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Abstract 
This paper shows how to bootstrap hypothesis tests in the context of the Parks’s (1967) 
Feasible Generalized Least Squares estimator. It then demonstrates that the bootstrap 
outperforms FGLS(Parks)’s top competitor. The FGLS(Parks) estimator has been a 
workhorse for the analysis of panel data and seemingly unrelated regression equation 
systems because it allows the incorporation of cross-sectional correlation together with 
heteroskedasticity and serial correlation. Unfortunately, the associated, asymptotic 
standard error estimates are biased downward, often severely. To address this problem, 
Beck and Katz (1995) developed an approach that uses the Prais-Winsten estimator 
together with “panel corrected standard errors” (PCSE).  While PCSE produces standard 
error estimates that are less biased than FGLS(Parks), it forces the user to sacrifice 
efficiency for accuracy in hypothesis testing. The PCSE approach has been, and 
continues to be, widely used. This paper develops an alternative: a nonparametric 
bootstrapping procedure to be used in conjunction with the FGLS(Parks) estimator. We 
demonstrate its effectiveness using an experimental approach that creates artificial panel 
datasets modelled after actual panel datasets. Our approach provides a superior 
alternative to existing estimation options by allowing researchers to retain the efficiency 
of the FGLS(Parks) estimator while producing more accurate hypothesis test results than 
the PCSE.  
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1 Introduction 

Parks (1967) Feasible Generalized Least Squares (FGLS) estimator was designed as an efficient 
estimator for systems of equations with both serially and contemporaneously correlated 
disturbances.1 Such models include the SUR model and associated restricted forms, such as 
time-series, cross-section/panel data models. Its superior efficiency is well established (Kmenta 
and Gilbert, 1970; Guilkey and Schmidt, 1973; Messemer, 2003; Chen et al., 2010; 
Moundigbaye et al., 2018). It has been widely used and is available in many econometric 
software packages including RATS, SHAZAM, SAS, and Stata.2  

Kmenta and Gilbert (1970) were the first to note that the estimated standard errors from 
FGLS(Parks), while consistent, can be substantially biased in finite samples. More recently, 
Beck and Katz (1995) documented that the estimated standard errors for the FGLS(Parks) 
estimator have severe downward bias when the time dimension is small relative to the number 
of cross-sections.3 To address this deficiency, they recommend using a Prais-Winsten estimator 
with corresponding “panel-corrected standard errors” (PCSE).  

This approach has been widely adopted, as evidenced by more than 6,600 Google Scholar 
citations. It remains a popular estimation choice. While the PCSE approach generally involves 
less size distortion than FGLS(Parks) with asymptotic standard errors, it does not eliminate it 
(cf. Reed and Webb, 2010). This paper demonstrates that the combined use of the FGLS(Parks) 
estimator with bootstrapping constitutes an approach that is superior to the PCSE approach in 
both estimator efficiency and inference accuracy.4 

The remainder of the paper is organized as follows. Section 2 briefly introduces the SUR 
model with autoregressive errors and associated FGLS(Parks) estimator. Section 3 presents a 
nonparametric bootstrap procedure for the FGLS(Parks) estimator. Section 4 demonstrates the 
superior performance of the bootstrap procedure. It employs an innovative experimental 
approach where testing is performed on synthetic datasets designed to resemble actual datasets. 
Section 5 concludes.  

2 The SUR model and the FGLS(Parks) estimator 

The FGLS(Parks) estimator was constructed as an efficient estimator for the SUR model with 
autocorrelated disturbances,  

𝑦𝑖 = 𝑋𝑖𝛽𝑖 + 𝜀𝑖 , 𝑖 = 1,2, … ,𝑁,               (1) 

_________________________ 
1For a sampling of the extent of heteroskedasticity, cross-sectional correlation, and serial correlation in 
some widely used panel datasets, see Reed and Ye (2011). 
2The FGLS(Parks) estimator provides the framework for Stata’s xtgls procedure. 
3To see how the downward bias in FGLS(Parks) standard errors translates into coverage rate per-
formance, refer to Moundigbaye et al. (2018). 
4For a comparison of efficiency of the FGLS(Parks), PCSE and the OLS estimators, see Moundigbaye et 
al. (2018). 

http://www.economics-ejournal.org/


Economics: The Open-Access, Open-Assessment E-Journal 14 (2020–4) 

www.economics-ejournal.org 2 

where 𝑦𝑖 and 𝜀𝑖 are 𝑇 × 1 vectors, 𝑋𝑖 is 𝑇 × 𝑘𝑖, and 𝛽𝑖 is 𝑘𝑖 × 1. The N equations can be stacked 
and represented in compact form as,  

𝑦 = 𝑋𝛽 + 𝜀,                        (2) 

where  𝑦 = �
𝑦1
⋮
𝑦𝑁
�, 𝑋 = �

𝑋1 0 0
0 ⋱ 0
0 0 𝑋𝑁

�, 𝛽 = �
𝛽1
⋮
𝛽𝑁
�, and 𝜀 = �

𝜀1
⋮
𝜀𝑁
�, with 𝐸(𝜀) = 0, and 𝐸(𝜀𝜀′) = 𝛺. 

It is assumed that the disturbance vector, 𝜀(𝑡) = (𝜀1𝑡, 𝜀2𝑡 , , … , 𝜀𝑁𝑡 , )′, is generated by a 
stationary, first-order autoregressive process, 

𝜀(𝑡) = �
𝜀1𝑡
⋮
𝜀𝑁𝑡

�=�
𝜌1 0 0
0 ⋱ 0
0 0 𝜌𝑁

� �
𝜀1𝑡−1
⋮

𝜀𝑁𝑡−1
�+ �

𝜈1𝑡
⋮
𝜈𝑁𝑡

� = 𝛱𝜀(𝑡−1) + 𝜈(𝑡) , = 2,3, … ,𝑇 ,5         (3) 

where 𝛱 is an 𝑁 × 𝑁, diagonal matrix consisting of scalars having absolute value less than 1. 
Consistent with stationarity, the disturbances for the first observation, 𝜀(1), are assumed to be 
generated by 𝜀(1) = 𝐴−1𝜈(1).6 The innovations, 𝜈(𝑡), 𝑡 = 1,2, … ,𝑇 are independent and 
identically distributed random variables with 𝐸�𝜈(𝑡)� = 0 and covariance matrix 

𝐸�𝜈(𝑡)𝜈(𝑡)′� = 𝛴 = �
𝜎11 … 𝜎1𝑁
⋮ ⋱ ⋮
𝜎𝑁1 ⋯ 𝜎𝑁𝑁

�.              (4) 

In summary, the covariance model above assumes a diagonal 𝛱 matrix, with N parameters 
specifying equation-specific, first-order serial correlation; together with a symmetric 𝛴 matrix 

with 
𝑁(𝑁+1)

2
  parameters, specifying the contemporaneous covariances. 

The FGLS(Parks) estimator is represented by  

�̂�𝐹𝐹𝐹𝐹(𝑃𝑃𝑃𝑃𝑃) = �𝑋′𝑃�′�𝛴�−1⨂𝐼𝑇�𝑃�𝑋�
−1𝑋′𝑃�′�𝛴�−1⨂𝐼𝑇�𝑃�𝑦,             (5) 

and 

𝑉���̂�𝐹𝐹𝐹𝐹(𝑃𝑃𝑃𝑃𝑃)� = �𝑋′𝑃�′�𝛴�−1⨂𝐼𝑇�𝑃�𝑋�
−1,              (6) 

where 𝑃� is the Prais-Winsten transformation matrix and 𝛴� is the estimate of 𝛴 in Equation (4). 
Estimation of individual parameters is described in Judge et al. (1985, pages 485-490). Further 
details are given in the Appendix. Note that the GLS estimator for the Parks model, �̂�𝐹𝐹𝐹(𝑃𝑃𝑃𝑃𝑃), 
is identical to Equation (5) except that 𝑃� and 𝛴� are replaced with their population analogs. 

_________________________ 
5To clarify notation, notice that the vector 𝜀𝑖 contains the T disturbances for the ith equation whereas the 
vector 𝜀(𝑡) contains the N disturbances for the different equations or cross-sectional elements at time t. 
6Appendix 1 of Guilkey and Schmidt (1973) and Judge et al. (1985, p. 485-487) show how to obtain the 
elements of the matrix A. If we let 𝑉0 = 𝐸�𝜀(𝑡)𝜀(𝑡)′� for 𝑡 = 1,2, …𝑇, then from (3) and stationarity, 
𝑉0 = 𝛱𝑉0𝛱′ + 𝛴.  Guilkey and Schmidt show that this equation can be solved for the elements of 𝑉0 in 
terms of the elements of 𝛱 and 𝛴.  From 𝜀(1) = 𝐴−1𝜈(1) we have 𝑉0 = 𝐴−1𝛴(𝐴−1)′ or 𝛴 = 𝐴𝑉0𝐴′.  If H 
and B are the Cholesky factors of 𝛴 and 𝑉0, respectively, then 𝐻𝐻′ = 𝐴𝐴𝐴′𝐴′ and 𝐴 = 𝐻𝐴−1. 
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Given exogeneity and some regularity conditions, �̂�𝐹𝐹𝐹(𝑃𝑃𝑃𝑃𝑃) is consistent, efficient, and 
asymptotically normally distributed with mean vector 0 and variance-covariance matrix 
𝑝𝑝𝑖𝑝 1

𝑁𝑇 (𝑋′𝑃′(𝛴−1⨂𝐼𝑇)𝑃𝑋)−1. If the estimators of 𝑃 and 𝛴 are consistent, then �̂�𝐹𝐹𝐹𝐹(𝑃𝑃𝑃𝑃𝑃) is 
asymptotically equivalent to �̂�𝐹𝐹𝐹(𝑃𝑃𝑃𝑃𝑃) and has the same asymptotic properties. 

As a point of comparison, Beck and Katz’s (1995) PCSE estimator is given by, 

�̂�𝑃𝑃𝐹𝑃 = �𝑋′𝑃�′𝑃�𝑋�−1𝑋′𝑃�′𝑃�𝑦                (7) 

𝑉���̂�𝑃𝑃𝐹𝑃� = �𝑋′𝑃�′𝑃�𝑋�−1�𝑋′𝑃�′�𝛴�⨂𝐼𝑇�𝑃�𝑋��𝑋′𝑃�′𝑃�𝑋�
−1. 7             (8) 

3 Hypothesis testing: the bootstrap versus asymptotic-based tests 

Asymptotic-based tests. A common approach for testing linear hypotheses of the form 𝐻0:𝑅𝛽 =
𝑟 involves the Wald statistic, 

𝑔 = �𝑅�̂� − 𝑟�′�𝑅𝑉���̂��𝑅′�
−1
�𝑅�̂� − 𝑟�,              (9) 

where the restriction matrix R has q rows (the number of restrictions) and K columns (where 
𝐾 = ∑ 𝑘𝑖𝑀

𝑖=1 ).8  The test statistic, 𝑔, is asymptotically distributed as 𝜒𝑞2. As noted above, there is 
ample evidence that asymptotic-based tests for the FGLS(Parks) model do not provide accurate 
inference. Rejection probabilities tend to be substantially in excess of their nominal levels and 
confidence intervals are too small.  

Bootstrap methods can improve upon asymptotic-based tests. Horowitz (1997) and others 
have provided extensive surveys of the bootstrap literature. Horowitz (1997, p. 201) gives a 
succinct statement of the key bootstrap results:  

“The bootstrap provides a higher-order asymptotic approximation to critical values for tests 
based on “smooth” asymptotically pivotal statistics. When a bootstrap-based critical value is 
used for such a test, the difference between the test’s true and nominal levels decreases more 
rapidly with increasing sample size than it does when the critical value is obtained from first-
order asymptotic theory. Given a sufficiently large sample, the nominal level of the test will be 
closer to the true level when a bootstrap critical value is used than when a critical value based 
on first-order asymptotic theory is used.” 

_________________________ 
7While FGLS(Parks) and PCSE are widely used, there are alternatives available. For a comparative 
evaluation of the performance of the FGLS(Parks) and PCSE estimators with some alternatives, see 
Moundigbaye et al. (2018).  
8The bootstrapping approach that we propose is not limited to linear hypotheses.  Suppose that we want 
to test the set of non-linear hypotheses 𝑅(𝛽) = 0  where the non-linear function has dimension q.  The 

corresponding Wald statistic has the form 𝑔𝑁𝐹 = 𝑅��̂�𝑃�′ �
𝜕𝜕(𝛽)
𝜕𝛽′

�
𝛽�𝑃
𝑉���̂�𝑝�

𝜕𝜕(𝛽)
𝜕𝛽

�
𝛽�𝑃
�
−1

𝑅��̂�𝑃�. This Wald 

statistic has the same asymptotic distribution as its linear analog, (9), and bootstrap testing would follow 
the same steps as those outlined below. 
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Since the Wald statistic, 𝑔, is asymptotically pivotal,9 bootstrap approaches will provide 
improved accuracy compared with tests that rely on the asymptotic distribution. 

Bootstrap Procedure. Our approach builds on Rilstone and Veall (1996). They demonstrated 
improved performance for confidence intervals based on a parametric bootstrap in the context of 
a simple SUR model without serial correlation. Their paper helped to shift the focus of bootstrap 
work toward test statistics and away from standard errors, based on then-recent theoretical work 
on the bootstrap. An important contribution of this paper is the development of a non-parametric 
bootstrap for the more complicated case of a SUR model with serially correlated errors.  

Below we give the steps for implementing a bootstrap test of the null hypothesis, 𝐻0, in the 
context of a SUR model with AR(1) disturbances (i.e., the Parks model). Although the results 
that we show are based on a nonparametric bootstrap, it is useful for explanatory purposes to 
show how the nonparametric method differs from the simpler parametric method.10 

STEP 1: Estimate 𝛽𝑃 from the unrestricted model and compute the test statistic, 𝑔, from (9). 
Call this test statistic 𝑔�.  

STEP 2: Re-estimate the model under the restrictions imposed by the null hypothesis, 
𝑅𝛽 = 𝑟, to obtain 𝛽,�  𝛱�,𝛴,�  and �̃�. For the nonparametric bootstrap, we also need 𝐸� , the 𝑁 × 𝑇 
matrix of residuals based on the constrained estimates. 

STEP 3: Use the restricted estimates 𝛽,�  𝛱�, and 𝛴 �  as the parameters of the data generating 
process described by Equations (1) through (4) above, together with the restriction, 𝑅𝛽 = 𝑟, to 
generate a bootstrap sample satisfying the hypothesis to be tested.  

For a parametric bootstrap, one might start with the following: 
STEP 3a: Draw an 𝑁 × 𝑇 matrix 𝑈 = �𝑢(𝑡)� of standard normal random variables, 

𝑢(𝑡)~𝑁(0, 𝐼𝑁). 
But for the nonparametric bootstrap we rely on information contained in the collection of 

constrained residuals, 𝐸� . Using the restricted parameter estimates from STEP 2, make the 
following set of transformations to obtain a set of residuals, �𝑢�(𝑡)�, that can be treated as the 
starting point of the data generating process (DGP). Let  𝜈�(𝑡) = 𝜀(̃𝑡) − 𝛱�𝜀(̃𝑡−1) for 𝑡 = 2,3, …𝑇, 
and 𝜈�(1) = �̃�𝜀(̃1). Then let 𝑢�(𝑡) = 𝐻�−1𝜈�(𝑡), where 𝐻� is the Cholesky factor of 𝛴� .  

For the bootstrap samples to satisfy the null hypothesis, the �𝑢�(𝑡)� should have row means of 
zero, and they should be uncorrelated. If those conditions are not met, one can whiten the 
residuals by first subtracting row averages from each of the corresponding elements of �𝑢�(𝑡)�  to 
get the centered 𝑈c. Correlation among the 𝑈c rows can be eliminated by premultiplying 𝑈c by 
the transposed inverse of the Cholesky factor of 𝑈𝑐𝑈𝑐′  . Hereafter, references to the set of 
residuals, 𝑈�=�𝑢�(𝑡)� assumes that they have been whitened. 

_________________________ 
9 With regard to the Wald statistic being asymptotically pivotal, Horowitz (1997) writes, “The arguments 
in Section 2a show that the bootstrap provides higher-order asymptotic approximations to the 
distributions and critical values of ‘smooth’ asymptotically pivotal statistics. These include test statistics 
whose asymptotic distributions are standard normal or chi-square." Note that Wald statistics converge in 
distribution to chi-square, whose only parameter is the degrees of freedom.  Hence the Wald statistic is 
asymptotically pivotal because it does not depend on parameters of the model's data generating process. 
10 While not reported here, we also evaluated inferential performance using the parametric bootstrap. The 
parametric bootstrap performed marginally better than the non-parametric bootstrap. Results are available 
from the authors. 
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STEP 3a*: For a nonparametric bootstrap, we draw a sample of T �𝑢�(𝑡)� vectors with 
replacement from this empirical distribution to form the columns of U. It is the nonparametric 
counterpart to U in Step 3a above, where the sampling was from a known distribution.  

From this point onward, the remaining steps for both parametric and nonparametric 
bootstraps are the same. 

STEP 3b: Transform the columns of 𝑈 to have covariance 𝛴�; i.e., construct 𝑉� = �𝐻�𝑢(𝑡)� =
𝐻�𝑈 where 𝐻� is the lower triangular Cholesky factor of 𝛴,�  such that 𝐻�𝐻�′ = 𝛴.�  

STEP 3c: Construct the disturbance vector 𝜀(̃𝑡), where 𝜀(̃1) = �̃�−1𝜈(1) and 𝜀(̃𝑡) = 𝛱�𝜀(̃𝑡−1) +
𝜈�(𝑡) for 𝑡 = 2,3, … ,𝑇. Use these disturbances, model (2), and the restrictions implied by the 
hypothesis to be tested to generate the first bootstrap sample.  

STEP 4: Estimate parameters for the unconstrained model from the first bootstrap sample 
(b=1), compute the test statistic, g1, and store it.  

STEP 5: Repeat the process of generating a bootstrap sample, estimating the model, and 
computing the test statistic until one has B bootstrap samples and test statistics 𝑔1,𝑔2, … ,𝑔𝐵. 
Davidson and MacKinnon (2004) recommend choosing B such that when 𝛼 is the level of 
significance of the test, the product 𝛼(𝐴 + 1) is an integer, e.g. 𝐴 = 999. Estimate the 𝛼-level 
critical value for the test, 𝑔𝑐𝑐, as the (1 − 𝛼)th quantile from the empirical distribution of the 
𝑔𝑏’s. 

STEP 6: Reject 𝐻0 at nominal 𝛼 level if the test statistic computed from the original sample, 
𝑔� satisfies 𝑔� > 𝑔𝑐𝑐. Alternatively compute a p-value from STEP 5 as the fraction of the 
bootstrap samples with 𝑔𝑏 > 𝑔�.  

The above procedure can be suitably modified at STEPS 1 and 3 to deal with test statistics 
that depend on estimates of the restricted model (Lagrange multiplier tests) or on estimates of 
both restricted and unrestricted models (Likelihood ratio tests).  

4 Results from Monte Carlo experiments 

Description of experiments. In this section we perform a series of Monte Carlo experiments to 
assess the performance of the bootstrap procedure described above. To do that, we construct 
synthetic  panel  datasets  that are made to  “look like”  real datasets.  The reason  we  do  that is  

because  the Parks model  has  �𝑁
2+3𝑁
2

�  unique  parameters  in  the error  variance-covariance  

matrix. There is little guidance in how best to assign values to these parameters for the purpose 
of designing meaningful experiments.  

Beck and Katz’s simulation experiments are based on a substantial simplification of the 
error variance-covariance matrix. For example, when N=15, they reduce the number of unique 
parameters from 135 to 3 by assigning half of the panel units one variance value, the other half 
another, and setting all cross-sectional correlations the same. Further, their experiments do not 
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allow for the interaction between cross-sectional and serial correlation.11 The problem with this 
approach is that it greatly reduces the realism of the error variance-covariance matrix. This 
raises concerns about the external validity of the associated simulation results. In contrast, we 
adopt an innovative approach that assigns a unique value to every element in the error variance-
covariance matrix, along with the values of the independent variable(s) in the experimental 
DGPs. We derive these values from actual panel datasets. The details of how we do this are 
given below.  

The first dataset we work with is Grunfeld’s (1958) investment data, one of the most widely 
used panel datasets in applied econometrics (Kleiber and Zeileis, 2010)12. The dataset consists 
of annual observations of three variables for 10 U.S. firms over a 20-year period (1935-1954).13 
The dependent variable is firm gross investment in plant and equipment (I). The two 
explanatory variables are the market value of the firm at the end of the previous year (F) and a 
capital stock measure (C).  

Our procedure for creating the synthetic datasets is best illustrated by example. Suppose we 
want to generate a synthetic dataset that “looks like” the Grunfeld data, except that it has 
dimensions N=2 and T=20. We begin by extracting the data for the first two firms in the 
Grunfeld dataset. In this case, the data matrix 𝑋 consists of a constant term and the variables F 
and C. The twenty, time series values of the independent variables (F and C) are set equal to 
their actual values in the Grunfeld data. To generate artificial values for the dependent variable 
I, we multiply 𝑋 by a coefficient vector 𝛽 whose elements are obtained by regressing the I on X 
and then conforming it to the type of restriction imposed.We then add simulated error terms.  

The DGP for the simulated error terms is constructed so that the errors have the same 
nonspherical properties as residuals from a regression of the Grunfeld data. Specifically, we 
estimate Equation (2) using SUR and collect the residuals. These residuals are used to estimate 
the elements of 𝛱 and 𝛴. The estimated values are then set as the population values for the error 
variance-covariance matrix in the DGP that produces the simulated error terms. The simulated 
error terms are added to 𝑋𝛽 to produce simulated values of the dependent variable I.  

By generating a new set of error terms, multiple synthetic datasets having dimensions N=2 
and T=20 can be produced, each of which is constructed to have characteristics similar to the 
Grunfeld data. We then use these synthetic panel datasets to run experiments testing three linear 
restrictions, each having the form 𝑅𝛽 = 0:  

(10.a) 𝑅1 = [0   1   0   0   0   0 ], 

_________________________ 
11Beck and Katz (1985, pages 640f.): “Varying degrees of heteroscedasticity were simulated by setting 
the variance of the first half of the units to 1 while the variance of the second half of the units was 
experimentally manipulated. The covariance matrix of this multivariate distribution was constructed so 
that all pairs of units were equally correlated, with the degree of correlation also experimentally 
manipulated. Errors were then generated so that the variances and covariances of the errors were 
proportional to the corresponding variances and covariances of the independent variable. The errors could 
therefore show panel heteroscedasticity and contemporaneous correlation, either alone or in combi-
nation.” 
12Greene (2012, page 342) writes, “The Grunfeld investment data…are a classic data set that have been 
used for decades to develop and demonstrate estimators for seemingly unrelated regressions.” 
13We use the version of the dataset that appears in Hill, Griffiths, and Lin (2008).   
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(10.b) 𝑅2 = [0   1   0   0 − 1   0 ], and 

(10.c) 𝑅3 = �1   0   0  − 1  0   0  
0   1   0   0  − 1   0  �. 

Restriction (10.a) tests the statistical significance of a single parameter estimate: the 
coefficient on F in the equation for the first firm. Restriction (10.b) tests a linear combination of 
parameter estimates: whether the coefficient on F has the same value in the equations for the 
first and second firms. Restriction (10.c) tests multiple linear combinations of parameter 
estimates: whether (i) the constant terms are equal in the equations for the first and second 
firms, and (ii) the coefficient on F is the same in the equations for the first and second firms. 
Our experiments are designed so that the respective null hypotheses are always true. We chose 
these three restrictions because they each represent a common type of hypothesis test found in 
empirical research.   

(10.a)–(10.c) are easily modified to allow for different numbers of firms, N, in the synthetic, 
Grunfeld-type panel datasets. For these datasets, restriction matrices will have 3N columns. The 
analogs to (10.a)–(10.c) for an alternative N value are identical in the first six columns, with 
zeros in the remaining 3𝑁 − 6 columns.  

Results from synthetic panel datasets modelled after the Grunfeld data. The first three rows 
of the top panel of Table 1 (T=20) report results of Monte Carlo experiments based on the 
Grunfeld data with N=5, testing each of the restrictions in (10.a) – (10.c). Each experiment 
consists of 500 replications. The first column reports 5% critical values for the 𝜒2 distribution 
with 1 degree of freedom (Restrictions 1 and 2) and 2 degrees of freedom (Restriction 3). The 
next column reports the average critical values determined by the nonparametric bootstrap 
procedure described in Section III above. Note that these are average critical values because a 
critical value is produced for each replication, and the table summarizes the results from 1000 
replications.  

For example, in testing the significance of the coefficient for F in the equation for the first 
firm (Restriction 1), the 𝜒2 critical value with one degree of freedom is 3.841. This compares to 
an average critical value of 8.619 for the bootstrap procedure. While this is only one 
experiment, these results are qualitatively what we would expect: estimated standard errors from 
the FGLS(Parks) estimator are well-known for being biased downwards in finite samples, 
implying that that the 𝜒2 critical values will be too small. A similar pattern emerges when 
testing Restrictions 2 and 3.  

The next set of three rows repeats the experiments, except now the full set of 10 firms is 
used in creating the synthetic Grunfeld panel datasets. Note that the addition of data for the 
extra firms does more than just increase the sample size. It introduces a new set of variances and 
covariances, increasing the number of unique elements in the error variance-covariance matrix 
from 20 to 65. This exacerbates the bias in the FGLS(Parks) standard errors. While the 𝜒2 
critical values are unchanged, the bootstrapped critical values increase to reflect the greater 
imprecision caused by having to estimate additional parameters.  

The lower panel of Table 1 (T=11) repeats the previous experiments, but this time only uses 
the first 11 years of the Grunfeld data. The reason for doing this is that the finite sample bias in 
the FGLS(Parks)’s standard errors is known to increase as a function of 𝑁 𝑇⁄  (Moundigbaye et 
al., 2018). We investigate this by decreasing T to where it is just larger than the number of firms 
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(T=11, N=10), noting that the FGLS(Parks) estimator cannot be estimated when 𝑇 < 𝑁.14 The 
six rows of the lower panel report the results for N=5 and N=10. The results again correspond 
to expectations. Compared to their values in the top panel, the smaller 𝑁 𝑇⁄  values are 
associated with larger bootstrapped critical values. Note that the 𝜒2 critical values are 
unchanged. 

Table 2 calculates the Type I error rates associated with the critical values in Table 1. These 
should ideally equal 0.05, though some deviation is expected due to sampling error. Column (1) 
reports Type I error rates associated with using the GLS estimator and critical values from the 
𝜒2 distribution. This provides a benchmark for the subsequent estimators. Column (2) reports 
error rates when the FGLS(Parks) estimator is used; i.e., when the population parameters of the 
error variance-covariance matrix are replaced with their estimates and hypothesis testing relies 
on critical values from the 𝜒2 distribution. Column (3) continues to use the FGLS(Parks) 
estimator, but applies critical values from the bootstrapping procedure described in STEP 6 
above. The last column reports rejection rates associated with the PCSE estimator. In all cases, 
hypotheses are rejected whenever the sample statistic is greater than the critical value for a 
given replication. The values in the table report rejection rates for the 500 replications for each 
experiment.  

Table 1: Comparison of bootstrapped with 𝜒2 critical values 
  5% Critical Values 

N Restriction 𝝌𝟐  
(1) 

FGLS(Bootstrapped)  
 (2) 

T = 20 
5 1 3.841 8.619 
5 2 3.841 9.803 
5 3 5.991 13.786 

10 1 3.841 14.318 
10 2 3.841 24.129 
10 3 5.991 23.831 

T = 11 
5 1 3.841 17.611 
5 2 3.841 22.199 
5 3 5.991 36.485 

10 1 3.841 42.968 
10 2 3.841 32.350 
10 3 5.991 70.992 

Note: N and T correspond to the number of cross-sectional units and time periods, respectively. Restrictions 1 through 
3 are described in the text related to discussion of Equations (10.a) through (10.c). 𝜒2 critical values are for the 𝜒2 
distribution with 1 degree of freedom (Restrictions 1 and 2) and 2 degrees of freedom (Restriction 3). The 
bootstrapped critical values are averages over 500 replications for each experiment, where each experiment uses 499 
bootstrap iterations. The procedure for calculating bootstrapped critical values is discussed in Section III in the text.  

_________________________ 
14In principle, the FGLS(Parks) estimator can be calculated when T=N. However, we found that we 
sometimes encountered problems in our simulations in this case, so we set the lower bound of T=N+1. 
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Table 2: Comparison of type I error rates using 𝜒2 and bootstrapped critical values: Grunfeld data 

  Type I Error Rates 

N Restriction 
GLS(Parks) 

(1) 
FGLS(Parks) 

(2) 
FGLS(Bootstrapped) 

(3) 
PCSE 

(4) 
T = 20 

5 1 0.040 0.166 0.050 0.126 
5 2 0.042 0.174 0.050 0.112 
5 3 0.042 0.244 0.040 0.220 

10 1 0.066 0.304 0.060 0.112 
10 2 0.058 0.326 0.018 0.092 
10 3 0.056 0.444 0.044 0.262 

Mean (SD) 0.051 (0.011) 0.276 (0.105) 0.044 (0.014) 0.154 (0.070) 
T = 11 

5 1 0.056 0.240 0.028 0.094 
5 2 0.042 0.288 0.038 0.136 
5 3 0.058 0.426 0.052 0.300 

10 1 0.052 0.434 0.030 0.108 
10 2 0.062 0.480 0.048 0.184 
10 3 0.050 0.624 0.036 0.372 

Mean (SD) 0.053 (0.007) 0.415 (0.138) 0.039 (0.010) 0.199 (0.113) 

Note: N and T correspond to the number of cross-sectional units and time periods, respectively. Restrictions 1 
through 3 are described in the text related to discussion of Equations (10.a) through (10.c). Type I error rates report 
the percent of 500 Monte Carlo experiments where the null hypothesis was rejected. 

There are a number of noteworthy results here. First, rejection rates for the FGLS(Parks) 
estimator using 𝜒2 critical values range from 0.166 to 0.624. In other words, if we were to use a 
5% significance level, we would reject the true null hypothesis anywhere from 17% to 62% of 
the time. Further, as foreshadowed above, performance deteriorates markedly as N increases 
holding T constant (within each panel in the table), and as T decreases holding N constant (from 
top panel to bottom panel). In contrast, the bootstrap procedure does much better. Rejection 
rates for the bootstrap range from 0.018 to 0.060, close to the 0.05 benchmark.  

The last column provides a comparison with Beck and Katz’s PCSE estimator. As noted in 
the introduction, the PCSE procedure has been promoted as producing standard errors, and 
associated test results, that are superior to the FGLS(Parks) estimator -- though at some cost in 
efficiency. Indeed, the improved performance of the PCSE over the FGLS(Parks) estimator with 
asymptotic standard errors is evident by comparing rejection rates in Column (4) and Column 
(2), respectively. It is also evident, however, that it performs substantially worse than the 
bootstrap procedure. A comparison of Column (4) with Column (3) shows that rejection rates 
for the PCSE are further from the 0.05 benchmark than those for the bootstrap in all 12 
experiments.  

The last row in each panel reports mean and standard deviation column values across the 
different experiments for T=20 and T=11, respectively. It provides a crude measure of overall 
performance, with values closer to 0.05 indicating better overall performance. The bootstrap 
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procedure demonstrates superior inferential performance over both the PCSE estimator and the 
FGLS(Parks) estimators. In the T=20 experiments, the mean rejection rates are 0.044 versus 
0.154 and 0.276, respectively. In the T=11 experiments, they are 0.039 versus 0.199 and 0.415.  

Results from synthetic panel datasets modelled after additional datasets. In this next section, 
we perform further performance tests. The goal is to investigate whether our bootstrap 
procedure continues to perform well when tested on synthetic datasets very different from those 
based on the Grunfeld data. Whereas the Grunfeld data related a firm’s investment to its market 
value and capital stock, the next four datasets we work with relate (i) foreign aid and real per 
capita GDP growth for a set of least developed countries (LDCs) from 1960-2000; (ii) tourism 
and crime in Italian provinces from 1985-2003; (iii) taxes and growth in annual real per capital 
Gross Domestic Product (GDP) for a large cross-section of countries from 1961-2000; and (iv) 
taxes and growth in annual real per capita Personal Income data (PCPI) from US states from 
1960–1999. We chose these studies because, in addition to offering a sharp contrast to Grunfeld, 
the associated data are strongly balanced, allow a relatively large number of N and T 
combinations, and were readily available.  

The first of these studies was published by Bruckner in 2013 in the Journal of Applied 
Econometrics. It estimates the effect of real per capita GDP growth on the growth in 
development aid for 44 countries over 25 years. Accordingly, our simulated datasets are 
comprised of these two variables.15,16 We use the maximum number of time periods (T=25) 
while allowing N to take on the values 5, 10, 15, 20, and 24 across the different experiments.  

The second study was published by Biagi, Brandano, and Detotto in Economics E-Journal 
in 2012. It studies the effect of tourism on crime in 95 Italian provinces over a period of 18 
years. In addition to the dependent variable measuring crime and the key explanatory variable 
measuring number of tourists, it includes control variables for economic growth, the level of 
income, the unemployment rate, population density, a measure of educational attainment, and a 
measure of criminal “deterrence.” Accordingly, our corresponding, simulated datasets consist of 
eight variables.17,18 We again used the maximum number of time periods (T=18) while 
allowing N to take values equal to 5, 10, 15, and 17 across the different experiments.  

_________________________ 
15The regressions underlying our hypothesis tests are modelled after the regression reported in Table I, 
Column 3 on page 131 of Bruckner (2013). 
16The corresponding restriction matrices for N=2 are given by: 
(10.a’) 𝑅1 = [ 0  1   0   0 ], 
(10.b’) 𝑅2 = [ 0   1   0 − 1 ], and 
(10.c’) 𝑅3 = � 1   0   − 1   0   

0   1    0  − 1 �. 
For larger N, the Ri

  are identical in the first four columns, with zeros in the remaining 2N-4 columns.   
17The regressions underlying our hypothesis tests are modelled after the regression reported in Table I, 
Column 1 on page 13 of Biagi et al. (2012). 
18The corresponding restriction matrices for N=2 are given by: 

(10.a’’) 𝑅1 = [ 0  1   0   0   0   0   0   0   0   0   0   0   0   0   0   0], 
(10.b’’) 𝑅2 = [ 0  1   0   0   0   0   0   0   0  − 1   0   0   0   0   0   0 ], and 
(10.c’’) 𝑅3 = � 1  0   0   0   0   0   0   0  − 1  0   0   0   0   0   0   0 

 0  1   0   0   0   0   0   0   0  − 1   0   0   0   0   0   0�. 

For larger N, the Ri
 are identical in the first sixteen columns, with zeros in the remaining 8N-16 columns.   

http://www.economics-ejournal.org/


Economics: The Open-Access, Open-Assessment E-Journal 14 (2020–4) 

www.economics-ejournal.org 11 

The final two studies are datasets that were used in the Monte Carlo simulations of Reed and 
Ye, published in Applied Economics in 2011. The datasets consist of only two variables, a tax 
variable and an economic growth variable.19 In both cases, we use the maximum number of 
time periods (T=40) while allowing N to take values equal to 5, 10, 15, 20, and 25. In 
constructing synthetic panel datasets to resemble these additional datasets, we followed the 
same procedure that we described for the Grunfeld data. 

Table 3 repeats the analysis of Table 2, focusing on the Type I error rates associated with 
testing restrictions R1, R2, and R3. Panel A reports on the experiments using the synthetic 
datasets derived from the Bruckner data. As was the case with the Grunfeld datasets, hypothesis 
tests using the FGLS(Parks) estimator and 𝜒2 critical values (Column 2) generally perform 
poorly, with rejection rates ranging from 0.114 to 0.764. The latter value is not exceptional for 
the FGLS(Parks) estimator (see, for example, Table 2 in Beck and Katz, 1995; and Figures 5 
and 6 in Moundigbaye et al., 2018).  

The bootstrap (Column 3) again does much better, producing type I error rates that have a 
mean rate of 0.030 with a standard deviation of 0.010. The PCSE approach (Column 4) does 
slightly better than the bootstrap with this data set. Rejection rates have a mean value across all 
experiments of 0.044 with a standard deviation of 0.011. The fact that the PCSE can, in some 
circumstances, do very well, is not surprising (see, for example, Table 5, Columns 3 and 4 in 
Moundigbaye et al., 2018).  

Panel B of Table 3 repeats the comparison, this time using synthetic panel datasets derived 
from the Biagi et al. (2012) data on Italian crime rates. The results for the FGLS(Parks) 
estimator with 𝜒2 critical values are similar to previous results, with a mean Type I error rate of 
0.516. The corresponding Type I error rates for the PCSE approach are unacceptably large, as 
they were in Table 2, with a mean rejection rate of 0.234. The bootstrap procedure performs 
substantially better, with a mean rejection rate of 0.039.  

The last two panels report results for the experiments using synthetic datasets on taxes and 
economic growth modelled on cross-country and US state data, respectively. Once again, the 
bootstrapped FGLS estimates dominate. In Panel C, the mean rejection rate for the bootstrapped 
critical values is 0.039 with a standard deviation of 0.012. This compares to a mean of 0.065 
and a standard deviation of 0.027 for the PCSE estimator. In Panel D, the difference is more 
pronounced. The mean rejection rates for FGLS(Bootstrapped) and PCSE are 0.050 and 0.139, 
with the bootstrapped rejection rates being more tightly clustered around its mean value.  

Table 3: Robustness check: Further analysis with two additional datasets 

 

  Type I Error Rates 

N Restriction 
GLS(Parks) 

(1) 
FGLS(Parks) 

(2) 
FGLS(Bootstrapped) 

(3) 
PCSE 

(4) 
A. Aid and Growth Data: T = 25 (Bruckner, 2013) 

5 1 0.062 0.162 0.050 0.042 
5 2 0.048 0.114 0.038 0.048 

_________________________ 
19 The restrictions used with these datasets are identical to those described in the Footnote 16. 

http://www.economics-ejournal.org/


Economics: The Open-Access, Open-Assessment E-Journal 14 (2020–4) 

www.economics-ejournal.org 12 

  Type I Error Rates 

N Restriction 
GLS(Parks) 

(1) 
FGLS(Parks) 

(2) 
FGLS(Bootstrapped) 

(3) 
PCSE 

(4) 
5 3 0.058 0.122 0.042 0.042 
10 1 0.052 0.226 0.042 0.046 
10 2 0.038 0.216 0.024 0.040 
10 3 0.058 0.212 0.030 0.028 
15 1 0.052 0.338 0.030 0.048 
15 2 0.070 0.350 0.026 0.072 
15 3 0.040 0.362 0.040 0.034 
20 1 0.048 0.564 0.020 0.046 
20 2 0.034 0.598 0.016 0.042 
20 3 0.040 0.618 0.032 0.038 
24 1 0.072 0.678 0.016 0.048 
24 2 0.082 0.764 0.022 0.054 
24 3 0.046 0.764 0.024 0.028 

Mean (SD) 0.053 (0.014) 0.406 (0.236) 0.030 (0.010) 0.044 (0.011) 
B. Tourism and Crime Data: T = 18 (Biagi et al., 2012) 

5 1 0.040 0.254 0.050 0.186 
5 2 0.046 0.296 0.070 0.192 
5 3 0.048 0.436 0.062 0.340 
10 1 0.048 0.454 0.050 0.188 
10 2 0.046 0.424 0.038 0.150 
10 3 0.058 0.596 0.066 0.366 
15 1 0.056 0.568 0.014 0.168 
15 2 0.046 0.586 0.028 0.196 
15 3 0.056 0.822 0.012 0.340 
17 1 0.100 0.534 0.034 0.196 
17 2 0.100 0.512 0.034 0.162 
17 3 0.102 0.704 0.014 0.324 

Mean (SD) 0.062 (0.024) 0.516 (0.159) 0.039 (0.020) 0.234 (0.082) 
C. Cross-Country Taxes and Economic Growth: T = 40 (Reed & Ye, 2011) 

5 1 0.050 0.094 0.044 0.034 
5 2 0.034 0.080 0.040 0.074 
5 3 0.038 0.104 0.044 0.078 
10 1 0.042 0.124 0.054 0.020 
10 2 0.052 0.138 0.048 0.088 
10 3 0.026 0.136 0.044 0.068 
15 1 0.056 0.198 0.060 0.036 
15 2 0.060 0.214 0.046 0.096 
15 3 0.062 0.190 0.044 0.090 
20 1 0.044 0.206 0.036 0.028 
20 2 0.038 0.256 0.032 0.096 
20 3 0.034 0.258 0.032 0.076 
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  Type I Error Rates 

N Restriction 
GLS(Parks) 

(1) 
FGLS(Parks) 

(2) 
FGLS(Bootstrapped) 

(3) 
PCSE 

(4) 
25 1 0.066 0.298 0.022 0.036 
25 2 0.064 0.346 0.016 0.078 
25 3 0.054 0.350 0.020 0.084 

Mean (SD) 0.048 (0.012) 0.199 (0.088) 0.039 (0.012) 0.065 (0.027) 
D. US State Taxes and Economic Growth: T = 40 (Reed & Ye, 2011) 

5 1 0.048 0.138 0.066 0.086 
5 2 0.058 0.140 0.082 0.110 
5 3 0.052 0.186 0.080 0.160 
10 1 0.068 0.180 0.068 0.108 
10 2 0.048 0.168 0.060 0.116 
10 3 0.066 0.214 0.048 0.158 
15 1 0.054 0.264 0.046 0.146 
15 2 0.050 0.256 0.052 0.150 
15 3 0.060 0.342 0.052 0.196 
20 1 0.046 0.412 0.038 0.138 
20 2 0.052 0.382 0.036 0.118 
20 3 0.042 0.484 0.050 0.158 
25 1 0.046 0.510 0.024 0.126 
25 2 0.048 0.438 0.018 0.132 
25 3 0.044 0.626 0.024 0.178 

Mean (SD) 0.052 (0.008) 0.316 (0.153) 0.050 (0.020) 0.139 (0.029) 

Note: N and T correspond to the number of cross-sectional units and time periods, respectively. Restrictions 1 through 
3 are described in the text related to discussion of Equations (10.a) through (10.c). Type I error rates report the 
percent of 500 Monte Carlo experiments where the null hypothesis was rejected. 

5 Conclusion 

Although the FGLS(Parks) estimator has desirable efficiency properties both asymptotically and 
in finite samples; its poorly estimated standard errors limit its usefulness for inference. As a 
result, Beck and Katz’s (1995) PCSE approach has been widely adopted as an alternative. 
Unfortunately, the PCSE approach, while reducing size distortion, does not entirely eliminate it; 
and it is based on a Prais-Winsten estimator that is less efficient than the FGLS(Parks) 
estimator. 

This paper develops a non-parametric bootstrap procedure for testing hypotheses using the 
more efficient FGLS(Parks) estimator. We illustrate the bootstrap’s use in a number of 
experiments where we simulate panel datasets to “look like” real datasets. We show that the 
bootstrap procedure performs well with these data. While the PCSE approach sometimes also 
performs well, the bootstrap usually performs better, often substantially better.   
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Up to this point, researchers working with panel datasets where the number of time periods 
is larger than the number of cross-sections have had to give up the efficiency of the 
FGLS(Parks) estimator to obtain greater accuracy in hypothesis testing using PCSE. The 
bootstrapping procedure presented here allows researchers to retain the efficient FGLS(Parks) 
estimator and to have test results that are generally more accurate than those offered by the 
PCSE approach. 
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Appendix 

Step-by- Step Procedure for Computing the FGLS(Parks) Estimator 
 

Assume one has to estimate the panel data equation: 

𝑦 = 𝑋𝛽 + 𝑒.             (A.0) 

The FGLS(Parks) estimator with SUR residuals is implemented in 5 steps as below: 
 
Implement SUR with contemporaneously correlated disturbances. 
Estimate equation (A.0) using ordinary least squares and collect the residuals to compute the 

contemporaneous variance-covariance matrix ∑�𝑂𝐹𝐹. 

∑�𝑂𝐹𝐹 =  1
𝑇
𝛯𝑂𝐹𝐹′  𝛯𝑂𝐹𝐹 ,            (A.1) 

where  Ξ𝑂𝐹𝐹 is a TxN matrix whose columns are made of individual OLS errors.  
Construct the OLS residuals full variance-covariance matrix as a block diagonal matrix.  

𝛺�𝑂𝐹𝐹 = ∑�𝑂𝐹𝐹⨂𝐼𝑇 .              (A.2) 

The SUR estimate with contemporaneously correlated errors is given by: 

𝛽��𝐹𝑆𝜕 = [𝑋′(𝛺�𝑂𝐹𝐹−1 ⨂𝐼𝑇)𝑋]−1[𝑋′(𝛺�𝑂𝐹𝐹−1 ⨂𝐼𝑇)𝑦] .         (A.3) 

Use errors from the SUR model with contemporaneously correlated errors to estimate the 
first-order serial correlation coefficient for each equation in system (A.0). 

Ɛ� = 𝑦 −  𝑋𝛽��𝐹𝑆𝜕;             (A.4) 

and 

𝜌�𝑖 = ∑ Ɛ�𝑖𝑖Ɛ�𝑖,𝑖−1𝑇
𝑖=2
∑ Ɛ�𝑖𝑖

2𝑇−1
𝑖=1

.             (A.5) 

For t = 2, 3, …, T, and for each i, transform 𝑦𝑖 and 𝑋𝑖 series using 𝜌�𝑖.  

𝑦𝑖• = 𝑃�0𝑖𝑦𝑖    𝑎𝑎𝑎 𝑋𝑖• = 𝑃�0𝑖𝑋𝑖  ,           (A.6) 

where  

𝑃�0𝑖 = �

−𝜌�𝑖 1 0 … 0
0 −𝜌�𝑖 1 ⋱ ⋮
⋮ ⋱ ⋱ ⋱ 0
0 … 0 −𝜌�𝑖 1

�.           (A.7) 

Regress 𝑦𝑖• on 𝑋𝑖• using OLS and collect the residuals to compute the estimate ∑� of the 
contemporaneous variance-covariance matrix  ∑. 

∑� =  1
𝑇−1

𝛯′𝛯,              (A.8) 
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where Ξ is a (T–1)xN matrix whose columns are OLS residuals from the regression of 𝑦𝑖• on 𝑋𝑖•. 
Construct the full transformation matrix P�, such that:  

𝑃�𝛺�𝑃�′ =  ∑�⨂𝐼𝑇.             (A.9) 

P �has the form: 

𝑃� =  

⎣
⎢
⎢
⎡𝑃
�11 0 … 0
𝑃�21 𝑃�22 ⋱ ⋮
⋮ ⋱ ⋱ 0
𝑃�𝑁1 … 𝑃�𝑁,𝑁−1 𝑃�𝑁𝑁⎦

⎥
⎥
⎤
,         (A.10) 

where 

𝑃�𝑖𝑖 =  

⎣
⎢
⎢
⎢
⎡
𝛼�𝑖𝑖 0 0 … 0
−𝜌�𝑖 1 0 ⋱ ⋮

0 −𝜌�𝑖 1 ⋱ 0
⋮ ⋱ ⋱ ⋱ 0
0 … 0 −𝜌�𝑖 1⎦

⎥
⎥
⎥
⎤

;         (A.11) 

𝑃�𝑖𝑖 =  �

𝛼�𝑖𝑖 0 … 0
0 0 ⋱ 0
⋮ ⋱ ⋱ 0
0 0 … 0

�;          (A.12) 

𝐴 =  �

𝛼�11 0 … 0
𝛼�21 𝛼�22 ⋱ ⋮
⋮ ⋱ ⋱ 0

𝛼�𝑁1 𝛼�𝑁2 … 𝛼�𝑁𝑁

�.       (A.13) 

where A is defined as the product 𝐻′(𝐴)−1 , 𝐴 and 𝐻 are upper triangular matrices satisfying 
𝐻′𝐻 =  ∑�  and  𝐴′𝐴 =  𝑉0, and 𝑉0 is the contemporaneous variance-covariance matrix of the 
error term Ɛ�  and is defined as below. By construction, the matrix A contains initial parameters 
ensuring the stationarity of the error term in equation (A.0).  

𝑉0 =  

⎣
⎢
⎢
⎢
⎢
⎡

𝜎�11
1−𝜌�1

2
𝜎�12

1−𝜌�1𝜌�2
… 𝜎�1𝑁

1−𝜌�1𝜌�𝑁
𝜎�21

1−𝜌�2𝜌�1

𝜎�21
1−𝜌�2

2 … 𝜎�2𝑁
1−𝜌�2𝜌�𝑁

⋮ ⋮ ⋱ ⋮
𝜎�𝑁1

1−𝜌�𝑁1𝜌�𝑁

𝜎�𝑁2
1−𝜌�1𝜌�𝑁2

… 𝜎�𝑁𝑁
1−𝜌�𝑁

2 ⎦
⎥
⎥
⎥
⎥
⎤

 ;      (A.14) 

𝜎�11 =  ∑�𝑖𝑖  .          (A.15) 

It follows that:  

𝛺�−1 = 𝑃�′(∑�−1⨂𝐼𝑇)𝑃�.          (A.16) 
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Apply P� to transform 𝑦 and 𝑋 and use OLS on the transformed data to get the FGLS(Parks) 
estimator of the SUR model with contemporaneously and first order serially correlated errors. 

𝑦∗ =  𝑃�𝑦.          (A.17) 

𝑋∗ =  𝑃�𝑋.          (A.18) 

�̂�𝑃𝑃𝑃𝑃𝑃 =  �𝑋∗′(∑�−1⨂𝐼𝑇)𝑋∗�
−1
�𝑋∗′(∑�−1⨂𝐼𝑇)𝑦∗�.     (A.19) 

A consistent estimator of the covariance matrix of �̂�𝑃𝑃𝑃𝑃𝑃 is defined as: 

𝑉(�̂�𝑃𝑃𝑃𝑃𝑃) =  �𝑋∗′(∑�−1⨂𝐼𝑇)𝑋∗�
−1.       (A.20) 
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