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This paper uses graph theory to discuss the issue of eliciting causal re-

lations in multivariate time series data. The application of the method of

inferred causation to learn the causal relation in the observed data is the

topic of study by Pearl (200), Heckerman, Geiger, and Chickering (1995)

and others. The current paper relates this approach to develop causal mod-

els for multivariate time series data. The paper is comprised of five parts.

Part 1 is a brief introduction. Part 2 lays out the notion of inferred causation

while Part 3 briefly discusses methods for uncovering causal relations using

alternative algorithms. Section 4 relates these concepts to time series models

and Section 5 presents an application to wage-price dynamics.

The main idea behind the method of inferred causation is that causal

relations among a set of variables can be represented by a sparse directed

acyclic graph (DAG). In such a graph, the vertices represent the variables

and a directed edge connects a causal variable to an effect variable. A causal

model is then a DAG together with the conditional distributions based on

the orderings implied by the DAG. The learning of the DAG is the method

of uncovering the data generating the DAG. Consider a DAG consisting of n

variables, (x1, . . . , xn)′. A consistent model selection criterion evaluates the

model in terms of the sum of its likelihood and a penalty for the dimension-

ality of the model. Thus, statistically learning the causal order among the

variables implies searching for the most parsimonious model that can account

for the joint distribution of (x1, . . . , xn)′. Issues that must be addressed when

following this approach include the observational equivalence of alternative
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DAG models, and whether the conditional independence in a given set of

data is due to particular chosen values of the parameters or to the causal in-

dependence underlying the causal model. The authors rely on the results of

Pearl (2000) for the definition of observationally equivalent classes of DAG

models, and also for assuming that all the identified conditional indepen-

dence is due to the causal independence of the underlying causal model. The

remainder of Section 2 in the paper is then devoted to relating these notions

to linear recursive simultaneous equation models (SEM’s). In particular if

a vector (x1, . . . , xn)′ is jointly normally distributed, it immediately follows

that a DAG is equivalent to a SEM. (See Proposition 2.2.) An SEM is char-

acterized by a lower triangular coefficient matrix with 1’s on its diagonal.

A series of propositions delineates the conditions under which the causal or-

der among the variables can be inferred from the SEM. Section 3 discusses

heuristic algorithms for inferring the causal model from a given set of data.

The main results of the paper are in Section 4. This section extends

the earlier notions to multivariate time series data. Consider a sequence

of n-vectors {Xt} for t ∈ I where I is some index set. In graph theory

parlance each vertex of a DAG now corresponds to a random element Xit

for i = 1, . . . , n and t ∈ I. Since there is only one observation on Xit in a

typical time series application, many restrictions have to be imposed on the

recursive model to allow statistical inference. One restriction is a temporal

causality or measurability constraint, namely, that Xt cannot be a cause for

Xt−τ for τ > 0. A second plausible restriction is the invariance of the causal

relation between Xt+k and Xt−τ+k for any k > 0. Finally, a third restriction

is that the causal influence from past X’s to current X depends only on a

finite number of lags p. A linear recursive model of time series that satisfies

these three restrictions is called a time series causal model (TSCM). (See

2



Definition 4.1.) Under these assumptions, a TSCM can be expressed as:

A0Xt + A1Xt−1 + A2Xt−2 = ǫt, t = p + 1, . . . , T,

where E(ǫtǫ
′

t−s) = 0 and E(ǫtǫ
′

t) = D where D is a diagonal matrix. The

causal relations among the variables are expressed in terms of the restrictions

on the coefficient matrices. A0 is lower triangular and it describes the con-

temporaneous causal relations among the elements of Xt. The matrices Ai

describe the causal dependence between Xt and Xt−i, with zero elements in

the coefficient matrices Ai corresponding to causal independence. In Propo-

sition 4.2, the relationship between Granger causality and a TSCM is estab-

lished. What is required for Granger non-causality of Xk,t on Xi,t is that

Xk,t−s, s = 1, . . . , p does not have a temporal causal influence on Xi,t and

also on the predecessors of Xi,t in the TSCM. However, the paper shows that

the absence of probabilistic causation does not imply Granger non-causality.

The remainder of Section 4 is devoted to methods for recovering the TSCM

from the data. A two-step procedure is proposed whereby the contempora-

neous causal structure summarized by A0 is uncovered using the algorithms

such as the Greedy Search algorithm and the temporal causal structure sum-

marized by Ai is uncovered using the BIC criterion. Section 4.4 conducts

simulation studies to determine which causal structures can be uncovered

using the two-step procedure outlined earlier. Finally Section 5 presents an

application of this approach to the analysis of wage-price dynamics.

Comments:

• The paper presents a rigorous approach to identifying the causal struc-

ture underlying multivariate time series data and linking this approach

to the structural VAR methodology. Since structural VAR’s have pro-

liferated in the Macroeconomics literature as a way of examining the
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implications of alternative economic models or hypotheses, the paper

provides a useful contribution in terms of bridging the gap between

the method of inferred causation based on graph theoretic notions and

VAR methodology.

• The paper does not appear to provide new results on the probabilistic

causal approach. Instead it relies on Pearl (2000) and others for this

purpose.

• The paper’s contribution is to make the link from the method of inferred

causation and the DAG to simultaneous equation models (SEM’s) and

thence to time series models. This discussion is quite clear and allows

the reader to understand the relation between these approaches.

• One of the issues that I found lacking in the current approach is a closer

link to economic theorizing. Even in the economic application regarding

the wage-price spiral, the analysis was presented in terms of relatively

atheoretic Phillips curves. Given the tremendous advances made in

the macroeconomics literature in terms of modelling macroeconomic

phenomena, the argument that the Phillips curves had been derived

based on data-driven causal analysis was less than satisfactory for me.

• Another question that came to mind was the relation of this approach

to dynamic factor analysis. Much recent work in empirical Macroeco-

nomics has been concerned with identifying a small number of shocks

underlying cyclical phenomena. Giannone, Reichlin and Sala (2006)

show how more general classes of equilibrium business cycle models

can be cast in terms of the dynamic factor representation. They also

describe how to derive impulse response function for time series mod-

els which have reduced rank, that is, ones for which the number of
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exogenous shocks is less than the number of series. It would have been

of interest to see how the current approach relates to dynamic factor

models more generally.

• The paper certainly has “enough” material but does it have too much?

By the time the reader gets to Section 5, s/he is loaded down with alter-

native models and concepts. Would a re-organization of the paper help

the reader, especially the more empirically oriented one? For example,

one approach would be to present the application first and note that

standard Granger causality analysis leaves an ambiguity regarding the

causality structure underlying wage-price dynamics. This substantive

issue could then be used to motivate the relationship among DAG’s,

SEM’s and more specifically, structural VAR’s.
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