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This paper presents a nice application of graph theory techniques for the identification of a 

dynamic causal model (TSCM).  Starting with Swanson and Granger (1997), a number of 

authors have demonstrated how graph-theoretic techniques, can in some cases use the data 

themselves to identify the SVAR.  These methods exploit patterns of conditional 

independence in the data.  In cases in which unique identification is not possible, they may 

nonetheless reduce the class of admissible identifying assumptions considerably.  Graph-

theoretic search algorithms work according to the following general plan:  the true 

contemporaneous correlations matrix A0 in a VAR induces a set of conditional independence 

relations among the elements of reduced form errors.  The algorithm thoroughly tests for 

conditional independence relations among the estimated reduced form errors.  It then selects 

the class of Choleski factors – perhaps unique – that is consistent with those independence 

relations. 

The main contibution of this paper is to extend the previous econometric applications of 

graph-theory in a dynamic set-up.  That is, they identify a structural VAR in terms of a 

contemporaneous causal structure as well as a temporal causal structure.  Adding the temporal 

causal structure is an important contribution to this recently developing literature.   

Major Remarks 

My only concern about this paper is on the assesment of the performance of the methodology 

developed in the paper.  The paper considers a simulation exercise for this purpose as in 

Demiralp and Hoover (2003).  That is they generate data from a variety of known 

specifications of SVARs and then address the question of how successfully A0 can be 

recovered from estimates of VARs.  However, the problem for empirical analysts is to 

evaluate the reliability of such identifications when A0, and, indeed, the entire specification of 



the SVAR is unknown.  To address this question, Demiralp, Hoover, and Perez (2007)1  

employ a bootstrap strategy.  Starting with the original data, they estimate the VAR and retain 

the reduced form residuals , t = 1, 2, .  .  .  , T..  In order to maintain the 

contemporaneous correlations among the variables, they resample the residuals by columns 

from .  The resampled residuals are used in conjunction with the coefficient estimates of 

the VAR to generate simulated data.  A large number of simulated data sets are created.  For 

each one, they run the search algorithm, record the results, and compute summary statistics.  

A similar exercise can be considered to evaluate the performance of the technique developed 

in this paper, perhaps in a follow up paper.   
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Minor Remarks 

1) On page 8, a directed acyclic graph (DAG) is told to be equivalent to a simultaneous 

equation model (SEM).  However, an SEM allows for a circular feedback whereas a 

DAG does not.  Wouldn’t a DAG rather correspond to a a seemingly unrelated 

regression (SUR) model? 

2) On page 14 (under Remarks), it is told that if the significance of the test converges to 

zero, as the number of observations goes to infinite (emphasis added).  I believe zero 

should be replaced by one.   

3) At the end of p.  16, there is an expressin i>p, and I could not find the definition for p.   

4) In footnote 21, it is admitted that the choice of one lag using SIC is very unusual.  Did 

the authors consider an alternative lag selection criteria such as AIC, and are the 

results robust to lag lenght? My experience is that AIC and SIC do not necessarily 

agree on the lag lenght and I am curious to know if the results show any sensitivity. 

 

                                                 
1 Demiralp, S., Hoover, K. and Perez, S. (2007) “A Bootstrap Method for Identifying and Evaluating a Structural 
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