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Referee Report for “Learning Causal Relations in Multivariate Time Series Data.” 
  
This paper adapts results from the artificial intelligence literature to linear recursive 
structural equations systems with independently normally distributed error terms to 
provide necessary and sufficient conditions for observational equivalence among 
recursive “linear causal models.” It then extends these results to the time series case. The 
paper also provides a simulation study and an empirical application.  
 
My main comment on this paper is that it is not explicit in stating the assumptions 
underlying d-separation and the related observational equivalence results. This leads to 
inaccurate statements in some of the results of the paper. In particular:  
 
 - The paper first starts with employing results on “observationally equivalent” directed 
acyclic graphs (DAG). On page 4, the authors state that “the sparse DAG implies in 
particular a set of conditional dependence and independence among variables.” However, 
the authors do not mention under which conditions are these implications correct. In fact, 
the factorization in equation (2.1) is not “implied” by figure 1. Instead this factorization is 
an assumption sufficient for d-separation to imply the conditional independence relations 
in statements (a) and (b) on page 4 for all compatible distributions with DAGs (a) and (b) 
in Fig.1. Pearl (2000, p.16) refers to this assumption as “Markov Compatibility.” In 
addition, statement (c) on page 4 is not true for all distribution compatible with DAG (c) 
in Fig.1 but rather for at least one distribution compatible with DAG (c) (see Pearl 2000, 
theorem 1.2.4).  
  
- On page 5, the authors state that “The rationale behind this assumption is that the basic 
features of a causal relation: transitivity, asymmetry, and non-reflexivity are well 
represented by a DAG.” Absent a working definition of direct and indirect causality, it is 
not clear that these features are indeed “basic features of a causal relation.” For example, 
transitivity of causal relations is not guaranteed if one adopts a definition of causal 
relations based on functional dependencies.  
 
- In motivating the assumption of “stability” or “faithfulness,” the authors state on page 7 
that “the statistical procedure cannot differ whether this kind of independence is due to a 
particular chosen values of parameters of the underlying data-generating causal model or 
due to the causal independence of the underlying causal model.” It’s not clear what the 
authors mean by “the causal independence of the underlying causal model.” I suggest 
rewriting this paragraph. 
 
- Proposition 2.2 states that “a DAG model for X can be equivalently formulated as a 
linear recursive simultaneous equations model… .” A DAG does not assume linearity of 
the causal response functions. Indeed, the response functions can be nonparametric. 
Furthermore, one need not be concerned only with the conditional means when 
measuring causal relations. For example, it may be that the variance or a certain quantile 
of the response variable is causally affected by the cause of interest where as the mean of 
the response variable is not. The authors should clarify whether linearity holds under 



 2

normality of the error terms when interest attaches to other features of the distributions of 
the response variable other than the mean.  
In addition, proposition 2.2 claims the equivalence of a DAG and a linear recursive 
simultaneous equations model where as Remark 1 on page 8 states that “from a DAG of 
jointly normally distributed variables we may sometimes get different linear recursive 
simultaneous equations models.” The authors should reconcile these two claims. Also, I 
suggest the authors define Σ  in proposition 2.2 and explain what they mean by a 
“symmetric DAG” on page 8. 
 
- In Remark 2 on page 9, it is not clear to me what does “the DAG with the most explicit 
conditional independence” mean. 
 
- Definition 2.3 states that “if two linear causal models can always generate identical joint 
distribution, they are called observationally equivalent.” Under certain assumptions, two 
DAGs are observationally equivalent if they encode the same set of conditional 
independence relationships. They need not “generate an identical joint distribution.”  
 
- Remark 3 on page 11 states that “the change in the direction of the arrow xi → xj will 
not lead to a cycle.” In fact, I am not aware of any results that preclude a cyclic and 
acyclic “causal models” of being observationally equivalent. Rather the assumption of 
acyclicality is imposed to limit the search to the class of observationally equivalent 
acyclic models.  
Also, in Remark 3 on page 11, the authors state that “we can alter the direction of the 
arrow xi → xj to get an observationally equivalent model if xi and xj have the same parents. 
The sentence needs to be rephrased since the presence of the arrow xi → xj in a DAG 
implies that xi is a parent of xj and hence xi and xj can not have the same parents. 
In addition, on page 11 following Remark 3, the authors state that “other direction of 
edges in DAGs do not have any causal implication.” The sentence should clarify what is 
meant by “causal implication.” Does it mean implications on the resulting set of 
conditional independence relationships and hence on the class of observationally 
equivalent acyclic causal models? 
 
- On page 17, the authors state that “zero elements in the coefficient matrices Ai implies 
corresponding causal independence.” I suggest the authors define the term “causal 
independence.”  
 
- A key feature underlying the “Causal Markov” assumption and driving the results 
concerning d-separation as well as the results of section 2 and 3 in this paper is that the 
error terms in the structural equations are independent and identically distributed. This 
rather strong assumption is also crucial to the results concerning Granger Causality in 
section 4. Among other things, it implies the absence of unobserved latent variables in the 
model. In fact, the IC algorithm is no longer valid when latent variables are present. It is 
helpful if the authors discuss more explicitly the role that the assumption of i.i.d error 
terms plays.     
 
- The authors do not discuss the results in the fifth column of Table 1. 
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- In the empirical application, the greedy search algorithm yields a specific DAG 
containing information on direct and indirect causal relations among the variables of 
interest as depicted in Figure 3. The authors do not comment on the economic content of 
this DAG. Are these causal relationships plausible? How do they relate to the literature 
on wage-price dynamics? What are the economic implications of the assumptions of 
absence of latent variables, independence of the error terms, and homoskedasticity? 
Also, the authors do not explain why they restrict their sample to the range 1965:1 to 
2004:4. 
 
- Miscellaneous comments:  

- I find the paragraph following proposition 2.1 hard to read. 
- Page 9, third paragraph, first sentence: the order of listing conditional covariance 
and conditional variance does not match the order of listing their corresponding 
symbols.  

 - Typo: page 13, first sentence in section 3: should be “inferring causal relations.” 
 - Typo: proposition 4.2, second bullet, last sentence: should be “causal” and not 

“casual.” 
 - Typo: page 36, proof of lemma 7.1: need to add a bracket after Z = {z1, …,  

zm} and the parenthesis after P(x | z) ). 
- Typo: page 38, third to last sentence: should be *

2, 1k ka + + . 
 
In Conclusion, I view the attempt to adapt results on causal model selection from the 
artificial intelligence literature to the familiar structural equations setup to be worthy. I 
think this paper would be most helpful if it explicitly states the assumptions imposed and 
focuses on the time series extension and primarily on the simulation and empirical 
application.  


