hence, we also estimate unrestricted trivariate VECMs, imposing two cointegrating 
vectors in each of them. We then use the same short run and long run identification as in the case of 
the restricted VECMs to identify structural residuals. While these are obviously not the same as in 
the restricted case, we continue to use the notation 1 1,ε ε% , 2 2,ε ε%  for simplicity.  
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Table 2 
FEVDs of SVECMs based on unrestricted VECMs 

 
a) Short run identification  

Forecast 
horizon 

Output Consumption Investment Hours 

 ε1 ε2 ε1 ε2 ε1 ε2 ε1 ε2
1 0.63 0.00 0.25 0.00 0.23 0.02 0.08 0.01 
4 0.69 0.01 0.39 0.02 0.28 0.07 0.21 0.04 
8 0.70 0.08 0.49 0.08 0.31 0.15 0.26 0.14 
16 0.65 0.23 0.52 0.22 0.35 0.25 0.25 0.27 
40 0.52 0.44 0.44 0.46 0.34 0.37 0.25 0.30 
80 0.46 0.53 0.38 0.57 0.33 0.44 0.27 0.30 

 
b) Long run identification 

Forecast 
horizon 

Output Consumption Investment Hours 

 1ε%  2ε%  1ε%  2ε%  1ε%  2ε%  1ε%  2ε%  

1 0.21 0.00 0.13 0.00 0.01 0.00 0.01 0.00 
4 0.34 0.00 0.27 0.01 0.07 0.00 0.08 0.00 
8 0.51 0.00 0.44 0.02 0.16 0.01 0.20 0.02 
16 0.73 0.00 0.66 0.02 0.30 0.01 0.29 0.07 
40 0.91 0.00 0.88 0.01 0.52 0.00 0.28 0.12 
80 0.96 0.00 0.95 0.00 0.68 0.00 0.29 0.12 

 
 
The results are given in Table 2. Interestingly, the unrestricted estimates reinforce the conclusions 
drawn from the restricted estimates. Under the long run identification, 2ε%  shocks are of almost no 
importance for all horizons. By contrast, 1ε%  shocks increase in importance as time goes by and in 
the long run explain nearly all of the variance of output and consumption, two thirds of the variance 
of investment and slightly less than one third of the variance of hours. 
 
Under the short run identification, however, ε2 shocks have more explanatory power in the long run 
than ε1 for all four macro variables. Also, the explanatory power of ε2 is zero in the short run (note 
that this feature is not imposed!) and increases steadily over time. This finding is the same for all 
four macro variables and seems to be very much in line with the news view and the hypothesis of 
delayed technology diffusion. In fact, the analysis of the unrestricted VECMs makes this point even 
more forcefully than the analysis of the restricted VECMs.  
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5 Granger Causality  
 
We are thus left with the question if the shocks ε2 and 1ε%  from the bivariate SVECMs are 
predominantly technological in nature. So far this is merely an interpretation suggested from a 
simple economic model which assumed the existence of technology shocks (and assumed away all 
kinds of other shocks). We will now confront our candidates for technology shocks with data on 
technological innovations, namely the number of patents granted by the German patent agency. We 
will also look at data on patent applications. 
 
These data have recently been published by Jungmittag and Grupp (2006) for 1850-1913 and 1950-
1999. The data are yearly and given our earlier analysis we are just interested in the subsample 
1970-1999. We aggregate the SVAR shocks by summing the quarterly values to annual frequency. 
We will first look at the number of granted patents. There are two measures available: the number 
of patents granted to German applicants (PGG) and the total number of patents granted (PGT).  
 
It is, of course, an open issue, when exactly technological innovations become publicly known. Any 
invention which seeks patent protection has to be described in the patent application. By German 
law, this description must be sufficiently detailed to be understood by a knowledgeable person. The 
patent agency will publish the patent application not later than 18 months after it has been 
submitted. This can be long before a decision has been reached and a patent granted or refused. 
Hence, technological innovations are, in general, publicly known before a patent is granted.  
 
The natural hypothesis to test for is thus a possibly causal effect of innovations on granted patents. 
If the technology-interpretation of the identified shocks ε2 and 1ε%  is correct, then these shocks 
might Granger-cause patents. Also, patents should not Granger-cause ε2 and 1 ε%  since the patent 
applications (with technical descriptions) are already known before the patent agency decides on 
granting a patent.  
 
We proceed by estimating bivariate VARs for one of the two measures of granted patents and one 
of the six ε2 and 1ε%  shocks identified under the three TFP measures. The lag length of the VAR is 
determined by the Schwarz criterion. Throughout, the chosen lag length is one.  
 
Table 3 contains the main results. In each cell, there are two p-values. In the upper left corner we 
give the p-value for the hypothesis that the shock does not Granger-cause granted patents, while in 
the lower right corner we test the null that granted patents do not Granger-cause the shock. For all 
specifications, we find that the shock is indeed Granger-causal for granted patents (ususally at the 
1% level of significance), while the converse seems not to be true. 
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Table 3: Granger Causality Tests 
Shocks suspected to be technological 

   PGG PGT 
 ε2 0.006 

0.945
0.006 

0.120 
 TFP_D1b 

1ε%  0.003 
0.774

0.009 
0.162 

 ε2 0.013 
0.952

0.009 
0.179 

 TFP_D2b 
1ε%  0.008 

0.897
0.010 

0.144 
 ε2 0.007 

0.878
0.005 

0.152 
 TFP_D3b 

1ε%  0.002 
0.752

0.005 
0.052 

Upper left corner: P-value for null: Row variable does not Granger-cause column variable. 
Lower right corner: P-value for null: Column variable does not Granger-cause row variable. 

 
Note that the tests in Table 3 are not independent. In fact, the statistics are probably highly 
correlated, and hence the evidence is not quite as suggestive as it may appear. But nevertheless we 
can safely state that Granger-causality seems to be a robust feature of the data which is found across 
all specifications of TFP, for both measures of patents and for both identifying assumptions. 
 
 

Table 4: Granger Causality Tests 
Shocks suspected to  have no permanent effect on TFP 

   PGG PGT 
 ε1 0.378 

0.801
0.815 

0.963 
 TFP_D1b 

2ε%  0.172 
0.889

0.083 
0.358 

 ε1 0.544 
0.697

0.715 
0.639 

 TFP_D2b 
2ε%  0.341 

0.846
0.249 

0.367 
 ε1 0.086 

0.748
0.267 

0.354 
 TFP_D3b 

2ε%  0.199 
0.838

0.086 
0.619 

Upper left corner: P-value for null: Row variable does not Granger-cause column variable. 
Lower right corner: P-value for null: Column variable does not Granger-cause row variable. 

 
The shocks ε1 and 2ε%  were assumed to have only a transitory effect on TFP. Thus they should not 
be interpreted as inventions but rather as temporary effects such as changes in motivation, strikes, 
variation of capital utilization etc. Hence we would expect that ε1 and 2ε%  do not Granger-cause 
patents, nor are Granger-caused by patents. Table 4 shows that indeed all tests give insignificant test 
statistics.     
 
Apart from granted patents, data on patent applications are available: Applications from German 
applicants (PAG) and total applications (PAT) These data are certainly less informative, because 
only between one-third and one-fifth of the applications are successful, hence many of the 
applications do apparently not represent inventions. Also, PAG is very strongly skewed due to a 
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few observations in the late 1990s, when patent applications were increasing tremendously. 
Therefore, any kind of inference is very difficult for PAG and we have focused on PAT. We do not 
report the results in detail, but they are available upon request. Suffice it to say that no Granger-
causality can be found between PAT and any of the identified shocks. This is what one would 
expect if inventors try to keep their inventions secret as long a possible, but the inventions are 
disclosed after submitting the patent application. (Recall that the time lag between submission and 
disclosure is at most 18 months, if it is shorter, it may well fall within the same year.) 
 

6 Conclusions 
 
The purpose of this study was to provide further evidence on the BP-hypothesis of delayed-
technology diffusion and news-driven business cycles. For German data on TFP and stock prices 
we find qualitatively the same result as BP do: A high correlation between a shock with permanent 
effects on TFP in the long run and – under a different identification scheme - a shock which has an 
immediate effect on stock prices but does not affect TFP on impact.  
 
The correlation is less pronounced, though, as in BP’s analysis for US and Japanese data. Also, the 
impulse response analysis suggests that for Germany a substantial part of the total TFP response is 
immediate rather than delayed. Using a quality-adjusted measure of TFP, there is almost no delayed 
diffusion any more. This suggests that the delayed diffusion is confined to embodied technological 
change. Disembodied technological innovations seem to have immediate effects on TFP. But since 
the share of disembodied technological progress in total technological progress may be small, the 
relatively large size of the quality-adjusted TFP measure suggests that each measure of German 
TFP may actually contain a fairly large part of unexplained non-technology influences, i. e. our 
ignorance about the true nature of what we measure as TFP may be fairly large. It may therefore be 
the case that noise in TFP data is responsible for the immediate reaction of standard TFP measures 
in the impulse response analysis.  
 
Focusing on the standard measure of TFP, we find that the shocks suspected to be technological 
generate comovement for output, consumption, investment and hours. Also, a sizable share of 
forecast errors for these variables is explained by these shocks in the medium and long run. Using 
unrestricted VECMs, this conclusion is even stronger: Under the short run identification shocks 
which do not have an instantaneous effect on technology are more important at long horizons than 
than those which do. Under the long run equation, most of the variance at long horizons is 
explained by the shock which has a long run effect on technology and the explanatory potential of 
this shock increases gradually over time, in line with the delayed technology diffusion hypothesis. 
 
We finally checked how well the identification of technology shocks in the bivariate SVAR 
approach worked. The answer seems to be: Surprisingly well. Shocks suspected to be technology 
shocks are Granger-causal for the number of patents granted by the German patent agency, while 
shocks without permanent effect on technology are not. This result is very robust across different 
specifications, measures and identification schemes. It may therefore be the case that the SVAR 
approach is able to separate the true, permanent technology shocks from transitory noise which also 
affects measured TFP. Under this interpretation, our results are quite supportive for BP’s news-
driven business cycle hypothesis.  
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7 Appendix 
 
 

 
 
 

Table A1 
ADF test 

Variable Level / 
1st diff. Lags Test 

statistics
Critical 

value (5%) P-value 

Level 0 -2.55 -3.44 0.3041 TFP_D1b 1st diff. 0 -14.00 -3.44 0.0000 
Level 1 -2.64 -3.44 0.2643 TFP_D2b 1st diff. 0 -15.86 -3.44 0.0000 
Level 1 -1.70 -3.44 0.7483 TFP_D3b 1st diff. 0 -15.11 -3.44 0.0000 
Level 0 -2.60 -3.44 0.2810 DAX1b 1st diff. 0 -10.34 -3.44 0.0000 

 
 

Table A2 
Johansen Trace Tests 

Variables Lag length 
(1st diff.) 

Trend in error
correction 
term (EC) / 
Orthogonal 
Trend (OT) 

Hypothesis Test 
statistics

Critical 
value 
(5%) 

P-value 

r = 0 16.24 15.49 0.039 OT r = 1 1.08 3.84 0.299 TFP_D1b 
& DAX1b 0 

EC r = 0 19.69 25.87 0.242 
r = 0 19.29 15.49 0.013 OT r = 1 2.08 3.84 0.149 TFP_D2b 

& DAX1b 1 
EC r = 0 24.10 25.87 0.082 

r = 0 15.57 15.49 0.049 OT r = 1 1.58 3.84 0.209 TFP_D3b 
& DAX1b 0 

EC r = 0 19.78 25.87 0.237 
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Estimation results for coefficients in VECM {TFP_D1b, DAX1b}1  
 

( ) 1 1

1 2

_ 1 _ 10.021* 0.046*
1.000 0.220*

1 10.203* 0.399*
t t

t t

TFP D b TFP D b u
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−
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t

⎛ ⎞
+ ⎜ ⎟

⎝ ⎠
 

 

Test type Test 
statistics P-value

Autocorr. 65.91 0.3432 
Heterosc. 9.99 0.9322 
Non- 
Normal. 69.54 0.0000 

 
 
Implied SVAR coefficients1 

 
short-run restriction:    long-run restriction: 

0

0.0080* 0.0000
0.0003 0.0979*

D ⎛ ⎞
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   � 0
0.0049* 0.0063*
0.0766* 0.0609*

D
−⎛ ⎞
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⎝ ⎠

 

 

                                                 
1 *=significant at the 5% level. 
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Estimation results of coefficients in VECM {TFP_D2b, DAX1b}1

 

( ) 1

1
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Test type Test 
statistics P-value

Autocorr. 55.33 0.5753 
Heterosc. 16.34 0.5690 
Non- 
Normal. 58.09 0.0000 

 
 
Implied SVAR coefficients1 

 
short-run restriction:    long-run restriction: 

0

0.0081* 0.0000
0.0075 0.0947*

D ⎛ ⎞
= ⎜ ⎟

⎝ ⎠
   � 0

0.0051* 0.0063*
0.0783* 0.0537*

D
−⎛ ⎞
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Impulse-response functions2

 
a) Short-run restriction (response to ε2): 

 
 
b) Long-run restriction (response to 1ε% ): 

 

                                                 
1 *=significant at the 5% level. 
2  Confidence intervals are obtained by 2500 replications with the bootstrapping procedure of Hall (1992). They 

represent the 95% quantiles. 
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Estimation results of coefficients in VECM {TFP_D3b, DAX1b}1
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Test type Test 
statistics P-value

Autocorr. 74.70 0.1292 
Heterosc. 14.12 0.7215 
Non- 
Normal. 58.89 0.0000 

 
 
Implied SVAR coefficients1 

 
short-run restriction:    long-run restriction: 

0

0.0129* 0.0000
0.0021 0.0974*

D ⎛ ⎞
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⎝ ⎠
   � 0

0.0094* 0.0088*
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1 *=significant at the 5% level. 
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Table A3 

Johansen Trace Tests 

Variables: 
 

 

Lag 
length 

(1st 
diff.) 

Trend 
Specification Hypothesis Test 

statistics 

Critical
value 
(5%) 

P-
value 

r = 0 39.48 29.80 0.002 TFP_D1b, DAX1b, 
GDP1b 0 Orthogonal 

Trend r = 1 18.90 15.41 0.013 

r = 0 47.34 29.80 0.000 TFP_D1b, DAX1b, 
CONS1b 0 Orthogonal 

Trend r = 1 22.03 15.41 0.004 

r = 0 24.95 29.80 0.168 TFP_D1b, DAX1b, 
INV1b 0 Orthogonal 

Trend r = 1 9.50 15.41 0.327 

TFP_D1b, INV1b 4 Orthogonal 
Trend r = 0 17.05 15.41 0.027 

r = 0 34.50 29.80 0.013 TFP_D1b, DAX1b, 
HOURS1b 0 Orthogonal 

Trend r = 1 15.76 15.41 0.044 
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Estimation results for coefficients in restricted VECM {GDP1b, DAX1b, TFP_D1b}1  
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Test type Test 
statistics P-value

Autocorr. 138.32 0.5243 
Heterosc. 67.49 0.6287 
Non- 
Normal. 280.88 0.0000 

 
Implied SVAR coefficients1 
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Estimation results for coefficients in unrestricted VECM {GDP1b, DAX1b, TFP_D1b}1  
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Test type Test 
statistics P-value

Autocorr. 136.93 0.5097 
Heterosc. 64.16 0.7332 
Non- 
Normal. 249.31 0.0000 

 
Implied SVAR coefficients1 

 
short-run restriction:     long-run restriction: 
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1 *=significant at the 5% level. 
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Estimation results for coefficients in restricted VECM {CONS1b, DAX1b, TFP_D1b}1  
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Test type Test 
statistics P-value

Autocorr. 155.33 0.1777 
Heterosc. 73.34 0.4338 
Non- 
Normal. 126.58 0.0000 

 
Implied SVAR coefficients1 

 
short-run restriction:     long-run restriction: 
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Estimation results for coefficients in unrestricted VECM {CONS1b, DAX1b, TFP_D1b}1  
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Test type Test 
statistics P-value

Autocorr. 155.77 0.1431 
Heterosc. 80.00 0.2424 
Non- 
Normal. 113.86 0.0000 

 
Implied SVAR coefficients1 

 
short-run restriction:     long-run restriction: 
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1 *=significant at the 5% level. 
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Estimation results for coefficients in restricted VECM {INV1b, DAX1b, TFP_D1b}1  
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Test type Test 
statistics P-value

Autocorr. 129.92 0.4360 
Heterosc. 72.70 0.4549 
Non- 
Normal. 81.03 0.0000 

 
 
Implied SVAR coefficients1 

 
short-run restriction:     long-run restriction: 
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1 *=significant at the 5% level. 
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Estimation results for coefficients in unrestricted VECM {INV1b, DAX1b, TFP_D1b}1  
 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

Δ
Δ
Δ

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−−
−

−−
+

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−−−
−−−−

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
−−

−
=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

Δ
Δ
Δ

−

−

−

−

−

−

1

1

1

1

1

1

1_
1
1

146.0003.0007.0
744.1*237.0161.0
021.0017.0*207.0

1_
1
1

*965.4000.1
*306.1000.1

*005.0009.0
031.0080.0

009.0*103.0

1_
1
1

t

t

t

t

t

t

t

t

t

bDTFP
bDAX
bINV

bDTFP
bDAX
bINV

bDTFP
bDAX
bINV

     
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

Δ
Δ
Δ

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
+

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

Δ
Δ
Δ

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−−
−−−
−−

+

−

−

−

−

−

−

3

3

3

2

2

2

1_
1
1

057.0003.0008.0
849.0124.0248.0

*705.0031.0041.0

1_
1
1

167.0001.0*058.0
*671.2011.0258.0

250.0007.0089.0

t

t

t

t

t

t

bDTFP
bDAX
bINV

bDTFP
bDAX
bINV

          
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
+

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
+

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

Δ
Δ
Δ

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−−

−
+

−

−

−

t

t

t

t

t

t

u
u
u

cnst
bDTFP

bDAX
bINV

3

2

1

4

4

4

083.0
029.0

*488.0

1_
1
1

031.0002.0*060.0
616.0*181.0204.0
110.0004.0*312.0

 
 

Test type Test 
statistics P-value

Autocorr. 97.30 0.6130 
Heterosc. 82.78 0.1809 
Non- 
Normal. 37.08 0.0000 

 
 
Implied SVAR coefficients1 

 
short-run restriction:     long-run restriction: 
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1 *=significant at the 5% level. 
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Estimation results for coefficients in restricted VECM {HOURS1b, DAX1b, TFP_D1b}1  
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Test type Test 
statistics P-value

Autocorr. 153.57 0.0614 
Heterosc. 63.96 0.7390 
Non- 
Normal. 63.17 0.0000 

 
 
Implied SVAR coefficients1 

 
short-run restriction:     long-run restriction: 
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1 *=significant at the 5% level. 
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Estimation results for coefficients in unrestr. VECM {HOURS1b, DAX1b, TFP_D1b}1  
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Test type Test 
statistics P-value

Autocorr. 111.74 0.2396 
Heterosc. 73.76 0.4203 
Non- 
Normal. 33.67 0.0000 

 
 
Implied SVAR coefficients1 

 
short-run restriction:     long-run restriction: 
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⎠

⎞

⎜
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⎛ −
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−
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~

0D

 

                                                 
1 *=significant at the 5% level. 
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