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Abstract 

Seminal models of herd behaviour and informational cascades point out existence of negative 

information externalities, and propose to ‘destroy’ information in order to achieve social 

improvements. Although in the last years many features of herd behaviour and informational 

cascades have been studied, this particular aspect has never been extensively analysed. In this article 

we try to fill this gap, investigating both theoretically and experimentally whether and to which 

extent destroying information can improve welfare. Our empirical results show that this decisional 

mechanism actually leads to a behaviour pattern more consistent with the theory that in turn 

produces the predicted efficiency gain. 
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1 Introduction 

Part of social learning is related to an apparently naive behaviour known as herd 

behaviour (Banerjee, 1992)1 or informational cascades (Bikhchandani, Hirshleifer, 

and Welch, 1992 – BHW, henceforth). A peculiarity of these models, however, is 

that they view agents’ imitative behaviour as perfectly rational, even though 

characterized by imperfect information. 

This behaviour takes place when agents can augment their information set by 

looking at other agents’ behaviour. Although rational, it could cause information 

externalities that result in an aggregate welfare loss (Becker, 1991). In this situation, 

the individual rational behaviour may well result in a non-optimal strategy from an 

aggregate point of view. Looking at the real world, we have abundant empirical 

evidence for informational cascades. Actually, one of the most attractive features of 

these kinds of models concerns their direct application to a range of every-day 

situations. Just to cite an example, we can refer to bubbles in financial markets 

(Plott, 2002; Hey and Morone (2004); Morone (forthcoming)). The idea underlying 

these models is simple. Consider the case in which I have to choose between two 

unknown restaurants and I have no relevant information about them. However, I 

can infer that the most crowded is the best one and will choose to join the queue. 

This behaviour is rational, but the possibility that first customers have no pregnant 

information as well is crucial. BHW point out that the conformity of followers in a 

cascade contains no informational value (p. 998-999), and this argument has been 

demonstrated by some empirical evidence (Anderson and Holt, 1997; Allsopp and 

Hey, 2000). On the other hand, also the impact of signal accuracy on cascade 

                                                 
1 A generalization of Banerjee’s model was proposed in Morone and Samanidou (forthcomming). 
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efficiency has been demonstrated by some simulations (e.g., Pastine and Pastine, 

2005). 

The aim of this paper is investigating the possibility to mitigate informational 

cascades’ negative effects forcing the first k subjects in a queue to play only 

according to their private information. For this purpose, we analyse a sequential 

model departing from BHW’s model in some relevant parts and then we 

experimentally investigate if “society may actually be better off by constraining 

some of the people to use only their own information” (Banerjee, 1992; p. 798).  

The paper is structured as follows. Section 2 is devoted to the new 

specification of the standard model. The experimental design and results are 

introduced, respectively, in Sections 3 and 4. Section 5 concludes.    

 

2 Theory 

In addition to the seminal papers on herd behaviour and informational cascades 

(Banerjee, 1992; Bikhchandani et al., 1992), even more recently a paper on word-of-

mouth learning (Banerjee and Fudenberg, 2004) notes that the inefficient herding of 

the standard models does not occur if some agents are forced to use their own 

private information. Nevertheless, earlier literature did not provide any model 

capturing this feature. Therefore, in order to fill this gap, we develop a new 

specification departing from the standard model as advanced in BHW. We retain the 

main features of the original model. We have a population of I = {1, …, N} 

individuals. Each individual Ni∈  has to decide whether to adopt a specific 

behaviour, for example, whether to adopt a new technology or not. All individuals 

make their choices in a sequential and exogenously determined order. The gain of 
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adopting, V, is the same for all Ni∈ and is either zero or one. These two events 

have the same ex-ante probability to occur.  

However, each individual i privately observes a conditionally i.i.d. signal 

about V. This signal s is either 0 or 1: 1 is observed with probability p > ½ if the true 

value is 1, and with probability 1-p otherwise. 

Under our specification, the first k (< N) individuals in the queue are not 

allowed to observe the decisions already taken, whereas the entire history of 

decisions is commonly known to the last N-k individuals. We can think of this game 

as of N-stage game where the first k individuals play simultaneously and the 

remaining N-k sequentially. As the first k individuals can observe only their own 

signal, rationality requires them to follow their private information: they should 

take on the new behaviour if the signal is 1, and reject it otherwise. In contrast, the 

remaining N–k individuals should base their decision on both their own signal and 

all past decisions, thereby choosing the most frequently observed action2. In case of 

indifference, we assume that individual i with i = k+1, …, N follows the tie-breaking 

rule of adopting or rejecting with equal probability. 

In our specification it is as if individual i, with i = k+1, …, N has an advantage 

of additional signals. In this manner, we expect our specification to lead to a more 

socially efficient final outcome, as the society has a mechanism that allows 

aggregating the information in a later stage and in a more correct way.  

                                                 
2  More precisely, Anderson and Holt (1997) show that the optimal strategy in a Bayesian sense 
whenever the two events are equally probable and signals identically distributed corresponds to the 
very simple strategy of doing the count of the previous decisions, one’s own signal included. 
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In their model (T1), where all decision makers are allowed to observe their 

predecessors’ action, BHW derive the unconditional ex ante probability of a cascade 

and the ex ante probability of no cascade after an even number of individuals n.  

P = 0.75 ; n = 100 (k = 10) (k = 56) (k = 98) 
T1 .8077 .8077 .8077 
T2 .9690 .9999 .9999 

(k = 6) ; p = 0.75 N = 10 n = 100 n = 1000 
T1 .8075 .8077 .8077 
T2 .9333 .9370 .9370 

(k = 56);  n = 100 P = .55 p = .85 p = .99 
T1 .5664 .9011 .9949 
T2 .7778 .9999 1.000 

Table 1  Probability of a correct cascade: Comparative static analysis and comparison between 
models3  

 
They also derive the probabilities of ending up in a correct cascade and 

ending up in a wrong one. We derive the same probabilities after having taken in 

consideration the fact that the first k players act only based on their own signal s 

(T2). We show our main results in the Appendix A. At this point, however, it may 

be more illustrative to compare probabilities of ending up in a correct cascade (to a 

some extent, it can be considered as an index of efficiency) under the two 

specifications for some different parameter values (k, number of players observing 

only their own signal; p, probability of signal correctness; n, number of players 

having already taken their decision). Figures are shown in Table 1. 
                                                 
3  In the first row are reported different parameter values at which probabilities are computed and 
in boldface, parameters held constant for each comparative static exercise. Different values of k are in 
parentheses since relevant only to our model.      



 6

At a first glance, it is evident that probability of ending up in a correct 

cascade is higher in T2. Entering into details, we can point out that as k increases 

(top panel), probability of a correct cascade becomes not statistically different from 

1, whereas under the standard model the probability is quite high, but never reaches 

this level. Other results are more obvious, in the sense that probability of a correct 

cascade is monotonically increasing in the number of subjects that have already 

made a decision (n, middle panel) and in the signal correctness (p, bottom panel) 

under both the two specifications, but nevertheless always higher under ours. 

Probably, it may be interesting to combine results regarding the effect of 

changes in signal correctness and number of subjects that act with no clue regarding 

previous decisions. We perform these comparative static exercises varying 

simultaneously p and k, while keeping N - the number of individuals in the 

population – constant. Consequently, we have the opportunity to note that for each 

value of k there is a probability p*, under which the difference between the two 

specifications is maximised. The converse is also true. 

 

3 Experimental design 

In order to test empirically whether the new specification of the model allows 

achieving a social improvement, we ran two computerized treatments at the 

laboratory of ESSE at the University of Bari. The control treatment (T1) was set in 

accordance with the original model, whereas in the second treatment (T2) we test 
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the new specification, with the first k = 4 subjects forced to play basing their 

decision exclusively on their private information4.  

The experiment was programmed using the Z-tree software (Fischbacher, 

2007). Each treatment lasting for about an hour was made up of 22 periods, of which 

2 were trial ones. The trial periods were necessary for subjects to become familiar 

with the experiment, providing them also the opportunity to ask questions about the 

instructions (Appendix B). The final payment was made only for the 20 real periods 

and paid at the end of each treatment.  

We had N = 10 subjects for each treatment sitting next to a PC terminal 

connected by a net. The subjects could not see each other or communicate. All of 

them were students of Economics not familiar with previous similar experiments. 

In the experiment, subjects acted as entrepreneurs and their task was to 

decide whether to invest in a new product or not. The order in which they chose 

sequentially was randomly determined period by period5.  

However, subjects did not know whether this product would be profitable or 

not once on the market. Whenever they made the right decision, they gained €0.5, 

and zero otherwise6. For each period the programme established the true value of V 

                                                 
4  As we noted above, there is an optimal value for k* for each parameter combination. We 
determined the optimal k* with a Monte Carlo simulation. This simulation provided the winning 
percentages for each position in the queue, provided that we consider the individual winning 
percentage as a proxy for individual utility. The simulation consisted of 10 millions iterations for each 
different value of k, setting N and p at 10 and .75, respectively. We get a measure for social welfare 
summing up individual winning percentages over the entire population, and we picked the case in 
which this indicator was at its maximum.  
5  They were informed about their turn via a message on their PC screen. 
6  More precisely, if the product was successful (V = 1), they would gain €0.5 in case of investment, 
and zero otherwise. If the product was not successful (V = 0), they would gain €0.5 in case of no 
investment (the right decision in this scenario), and zero otherwise. 
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but did not reveal it to subjects. Each of them, however, received a free-of-charge 

signal s about V (a sort of a result of a market survey). These signals took either the 

value 1 or the value 0 and the signal correctness (p = .75) was common knowledge. 

The screen displayed these details: one’s own turn to play; the position in the queue; 

where allowed, the decision made by predecessors; and one’s own signal. At the end 

of each period, subjects were informed about the right option and their payoff. 

When all periods were played, subjects were paid and free to leave the laboratory. 

Average payoff was €6.75. 

 

4 Results 

We start this section showing some data at individual level (raw data provided in the 

Appendix C). In each position, taking into account predecessors’ decisions and the 

signal realization, we determine which action should be chosen according to the 

theory. Consequently, we categorize as rational behaviours in accordance with it (in 

our simple set-up, the optimal strategy in a Bayesian sense corresponds to the count, 

as explained in footnote 2) and, in case of indifference, whenever subjects adopted 

the tie-breaking rule, regardless of the fact that it produces a cascade or not. In 

particular, at the individual level, in the table we report also as cascade behaviour all 

the cases where “an imbalance of previous inferred signals causes a person’s optimal 

decision to be inconsistent with his or her private signal” (Anderson and Holt, 1997; 

p. 851), that is, all the cases in which individuals follow the queue, disregarding 

their signal. As regards behaviours categorized as irrational, namely, inconsistent 

with the theory, we discriminate cases in which it can be rationalized somehow – 
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following her own signal – from cases where it cannot be explained whatsoever. 

Results are reported in Table 2. 

 

 Rational behaviour  Irrational behaviour 
   Occurrence of 

rational cascades 
 

   correct wrong  

not 
rationalized

signal-
keeping 

T1 146  4  16  33 21 
T2 171  12  8  24 5 

Table 2  Summary of behaviours observed in the experiment (individual level) 

 

From table 2 it can be clearly noted that the new specification may be 

effective in driving a more consistent behaviour (146 out of 200 observations - 73% - 

in T1 vs. 171 out of 200 observations - 85.5% - in T2). However, though lower, 

among the occurrence of irrational behaviours in T2 the percentage of behaviour 

that cannot be explained in any case is higher than in T1 (33 out of 54 cases in T1 vs. 

24 out of 29 cases in T2). Moreover, it is interesting that while observing the same 

occurrence of cascade behaviour under the two treatments (20 in each), the 

percentage of a correct cascade is up to three times higher in T2. Finally, we observe 

that cascade behaviour is rather fragile (individuals do not choose to conform to the 

mass, still when their all predecessors made the same choice)7, and that often they 

                                                 
7 As an extreme case of this kind of behaviour, we can cite as example the behaviour of subject in 
position 10 (period 10) under T1 that decided to break the cascade even if all the players before her 
made the same decision.     
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also choose to play against their own signal, especially when they are the first in the 

queue8. 

At this point, in order to test our hypothesis, namely that under the new 

specification of the model the outcome is socially more efficient, we compare the 

average earnings under the two treatments.  

 
Theoretical earnings  Experimental earnings Position in the 

queue T1 T2  T1 T2 
1 0.225  0.225 0.356 
2 0.325  0.275 - 
3 0.3125  0.325 - 
4 0.33125 

0.4 
- 
- 
-  0.275 - 

5 0.34375 0.4  0.275 0.425 
6 0.34375 0.4125  0.25 0.375 
7 0.34375 0.4125  0.3 0.375 
8 0.34375 0.40625  0.3 0.4 
9 0.34375 0.425  0.375 0.375 
10 0.34375 0.425  0.375 0.4 
      

TOTAL 3.25625 4.08125  2.975 3.775 
Table 3  Average earnings for each position and for each treatment9 

 
 

Particularly interesting is the comparison between the theoretical earnings, 

as it would have been if all individuals behaved according to the theory, given the 

actual signal realization during the experiment, and the experimental earnings, the 

                                                 
8 In particular, we observe that first individuals played against their own signal in 8 cases out of 20 
periods in T1. Considering that in T2 the first four players made decisions without observing 
predecessors’signal, we observe this kind of behaviour in 17 instances.     
9 Since the first four positions in T2 can be considered as theoretically indistinct, we decided to 
provide in the table an average of the relative earnings.      
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actual payoffs obtained by participants during the experiment. Results are reported in 

Table 310. 

First, we note a statistically significant difference between the two treatments 

(Wilcoxon rank-sum test for theoretical earnings: -3.835, p-value = .0001; for 

experimental earnings: -3.755, p-value = .0059). Interestingly, each experimental 

treatment is not statistically different from its theoretical counterpart (Wilcoxon 

rank-sum test for BHW and T1: 1.614, p-value = .1066; for our specification and T2: 

1.190, p-value = .2340). Second, for each position in the queue, we observe always 

higher average earnings under T211.  

In order to give an additional insight into the social efficiency gain, we can 

consider the percentage of winning as a useful proxy for individual utility, and then 

compare this index under the two treatments. In figure 1 we report the index for 

each different position held in the decisional queue. 

                                                 
10 It is important to note that the probability to obtain a correct signal was identical across the 
treatment (fixed at 0.75 over all the treatments), but that the actual realization of signal was different. 
Consequently, since chance rather than behaviour could explain the difference between the two 
treatments, we standardise our results dividing the average earnings in Table 3 by the frequency of 
correct signals, position by position. Results in Appendix D.  
 
11  The lower average payoff for the fourth position cannot be considered as an exception. Indeed, 
under our specification the first k (except for the first) individuals observe their situation worsened 
passing from the first to the second treatment, even if the deterioration of their situation is more than 
offset by the improving of the remaining N-k individuals, for an appropriate choice of the value k.   
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Figure 1  Percentages of winning12 

 

Except for the fourth subject in the second treatment (see footnote 10), under 

the second treatment the percentage is always higher than, or at the most the same 

as, under the first treatment. Looking at the graph, we may state that the new 

decisional mechanism is preferable from a social and even individual point of view, 

i.e. in T2 the winning percentage is alwayes larger then in T1, even if at late stages 

(position 9 and 10) the winning percentages in the two treatments become very 

similar. 

  

4.1 Econometric analysis 

Finally, we estimate a very simple learning model. Specifically, we constructed a 

model that links decisions in the experiment to a set of determinants, as follows. 
                                                 
12 As explained in footnote 10, we averaged percentages the first four positions in T2  given that they 
can be considered theoretically indistinct.  
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First, the presence of learning is investigated by the use of the variable Time (the 

period number) and the variable Time2, to test for concavity of learning. Moreover, 

in order to gain further insight, we test for the presence of directional learning (or 

Cournot behaviour; Selten and Buchta, 1998) by using the Correctwon variable (a 

dummy variable equal to 1 if in the most recent period the subject made the 

theoretically correct decision and won) and Correctlost variable (a dummy variable 

equal to 1 if in the most recent period the subject made the theoretically correct 

decision and lost). Our dependent variable, Correct, is a dummy variable equal to 1 

whenever subjects make the decision consistent with the theory, 0 otherwise. 

Consequently, we run a probit estimation procedure. Results are reported in Table 4. 

 

 Dep. Variable: Correct Marginal 
Effect 

Std. Error p-value 

Time .02199    .01628     0.177 
Time2 -.00084    .00075    0.264 
Correctwon -.13474    .05139    0.011 
Correctlost -.22575    .08449    0.004 
T2 .15977    .04393     0.000 
    
Log likelihood -217.271   
Pseudo R2 0.0478   
NOBs 400   

Table 4  Maximum Likelihood probit estimation13 

 

We note no trend in observing a more consistent decisions over time (in fact, 

Time is not statistically significant); consequently, concavity for learning is not 
                                                 
13  Note that the reported significance levels assume independent observations, though this is 
unlikely to be the case. 
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statistically significant, either. Even directional learning is not a firm determinant of 

learning. Indeed, even if both Correctwon and Correctlost are significant, 

Correctwon does not present the correct direction (positive sign) in our analysis. In 

fact, we expect the probability of making the correct decision to increase if in the 

previous period subject made correct decision and won.  

Interestingly, on the other hand, the dummy variable for the treatment T2: 

the decisional mechanism implemented in this treatment is actually effective in 

increasing probability of making the correct decision by 16%14.          

 

5 Conclusions 

Negative informational externality produced by phenomenon of informational 

cascade has drawn quite a lot of attention in economic literature. Hence, finding 

mechanisms useful in eliminating or at least minimising this externality are of quite 

an interest. The paradox whereby burning a piece of information in a first stage of 

the sequential decisional process could turn to be a social improvement in a later 

stage was indeed worth investigating. This was our task. Our empirical results show 

that this decisional mechanism actually leads to behaviour more consistent with the 

theory that in turn produces a social improvement.  If supported by further analyses 

– aimed, for example, to design an implementable self-enforcing mechanism - our 

result may open new challenging scenarios once applied to reality. 

 

                                                 
14 However, it could be of interest to test if the dummy variable T2 has a different impact, depending 
on the different positions taken into account. In order to test for the presence of a possible structural 
break at stage 4, we perform a Chow test. Results are given in Appendix E.  
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Appendices 

A - In order to get probabilities in the same fashion as BHW obtained, we derived them varying each 

time the value of k – number of individuals acting with no clue regarding previous actions. Then, 

having been noted some regularities, we generalized the model, whatever the value for k.  

The probability of NO-cascade after n = 2m individuals is simply the probability of observing the 

same occurrence for the two signals, i.e., s = 0 and s = 1. Consequently, in our specification, the 

probability of NO-cascade is shown in 1.a, whenever k is an even number: 
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However, it is of greater importance to consider the probability of ending up in a CORRECT-cascade. 

The probability to observe a correct cascade after 2 individuals is simply the probability that both of 

them receive a correct signal, i.e., p2. The probability to observe a correct cascade after 4 individuals 

is simply the sum of the probabilities of the two independents events: the occurrence of a correct 

cascade after 2 individuals OR the occurrence of no cascade after 2 individuals AND the occurrence 

to observe a correct cascade for the third and fourth players. 

In general formulas, after n  = 2m individuals, whenever k is an even number: 
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and whenever k is an odd number: 
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Finally, a similar reasoning can be applied to calculate the probability of ending up in a WRONG-

cascade after n = 2m individuals. In formulas, whenever k is an even number: 
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and whenever k is an odd number: 
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To make an example, we provide the calculations for determination of probability of NO-cascade, of 

ending up in a CORRECT-cascade or in a WRONG-cascade for the specific value of parameters 

chosen for the experiment, i.e., k = 4, m = 5, and p = 0.75.    

Applying formula 1.a: 
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Finally, considering formula 3.a, we get probability of ending up in a WRONG-cascade: 
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B – Instructions (original provided in Italian) 

Welcome! This experiment is designed to study how people make decisions. The experiment is very 

simple, and you will have the possibility of earning money, which will be paid to you in cash at the 

end of the experiment.  

This amount will depend, on the one hand, on your decisions and, on the other hand, on luck.  

 

You will play as an entrepreneur and your task will be to decide to develop a new product or not.  

Two scenarios will have the same probability to occur: or all goods will be sold or not a single one. 

You will repeat your task 20 times. In each period, the computer will choose the scenario. The  

scenario will be the same for all the participant, but different in each period.    

Whenever you take the right decision, you will earn 0.5€, nothing otherwise, as shown in the table: 

 

 Decision: to invest Decision: not to invest

All goods sold 0.5€ 0 

No good sold 0 0.5€ 

 

It is important to know that you make your decision in sequence and the order is randomized in each 

period.  

However, you will be provided with two different kinds of information before making your decision.  

First, you will receive results from a market survey reliable at 75%. In particular, during the 

experiment you will be provided with a signal according to the result of the survey. As shown in the 

table, to each signal is connected a different likelihood of the two scenarios:  
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 Signal = 1 Signal = 0

All goods sold 75% 25% 

No good sold 25% 75% 

   

Second, you will be informed about decisions already made by all entrepreneurs before you.  

You will not be required to pay for these pieces of information. These will appear automatically on 

your PC screen when it is your turn to play.  

It is important to note that the first four players will not receive this second kind of information. On 

the contrary, from the fifth player onwards, players will receive all relevant information regarding 

previous decisions.  

 

Whenever you make your decision, you have to press the OK button to confirm your choice. 

As soon an all players have made their decision, on your PC screen you will be informed about the 

right choice to take in that period and your relative payoff. 

 

You will play for 20 periods, in addition to two trial periods at the beginning of the experiment. 

At the end, you will be paid (except for the payoff earned during the trial periods) and you will be 

free to leave the laboratory.  

The rules are very simple. However, please do not communicate with other participants during the 

experiment. You are free to put questions to experimenters at any time during trial periods raising 

your hands. 

Good luck! 



C – Raw data 

T1 treatment 

 

Period Subject Signal Action Period Subject Signal Action Period Subject Signal Action Period Subject Signal Action
1 6 1 1 6 6 1 1 11 6 1 1 16 1 1 1
1 2 1 1 6 7 1 1 11 4 0 0 16 5 0 0
1 4 1 0 6 3 1 1 11 7 1 1 16 6 0 0
1 7 1 1 6 9 1 1 11 10 0 0 16 10 0 0
1 3 1 1 6 1 0 0 11 9 0 1 16 8 0 0
1 1 1 1 6 8 1 1 11 8 0 0 16 9 0 0
1 9 1 1 6 10 1 1 11 5 0 0 16 7 1 0
1 8 1 1 6 4 1 1 11 3 0 1 16 2 0 0
1 5 1 0 6 2 1 0 11 1 0 0 16 3 1 1
1 10 1 1 6 5 1 1 11 2 0 1 16 4 0 0
2 3 0 1 7 7 0 0 12 2 0 0 17 3 1 1
2 9 0 0 7 1 1 0 12 1 0 0 17 2 0 1
2 5 1 1 7 2 0 0 12 9 1 1 17 8 1 1
2 4 0 1 7 6 0 1 12 4 0 1 17 5 0 0
2 10 1 1 7 4 0 0 12 10 1 1 17 1 0 0
2 6 1 1 7 3 0 0 12 8 1 1 17 6 0 0
2 2 0 0 7 9 0 0 12 7 1 0 17 7 1 1
2 8 0 1 7 10 0 0 12 5 1 1 17 10 0 0
2 7 0 1 7 8 1 1 12 3 1 1 17 4 0 0
2 1 0 0 7 5 1 1 12 6 1 1 17 9 0 0
3 9 0 0 8 2 0 0 13 9 0 1 18 9 1 1
3 1 0 0 8 5 0 1 13 7 0 0 18 5 1 0
3 3 0 1 8 1 1 0 13 4 0 0 18 6 1 0
3 2 0 0 8 10 0 1 13 10 1 0 18 10 0 1
3 5 1 0 8 3 0 0 13 6 0 0 18 4 0 0
3 10 1 1 8 8 0 1 13 5 1 1 18 7 1 0
3 6 0 0 8 4 0 0 13 3 0 0 18 1 1 0
3 8 0 0 8 6 0 0 13 8 0 0 18 8 0 0
3 4 0 1 8 9 0 0 13 1 1 1 18 3 0 0
3 7 0 0 8 7 1 0 13 2 1 1 18 2 1 1
4 4 1 1 9 6 1 1 14 3 0 0 19 2 1 1
4 3 0 0 9 3 0 0 14 9 1 1 19 3 0 0
4 9 0 0 9 4 0 1 14 4 0 1 19 5 0 0
4 2 0 1 9 5 0 0 14 2 0 0 19 4 0 0
4 7 0 1 9 9 0 0 14 1 0 0 19 8 0 0
4 6 0 1 9 1 0 1 14 7 1 1 19 1 1 0
4 8 0 0 9 8 0 0 14 5 0 0 19 9 1 1
4 1 0 1 9 2 0 0 14 10 0 0 19 6 0 0
4 5 1 1 9 10 1 0 14 8 1 1 19 7 0 0
4 10 0 0 9 7 0 0 14 6 0 1 19 10 0 0
5 8 0 1 10 2 0 0 15 5 0 1 20 8 0 0
5 6 0 1 10 5 0 0 15 6 0 1 20 2 1 0
5 10 1 1 10 6 0 0 15 9 0 0 20 3 1 1
5 3 0 1 10 9 0 0 15 2 0 1 20 7 1 1
5 4 0 0 10 7 0 0 15 8 0 0 20 10 1 1
5 5 1 1 10 4 0 0 15 1 1 1 20 4 0 0
5 2 0 0 10 1 0 1 15 7 1 0 20 1 0 0
5 7 0 1 10 3 0 0 15 4 1 1 20 6 1 0
5 9 0 0 10 8 0 0 15 10 0 0 20 9 0 0
5 1 0 1 10 10 1 1 15 3 0 0 20 5 1 1



T2 treatment 
Period Subject Signal Action Period Subject Signal Action Period Subject Signal Action Period Subject Signal Action

1 3 0 0 6 2 0 0 11 10 0 0 16 1 1 1
1 10 0 1 6 7 0 0 11 2 1 1 16 10 1 1
1 6 0 0 6 3 0 0 11 3 0 0 16 2 1 1
1 4 0 0 6 1 0 0 11 8 0 1 16 6 1 1
1 2 0 1 6 4 0 1 11 4 0 1 16 8 1 1
1 5 0 0 6 6 0 0 11 6 1 1 16 4 1 0
1 7 0 0 6 9 0 0 11 7 1 1 16 7 1 1
1 9 0 0 6 8 0 0 11 1 0 0 16 3 1 1
1 1 0 0 6 5 0 0 11 5 0 0 16 5 1 1
1 8 0 0 6 10 0 0 11 9 1 1 16 9 0 1
2 2 1 1 7 4 1 1 12 6 0 0 17 5 0 0
2 6 0 0 7 5 1 1 12 2 0 0 17 9 1 0
2 5 1 0 7 7 1 1 12 1 0 0 17 10 0 0
2 1 0 0 7 1 1 1 12 5 0 0 17 2 1 0
2 10 0 1 7 8 0 1 12 8 0 0 17 6 1 1
2 9 0 1 7 2 1 1 12 9 0 0 17 1 1 1
2 8 1 1 7 6 1 1 12 10 0 0 17 3 1 0
2 7 0 1 7 10 1 1 12 7 0 0 17 4 1 1
2 3 0 1 7 9 1 1 12 3 0 0 17 8 0 0
2 4 1 1 7 3 1 1 12 4 0 1 17 7 0 0
3 7 0 1 8 2 1 0 13 8 0 0 18 3 0 0
3 10 0 0 8 1 0 0 13 2 0 0 18 5 0 0
3 2 0 0 8 3 1 1 13 3 0 0 18 10 1 1
3 3 0 0 8 6 1 0 13 1 0 0 18 7 0 0
3 1 0 0 8 8 1 1 13 4 0 1 18 4 0 0
3 9 0 1 8 7 1 1 13 6 0 0 18 9 0 0
3 8 0 0 8 9 1 1 13 7 0 0 18 6 0 0
3 5 0 0 8 4 1 1 13 10 0 0 18 1 0 0
3 6 0 1 8 10 1 1 13 9 0 0 18 8 1 0
3 4 0 0 8 5 0 0 13 5 0 0 18 2 0 1
4 6 0 0 9 7 0 0 14 9 1 1 19 3 1 1
4 9 0 0 9 6 0 0 14 2 0 0 19 6 1 1
4 3 0 0 9 4 0 0 14 4 0 1 19 10 0 1
4 7 0 1 9 10 0 0 14 6 1 1 19 4 1 1
4 4 0 1 9 9 0 0 14 3 1 1 19 8 0 0
4 2 0 0 9 3 0 1 14 5 1 1 19 5 1 1
4 10 0 0 9 8 0 0 14 8 1 1 19 2 1 1
4 1 0 0 9 2 1 0 14 7 0 1 19 9 0 0
4 5 0 0 9 5 0 1 14 10 1 1 19 7 1 1
4 8 1 0 9 1 0 0 14 1 0 1 19 1 1 1
5 8 1 1 10 10 0 1 15 7 1 1 20 6 0 0
5 1 1 1 10 8 1 1 15 10 1 1 20 2 0 0
5 9 0 1 10 4 1 1 15 6 1 1 20 9 0 0
5 3 1 1 10 3 0 1 15 4 1 1 20 3 0 0
5 10 1 1 10 2 1 1 15 8 1 1 20 8 1 0
5 6 0 1 10 6 0 1 15 5 0 1 20 1 0 0
5 7 1 1 10 7 0 1 15 9 1 1 20 4 1 1
5 5 1 1 10 9 0 1 15 2 1 1 20 7 0 0
5 4 1 1 10 1 1 1 15 3 1 1 20 5 0 0
5 2 1 1 10 5 0 1 15 1 1 1 20 10 1 0  



D – In Table A1 we show results regarding average earnings, considering that under the two 

treatments there was a different realization of correct signal, namely, only the probability to get a 

correct signal was the same (p = 0.75) but it may be that differences in theoretical and experimental 

earnings were due to chance rather than systematic difference in behaviour. In order to compare 

average earnings taking into account this caveat, we standardise our results dividing figures in Table 3 

by the frequency of correct signals, position by position: 

 Theoretical earnings  Experimental earnings 
Position in the queue T1 T2  T1 T2 

1 0.01875 0.02105  0.01875 0.02237 
2 0.01912 0.02333  0.01618 0.02167 
3 0.02083 0.03393  0.02167 0.03036 
4 0.01949 0.01974  0.01618 0.01316 
5 0.02148 0.02667  0.01719 0.02833 
6 0.02865 0.02578  0.02083 0.02344 
7 0.02292 0.02578  0.02 0.02344 
8 0.01910 0.02539  0.01667 0.025 
9 0.02865 0.02361  0.03125 0.02083 

10 0.02148 0.03269  0.02344 0.03077 
      

TOTAL 0.22046 
 

0.257975 
 

 0.20214 
 

0.239361 
 

Table A1 Standardized average earnings for each position and for each treatment 

 
We can observe substantially the same results. At the individual level, for almost all the position, we 

can still observe higher average earnings under T2 (except for position 6 and position 9 for theoretical  

earnings and  for position 4 and position 9 for experimental earnings).  

At the aggregate level, we can confirm all previous results: the two treatments are statistically 

different (Wilcoxon rank-sum test for theoretical earnings: -2.043, p-value = .0410; for experimental 

earnings: -1.895, p-value = .0581). Still, each experimental treatment could be considered not 

statistically different from its theoretical counterpart (Wilcoxon rank-sum test for BHW and T1: 

1.212, p-value = .2256; for our specification and T2: 0.832, p-value = .4053).  

 

E – The aim of this section is to study whether our sample may be divided into two sub-samples: the 

first four positions and the later ones. We intend to do so performing a Chow test. Before performing 

this test, we need to verify if a linear probability model (LPM) provides a good approximation for 



 22

probit estimates (for further details, Wooldridge, 2005). We compare estimates separately from the 

two models and from each sub-sample in Table A2.      

   Chow Test 
 Probit (entire) LPM (entire) LPM (pos. 1-4) LPM (pos. 5-10) 

 
Dep. Variable: Correct 
  Coeff. p-value Coeff. p-value Coeff. p-value Coeff. p-value 
Time  .06971 0.177 .02152   0.180    .04592   0.072    .00526    0.799    
Time2  -.00266 0.264 -.00083   0.263     -.00160   0.168    -.00030    0.751    
Correctwon  -.43707   0.011    -.12912   0.012    -.19156   0.020    -.10992     0.094    
Correctlost  -.63673   0.004    -.19950   0.005    -.17815   0.117    -.24002    0.008    
T2  .50940    0.000     .15721   0.000     .27921   0.000     .08399     0.135    
Constant  .41623    0.086     .65743   0.000     .47044   0.000     .79334    0.000     
          
Pseudo R2  0.0478     
Adjusted R2   0.0411 0.0945 0.0196 
NOBs  400 400 160 240 

Table A2 Binary choice models: probit and LPM comparison 
 

It is straightforward to note that LPM provides consistent results with probit estimates (signs of the 

coefficient are the same across models and the same variables are statistically significant), even if 

different in magnitude (due to different assumptions on the error terms).    

At this point, we can consider the underlying model as linear and, hence, proceed to perform the 

Chow test. Under the null hypothesis, there should be no significant difference between the two sub-

samples. We use the F statistic to test this hypothesis.  

We report in table A3 the residual sums of squares for the separate regressions (RSS1 and RSS2) and 

the residual sum of squares of the pooled sample regression. We compare the value of the total 

residual sum of squares (obtained by summing RSS1 and RSS2) with the residual sum of squares from 

the pooled sample regression.  

 

Residual Sum of Squares 

Regression Positions 1-4  (N. 

160) 

Positions 5-10   

(N. 320) 

Total 

(N. 400) 

 RSS1 RSS2 RSS1+ RSS2 

Separate 27.57763 43.19624 70.77387 

Pooled   72.41280 

F-test 1.482   

Table A3 The Chow test 
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The F-statistic is 1.482 and the critical value of F(6, 384) at 5% of significance is 2.10. Hence, we 

conclude that the pooled regression model is an adequate specification. Consequently, there is no 

statistical difference across the two sub-samples. 
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