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Abstract 
Historically, global urbanization has been an essential ingredient for national economic 
growth and beneficial social transformation. However, with the global urban population 
currently generating two-thirds of all carbon emissions, global policymakers are urging 
mayors and regional leaders to make difficult decisions to reduce the negative impacts of 
urbanization on the environment. The authors begin their examination of the implications 
of local and regional factors by applying the Dynamic Spatial Durbin Panel Data Model to 
empirically examine aspects of developing low-carbon strategies for the rapidly expanding 
size and number of the world’s urban areas. The results indicate that the contribution 
of urbanization to carbon emissions can be positively affected when regional policy 
makers collaborate to focus on spillover effects to simultaneously manage the scope, 
diversity, and complexity of economic and environmental issues from the perspective 
of creating a balance between rapid urbanization and relevant regional factors. Regional 
leaders can make a difference by creating both short-term goals and long-term strategies 
for maintaining low-carbon urbanization, nurturing regional coordination, monitoring 
and managing eco-friendly regional spillover effects, supporting low-carbon technology 
innovations, and maintaining optimal city size. 
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1 Introduction 

The world’s nations focused on both the contributions of and responsibilities inherent to 
urbanization in achieving global carbon emissions levels in the COP21 Paris Pledge for Action 
in the Paris City Hall Declaration (2015). Urban populations generate two-thirds of global 
greenhouse gas emissions. Fifty-five percent of the global population resides in urban areas, a 
percentage that is expected to increase to 66 percent by 2050 (United Nations, Department of 
Economic and Social Affairs, Population Division, 2014). According to the Paris City Hall 
Declaration (2015), advancing solutions to climate change is a shared responsibility, especially 
for those in urban areas. The undersigned mayors, governors, premiers, and other local 
government leaders committed collectively to deliver up to 3.7 gigatons of urban greenhouse 
gas emission reductions annually by 2030. Achieving this impressive goal requires that these 
leaders assume important new responsibilities for generations they have led. Especially they 
should focus on the problems of excessive carbon emission, and unplanned, unregulated 
expansion of carbon-focused development. They are currently being asked, and will most likely 
be required, to dramatically change their practices. Our research helps develop a new blueprint 
formulated via a bottom-up, rather than top-down, perspective—with a national focus—that 
reflects regional differences and synergy effects and fully embodies provincial administrative 
diversity and interregional collaboration. 

Urban leaders need new tools and knowledge to develop, utilize, and improve this new 
blueprint. They will be responsible for meeting low-carbon goals, yet there exists little scientific 
and/or research basis for designing, integrating, operating, and managing the required 
multichannel and interdisciplinary low-carbon enabling functions. Complicating their 
responsibilities is that a low-carbon blueprint must be developed in parallel with managing 
growing urbanization. People worldwide look to cities to improve their quality of life. A 
snapshot of urbanization reveals migration from rural areas to cities or towns, a phenomenon 
associated with numerous metrics: household size, changing industrial structure, new housing 
and public facilities, city size distribution, etc. Basically, urbanization creates upward pressure 
on energy consumption and carbon emissions. Our research focuses on one element of 
urbanization: its effect on carbon emissions from a conceptual framework containing four main 
elements (Figure 1).  

The inclusion of urbanization in the global environmental carbon emission mandates has 
generated intense debate, particularly regarding aspects of emerging nations’ economic 
development versus urbanization's impact on carbon emissions relative to the correlation of 
regional contributions (Zhang and Lin, 2012; Sharma, 2011; Hossain, 2011; Kasman and 
Duman, 2015). Besides, the effect of urbanization on carbon emissions is continuous and 
accumulative, presupposing a dynamic relationship between the two—a relationship that has not 
been the focus of previous studies. 

From the above, it is very meaningful to make clear the effect of urbanization on carbon 
emission from regional or continuous perspective. So this paper extends the STIRPAT model 
and, with the application of the Dynamic Spatial Durbin Panel Model, uses China as a case 
study to empirically investigate the effect of urbanization on carbon emissions. In addition, we 
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Figure 1: Conceptual framework of factors influencing carbon emissions 

 

included a new variable—city size distribution—representing the aggregation effect caused by 
urbanization (Figure 1). This is the first time this variable has been added in developing low-
carbon urbanization in regional coordination along with city size control. 

There are several reasons why we should set and utilize such models of panel data and 
spatial effects. Firstly, our research empirically investigates the dynamic relationship between 
urbanization and carbon emissions. Our panel data model has several advantages over cross-
sectional and time-series data models, including improved degrees of freedom and efficiency, 
resulting in more effective and reliable estimation of parameters. Secondly, in our models, 
urbanization is inclusive of both urban and regional areas. Carbon emissions generated in 
regional areas are not fully independent, as actions in adjacent areas can influence overall 
carbon emissions. Within urbanization the population migration and industrial transfer bring 
transboundary pollution; the spillovers of provincial government environmental regulation 
produce free-riding effect. Thus the correlation between provincial carbon emissions is 
strengthened. More specifically, as one external factor in our economic development, carbon 
emission not only spreads across regions with the change of natural climate condition, but also 
along with the development of infrastructure and communications technology stemming from 
urbanization (Liu et al., 2010; Zhouet al., 2015; Han and Xie, 2017), it is much likely to 
spatially diffuse by the way of factor flow and industrial transfer. Besides, the regional growth 
competition also indirectly leads to spatial correlation of carbon emissions. For example, in 
order to gain growth advantage one region may attract enterprise investment, promote factor 
aggregation and industrial transfer by lowering environmental or energy use intensity standards. 
This probably induces the similar behavior of local governments in the other regions. In contrast, 
their efforts to reduce carbon emission by strengthening environmental regulation and 
optimizing industrial structure can result in the free-riding behavior of neighborhood 
environment governance. And some researchers have proved that there is one kind of spatial 
spillover effect from urbanization level, economic aggregate, energy intensity, industrial 
structure and other factors (Yu et al., 2014). Therefore spatial correlation should be taken into 
account or else the estimation of model parameter is biased. And our research investigates the 
spatial correlation among these areas using the spatial econometric model. Actually the model is 
very common and widely put into use in this field (Liu et al., 2014). 
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We use China as a case study for several reasons: (1) nearly 90% of the increase in 
worldwide urban population is concentrated in Asian and African nations, with China being the 
largest developing country among them; (2) China’s total CO2 emissions at the end of 2014 was 
approximately 9 billion tons—29% of global CO2 emissions; (3) the International Energy 
Agency (IEA) perceives China's reduction in coal use in 2014 to be the main reason for the 
reduction of global carbon emissions. Therefore, the effect of Chinese urbanization on carbon 
emissions is both dramatic and representative of a growing emerging country. Using China as a 
case study provides opportunities for generating conclusions that have implications for 
formulating and implementing low-carbon urbanization strategies in countries throughout the 
world. 

2 Brief literature review 

Many researchers have investigated the relationship between urbanization and carbon emissions 
in recent years; however, as shown in Table 1, these studies have a national or international 
focus—only two studies have a regional focus without a dynamic focus (Liu et al., 2014; He et 
al., 2017). In addition, these studies can be differentiated based on their distinct methodological 
perspectives. The majority employ varieties of the STIRPAT model, varieties of Environment 
Kuznets Curve, or a combination of the two. Those using a Logarithmic Mean Divisia Index 
(LMDI) (Feng et al., 2013; Xu et al., 2014; He et al., 2005), input-output analysis (Liang et al., 
2007), or Granger Causality Test (Farhani and Ozturk, 2015) are also exhibited in a few articles. 
Furthermore, most related research builds on empirical models with similar variables related to 
population, GDP, technology, and urbanization. This research may also include additional 
variables such as trade openness, industrial structure, energy consumption structure, and 
household size. Besides, the results regarding the urbanization effect on carbon emissions are 
not entirely consistent (see Table 1). 

Our research makes several important contributions to previous studies: 
 
(1) In considering the spatial correlation of carbon emissions among provinces, this study is 

specifically focused on analyzing the effect of urbanization on carbon emissions rather than on 
conducting an extensive analysis of all influencing factors (which is more common in the 
research), thus imbuing our research with a more comprehensive analysis of how urbanization 
affects carbon emissions. 

(2) This study builds on selected variables from previous literature and, more importantly, 
includes the variable of city size distribution. In past research, the urbanization variable was 
denoted by the urbanization rate only (Fang et al., 2015; Xu and Lin, 2014; Farhani and Ozturk, 
2015; Zhang and Lin, 2012), which reflects only one aspect of the urbanization process and may 
adversely affect the result. In addition to the rate of urbanization, an important related question 
is whether changes in city size distribution affect national or regional strategies for reducing 
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Table 1: Some representative literature reviews 

Researchers Geographic range Dependent 
variables Independent variables Study model and method Basic results 

Poumanyvong and 
Kaneko (2010) 99 countries 𝐸,𝐶 𝑃,𝐴,𝑇, 𝑆,𝑈𝑈 Extended STIRPAT model Carbon emission effect of urbanization is 

positive. 

Cole and Neumayer 
(2004) 86 countries 𝐶 𝑃,𝑃2,𝐴,𝑇, 𝑆,𝐻𝑆,𝑈𝑈 EKC and Extended STIRPAT 

model 
Carbon emission effect of urbanization is 

positive. 

Lantz and Feng (2006) Canada 𝐶 𝑃,𝑃2,𝐴,𝐴2,𝑇,𝑇2,𝑈𝑈 EKC Carbon emission effect of urbanization is 
positive. 

Farhani and Ozturk 
(2015) Tunisia 𝐶 𝐶2,𝐴,𝐸,𝐹,𝑇𝑈,𝑈𝑈 

ARDL co-integration method, 
Extended STIRPAT model and 

EKC 

Carbon emission effect of urbanization is 
positive. 

Sharma (2011) 69 countries 𝐶 𝐶2,𝐴,𝑇𝑈,𝑈𝑈 Dynamic panel data model Carbon emission effect of urbanization is 
negative. 

Martínez-Zarzoso and 
Maruotti (2011) 

88 developing 
countries 𝐶 lagged 𝐶,𝑃,𝐴,𝑇, 𝑆,𝑈𝑈,𝑈𝑈2 Extended STIRPAT model and 

EKC 
There is an inverted-U shaped relationship 
between urbanization and carbon emission. 

Yu et al. (2014) Chinese regions 𝐶,𝐶𝐸 𝑃,𝐴,𝑇, 𝑆,𝐸𝑆,𝐸𝑃,𝑇𝑈,𝑈𝑈 
Extended STIRPAT model and 

Spatial econometric analysis 
models 

Carbon emission effect of urbanization is 
negative, and spillover effect of urbanization is 

positive. 

He et al.(2017) Chinese regions 𝐶 𝑃,𝐴,𝑇, 𝑆,𝐸𝑆,𝑈𝑈,𝑈𝑈2 Extended STIRPAT model and 
EKC 

There is an inverted-U shaped relationship 
between urbanization and carbon emission. 

Note: 𝐶 refers to carbon emissions. 𝑃 refers to population. 𝐴  refers to economic income. 𝑇  refers to technology. 𝑆  represents industry structure. 𝑈𝑈  refers to 
urbanization level. 𝐻𝑆  refers to the variable of household size. 𝐸 refers to the variable of energy consumption. 𝐹 refers to the variable of financial development. 
𝐸𝑆  refers to the variable of energy consumption structure. 𝐸𝑃  refers to the price of energy and 𝑇𝑈 refers to trade openness. The expressions of variables in 
different research are not identical. 
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energy consumption and carbon emissions during the urbanization process. Another possible 
variable of interest is average commuting distance, which may significantly contribute to the 
relationship between greenhouse gas emissions and city size (Bento et al., 2006; Brownstone 
and Golob, 2009; Glaeser and Kahn, 2010). An example of this logic is that compact cities 
might be greener because shorter average commutes may be the norm. Also, there are 
conflicting results regarding the relationships among city size, CO2 emissions, and the 
environmental footprints of cities (Dodman, 2009; Glaeser and Kahn, 2010; Fragkias et al., 
2013; Oliveira et al., 2014). In fact, it is unclear if large cities are more energy efficient and 
environmentally friendly than the small ones. Two recent studies of North American cities 
reached different conclusions regarding scaling relationships between city size and CO2 
emissions (Fragkias et al., 2013; Oliveira et al., 2014). In this paper, city size distribution—but 
not city size—is selected in order to measure the holistic level of city size during urbanization 
within a provincial scope. Obviously, if this important factor is overlooked, the results may be 
adversely affected. 

(3) Our research contributes to existing literature by being the first application of the 
Dynamic Spatial Durbin Panel Data Model in this field. Models currently used in this specific 
area are non-dynamic for spatial panel or dynamic for non-spatial panel data. The Dynamic 
Spatial Durbin Panel data models we use have the advantages of panel data and spatial 
econometric approach, so they cover spatial and temporal characteristics as well as spatial 
effects. We also include the spatial effects of both dependent and independent variables, making 
our investigation more applicable to global or local scope. Lastly, our methodology is dynamic, 
which has the potential to more realistically express the statistical relationship to changes in the 
continuity of carbon emissions. 

3 Methods 

3.1 Empirical models 

3.1.1 Extended STIRPAT model 

In the 1970s, IPAT model (𝐼 = 𝑃 × 𝐴 × 𝑇) was put forward by Ehrlich and Holden (1971), 
where I is environment impact, P stands for population, A denotes average wealth and T refers 
to technology level. In order to supply the gap that the IPAT equation could only be used to 
analyze the concerned factors impacting the environment proportionally, the STIRPAT model 
(𝐼 = 𝑎𝑃𝑏𝐴𝑐𝑇𝑑𝑒) was set up by York et al. (2003). In the expression, a represents the model 
coefficient; b, c and d are the coefficients for population, wealth and technology, respectively. 
And e is an error term. 

The STIRPAT model permits the addition of other variables to investigate the impact of 
urbanization on carbon emission. So its logarithmic extended form can be: 

𝑙𝑙𝐼𝑖𝑖 = 𝑙𝑙𝑎 + 𝑏(𝑙𝑙𝑃𝑖𝑖) + 𝑐(𝑙𝑙𝐴𝑖𝑖) + 𝑑(𝑙𝑙𝑇𝑖𝑖) + 𝑓(𝑙𝑙𝑈𝑈𝑖𝑖) + 𝑔(𝑙𝑙𝑈𝑆𝑖𝑖) + 𝑙𝑙𝑒𝑖𝑖         (1) 
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In Eq. (1), I denotes carbon emission, UR refers to urbanization rate, and US represents 
city size distribution. f and g are the coefficients for UR and US respectively; i and t denote the 
year and the region, respectively. The definitions of these variables are shown in Table 2. 

In addition to urbanization rate level, the new variable of urban size distribution evolves 
with the growth of urbanization. In our paper, the effect of urbanization on carbon emissions 
will be discussed from the new perspective of urban size distribution. Goldstein and Gronberg 
(1984) considered that a large city is efficient because urban public facilities and services are 
shared by a higher percentage of citizens. Also, they indicated the economies within large cities 
are better for highly specialized and socialized production and service systems. Hence these 
economies achieve greater production and life cost reductions. The new urbanization state plan 
(2014–2020) issued by the Chinese government emphasizes that there are still many 
contradictions between the population concentration in some large cities and environmental 
carrying capacity at present. Presently, many small cities have weak service systems, which may 
carry both economic and environmental costs. Therefore, a quandary exists regarding the actual 
and dominant impact of urban size distribution on carbon emissions, which requires further 
empirical analysis. 

In general, urban size can be measured directly by city's population size, economic size or 
land size, but the method of measuring urban size distribution is different from this. In his 
pioneering article, Jefferson (1939) proposed the Law of the Primate City as a generalization of 
urban size distribution in a country. In order to show city size distribution, he developed the 
urban primary index, the ratio of the size of the largest urban population to that of the second 
largest urban population in a country or region. This index has been widely used in the 
field of philosophy of urban geography. A higher value indicates a super center city 
encompassing more people and resources than other regional cities. In contrast, a lower value—
sometimes near the minimum of 1—indicates two central cities within a region that have very 
similar populations, thus weakening the degree of agglomeration of the largest city. 

Table 2: Definitions of all relevant variables 
Variables  Definition Unit of measurement 
𝑦  Total carbon emission 10,000 tons 
𝑃  Population at the end of a year 10,000 people 
𝐴  GDP per capita Yuan per capita 

𝑇  Energy intensity Ton of standard coal per 
10,000 yuan 

𝑈𝑈  Urbanization level (proportion of urban population in 
total population) Percent 

𝑈𝑆  Urban primary index (ratio of the first and second largest 
urban population size) Percent 

 
3.1.2 Static spatial panel data models with fixed effects 

There are three most classical static models of spatial econometrics, including Spatial Lag 
Model (SLM), Spatial Error Model (SEM) and Spatial Durbin Model (SDM) (Anselin, 1988; 
Anselin et al., 2008). When based on panel data we bring the fixed effects into the tree models, 
they could be set up as follows. 
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Spatial Lag Panel Data Model (SLPDM) with fixed effects: 

 𝑦 = 𝜌(𝐻𝑇⨂𝑊)𝑦 + 𝑋𝑋 + 𝜂 + 𝛿 + 𝜀                                                                               (2) 
Spatial Error Panel Data Model (SEPDM) with fixed effects: 

𝑦 = 𝑋𝑋 + 𝜂 + 𝛿 + 𝜇𝜇 = 𝜆(𝐻𝑇⨂𝑊)𝜇 + 𝜀                                                                      (3) 

Spatial Durbin Panel Data Model (SDPDM) with fixed effects: 

𝑦 = 𝜌(𝐻𝑇⨂𝑊)𝑦 + 𝑋𝑋1 + (𝐻𝑇⨂𝑊)𝑋𝑋2 + 𝜂 + 𝛿 + 𝜇 + 𝜀                                         (4) 

𝑦  is a dependent variable matrix of  𝑁𝑇 × 1and 𝑋 is an independent variable matrix of 
 𝑁𝑇 × 𝑘 , in which 𝑘  is the number of independent variables influencing carbon emission. 
 𝐻𝑇⨂𝑊  stands for Kroneker product of matrix  𝐻𝑇and 𝑊, 𝐻𝑇 is the unit matrix of  𝑇 × 𝑇, 𝑊 is 
the spatial weight matrix of 𝑁 × 𝑁, and 𝜆 is the space error coefficient measuring the spatial 
dependence of sample observations. 𝑁  and  𝑇  respectively stand for the number of provinces 
and years. Here,  𝜂 = 𝑖𝑇 ⊗ 𝑠𝐹 and 𝛿 = 𝑡𝐹 ⊗ 𝑖𝑁 both denote Kroneker product of matrix, the 
former represents the individual effect, and the later denotes the time-specific effect. 𝑖𝑇  and  𝑖𝑁   
are respectively the column vector of dimension  𝑇  and 𝑁 . 𝑠𝐹 = (𝛼1,𝛼2,⋯ ,𝛼𝑁)𝑇  and 
 𝑡𝐹 = (𝛿1, 𝛿2,⋯ , 𝛿𝑇)𝑇 respectively stand for the column vector of dimension 𝑁 for region fixed 
effects and the column vector of dimension 𝑇  for time fixed effects. ε  is the random error term 
vector, 𝑋  and 𝑋1 reflects the 𝑋's effect on𝑦, and 𝑋2 denotes spatial spillover effects.  𝜇 is the 
random error term vector with 𝐸(𝜇) = 0  and 𝐶𝐶𝐶(𝜇) = 𝜎2𝐻. 

In the formulae above, if 𝜂 is omitted,  the Spatial Lag, Error Model or Durbin Model with 
time fixed effects is formed, while if 𝛿 omitted, the Spatial Lag, Error Model or Durbin Model 
with individual or regional fixed effects is got.  

3.1.3 Generalized dynamic spatial panel data model and Dynamic Spatial Durbin Panel 
Data Models 

When the dynamic items of time dimension are added to the spatial panel data models, their 
forms become more complex. Many different forms of dynamic spatial panel models have been 
adopted, and the most generalized dynamic model can be expressed in vector form as 

𝑦𝑖 = 𝜏𝑦𝑖−1 + 𝛿𝑊𝑦𝑖 + 𝜂𝑊𝑦𝑖−1 + 𝑋𝑖𝑋1 + 𝑊𝑋𝑖𝑋2 + 𝑋𝑖−1𝑋3 +𝑊𝑋𝑖−1𝑋4 + 𝑍𝑖𝜋 + 𝜐𝑖     (5) 

𝜐𝑖 = 𝜌𝜐𝑖−1 + 𝜆𝑊𝜐𝑖 + 𝜇 + 𝜉𝑖𝜄𝑁 + 𝜀𝑖                                                                                             (6) 

𝜇 = 𝜅𝑊𝜇 + 𝜁                                                                                     (7) 

where 𝑦𝑖 represents a dependent variable matrix of  𝑁 × 1, which consists of one observation of 
the dependent variable for every spatial unit (𝑖 = 1,⋯ ,𝑁) in the sample at time  𝑡 (𝑡 = 1,⋯ ,𝑇); 
𝑋𝑖  is an independent variable matrix of  𝑁 × 𝑘 , in which 𝑘  is the number of independent 
variables, 𝑍𝑖 is an exogenous explanatory variable matrix of  𝑁 × 𝐿  and  𝑊 denotes the spatial 
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weight matrix of  𝑁 × 𝑁. A vector or a matrix with subscript 𝑡 − 1 denotes its serially lagged 
value that, when premultiplied by 𝑊 indicates its spatially lagged value. The parameters 𝜏, 𝛿, 
and 𝜂 denote the response coefficients of 𝑦𝑖−1, 𝑊𝑦𝑖and𝑊𝑦𝑖−1. The  𝐾 × 1  vectors,  𝑋1,𝑋2,𝑋3  
and  𝑋4 , indicate response parameters of the endogenous explanatory variables, and 𝜋 is the 
coefficient of 𝑍𝑖 . Besides, 𝜐𝑖  is the error term vector of 𝑁 × 1, assumed to be serially and 
spatially correlated; 𝜌 and 𝜆  are, respectively, the serial autocorrelation coefficient and the 
spatial autocorrelation coefficient. The 𝑁 × 1  vector, 𝜇 = (𝜇1,⋯ , 𝜇𝑁)𝑇 , representing spatial 
specific effects, is used to control for all spatial specific, time-invariant variables whose 
omission could bias the estimates in a typical cross-sectional study (Baltagi, 2005). Similarly, 
𝜉𝑖denotes time-period specific effects, and 𝜄𝑁 as a  𝑁 × 1  vector of ones, means to control for 
all time-specific, unit-invariant variables whose omission could bias the estimates in a typical 
time-series study. The spatial specific effects are assumed to be spatially autocorrelated with 
spatial autocorrelation coefficient 𝜅. Finally, 𝜀𝑖 and 𝜁 are vectors of disturbance terms, whose 
elements both show zero mean and, respectively, have finite variance  𝜎2 and  𝜎𝜁2. 

However, the general model of the dynamic spatial panel has identification problems and 
thus cannot be directly used for empirical research. Based on the STRPAT Model, by assigning 
different parameter values zero, various nested models are formed, including some basic spatial 
panel models such as the Spatial Lag Panel Data Model(SLPDM), Spatial Error Panel Data 
Model (SEPDM), and Spatial Durbin Panel Data Model (SDPDM). Although real data conform 
to the spatial lag or error model, the SDPDM estimation is still unbiased, which gives it a 
significant advantage over the others. In addition, the model does not limit the size of spatial 
spillover effects, is applicable to global and local scope, and also considers the spatial 
correlation of both dependent and independent variables (Elhorst, 2010). In addition, its 
dynamic format covers the time lagged dependent variable, space-time lagged dependent 
variable, or both, all of which cannot be performedby the other models. 

If set as  𝑋3 = 𝑋4 = 𝜆 = 𝜋 = 𝜅 = 0  in Eq. (5), the full form of the dynamic SDPDM 

(Elhorst et al., 2010) is as follows: 

 𝑦𝑖 = 𝜏𝑦𝑖−1 + 𝛿𝑊𝑦𝑖 + 𝜂𝑊𝑦𝑖−1 + 𝑋𝑖𝑋1 +𝑊𝑋𝑖𝑋2 + 𝛼 + 𝛾 + 𝜐𝑖                                        (8) 

In the model, vectors 𝛼  and 𝛾  denote individual fixed effects and time-fixed effects, 
respectively, which may exist at the same time. In addition, two common forms of SDPDM are 
shown below. 

Suppose 𝑋3 = 𝑋4 = 𝜆 = 𝜋 = 𝜅 = 𝜂 = 0, 

𝑦𝑖 = 𝜏𝑦𝑖−1 + 𝛿𝑊𝑦𝑖 + 𝑋𝑖𝑋1 + 𝑊𝑋𝑖𝑋2 + 𝛼 + 𝛾 + 𝜐𝑖                                                                                   (9) 

and in the event of 𝑋3 = 𝑋4 = 𝜆 = 𝜋 = 𝜅 = 𝜏 = 0, 

𝑦𝑖 = 𝛿𝑊𝑦𝑖 + 𝜂𝑊𝑦𝑖−1 + 𝑋𝑖𝑋1 +𝑊𝑋𝑖𝑋2 + 𝛼 + 𝛾 + 𝜐𝑖                                                      (10) 

From the extended STRPAT model (see Eq. (1)), which expresses the basic relationship 
among all variables, our study develops the Dynamic Spatial Durbin Panel Data Models for 
empirical investigation. If in Eq. (8)–(10) set 𝑦𝑖 = (𝑙𝑙𝐼1𝑖, 𝑙𝑙𝐼2𝑖,⋯ , 𝑙𝑙𝐼𝑁𝑖)𝑇  and 
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𝑋𝑖 = �
𝑙𝑙𝑃1𝑖 𝑙𝑙𝐴1𝑖 𝑙𝑙𝑇1𝑖
⋯ ⋯ ⋯

𝑙𝑙𝑃𝑁𝑖 𝑙𝑙𝐴𝑁𝑖 𝑙𝑙𝑇𝑁𝑖

𝑙𝑙𝑈𝑈1𝑖
⋯

𝑙𝑙𝑈𝑈𝑁𝑖

𝑙𝑙𝑈𝑆1𝑖
⋯

𝑙𝑙𝑈𝑆𝑁𝑖
�, where  𝑡 = 1,2,⋯ ,𝑇, the three different dynamic 

SDPDMs are built for empirical analysis. 

3.1.4 Direct and indirect (spatial spillover) effects of dynamic SDPDM 

In recent years, more attention has been paid to direct, indirect, and spatial spillover effects of 
the independent variables in the field of spatial econometrics (Yu et al., 2014). Thus, such 
effects analysis is applied to the specific research area of carbon emission factors for the first 
time. The brief derivation process is as follows: 

By rewriting the model as  

𝑦𝑖 = (𝐼 − 𝛿𝑊)−1(𝜏𝐼 + 𝜂𝑊)𝑦𝑖−1 +  (𝐼 − 𝛿𝑊)−1(𝑋𝑖𝑋1 + 𝑊𝑋𝑖𝑋2) + (𝐼 − 𝛿𝑊)−1𝜐𝑖 +

 (𝐼 − 𝛿𝑊)−1(𝛼 + 𝛾)                                                                                                (11) 

and the matrix of partial derivatives of 𝑦 for the 𝑘th independent variable in matrix 𝑋 from 
individual 1 to 𝑁  at a time point can be 

� 𝜕𝜕
𝜕𝑥1𝑘

,⋯ , 𝜕𝜕
𝜕𝑥𝑁𝑘

�
𝑖

= (𝐼 − 𝛿𝑊)−1(𝑋1𝑘𝐼𝑁 + 𝑋2𝑘𝑊)                                                                    (12) 

In Eq. (12) the partial derivatives represent, in the short-term, the effects of a changing X  in a 
particular spatial unit on the dependent variables of all other units. In the same manner, the 
long-term effects are seen as 

� 𝜕𝜕
𝜕𝑥1𝑘

,⋯ , 𝜕𝜕
𝜕𝑥𝑁𝑘

� = [(1 − 𝜏)𝐼 − (𝛿 + 𝜂)𝑊]−1(𝑋1𝑘𝐼𝑁 + 𝑋2𝑘𝑊)                                            (13) 

In Eq. (12), when 𝛿 = 𝑋2𝑘 = 0, there are no short-term indirect effects.And in Eq. (13) the 
long-term indirect effects do not exist when both  𝛿 = −𝜂  and  𝑋2𝑘 = 0 . So the Dynamic 
Spatial Durbin Model can be utilized to ascertain short- and long-term direct or indirect (spatial 
spillover) effects, and in this respect, it is an ideal model. Although the direct and indirect 
effects are different for various units of the sample, LeSage and Pace (2009) showed that the 
direct effect can be calculated by the mean diagonal elements and the indirect effect by the 
mean row sum of non-diagonal elements. So there are further equations to express the effects. 
The equations of short-term direct and indirect effects are [(𝐼 − 𝛿𝑊)−1(𝑋1𝑘𝐼𝑁 + 𝑋2𝑘𝑊)]𝑑 
and[(𝐼 − 𝛿𝑊)−1(𝑋1𝑘𝐼𝑁 + 𝑋2𝑘𝑊)]𝑟𝑟𝑟𝑟 respectively. And the equations of long-term direct and 
indirect effects are [((1 − 𝜏)𝐼 − (𝛿 + 𝜂)𝑊)−1(𝑋1𝑘𝐼𝑁 + 𝑋2𝑘𝑊)]𝑑 and [((1 − 𝜏)𝐼 −
(𝛿 + 𝜂)𝑊)−1(𝑋1𝑘𝐼𝑁 + 𝑋2𝑘𝑊)]𝑟𝑟𝑟𝑟 respectively. In the expressions above, 𝑑  denotes the 
average value of diagonal elements and  𝑟𝑠𝑟𝑟  indicates the average row sum of non-diagonal 
elements. 
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3.2 Spatial econometric methodology 

3.2.1 Spatial autocorrelation test 

In order to test whether the attribute value of a certain element is associated with that of the 
adjacent space point significantly, the global spatial index (Moran's I) is used to describe the 
overall spatial distribution of carbon emissions. And the local spatial index (LISA) is applied to 
grasp the heterogeneity of spatial elements.In essence, LISA, named local Moran's Iby Anselin 
(1995), divides Moran's I into each region unit. 

3.2.2 Spatial weight matrix 

We chose the spatial matrix with the inverse distance square method, 

𝑊𝑖𝑖 = �1 𝑑2⁄     𝑖 ≠ 𝑗
  0          𝑖 = 𝑗 

which denotes that the decrease in mutual influence accelerates with the increase of interlocal 
distance. Here,  𝑑 stands for Euclidean distance between the centers of the provinces 𝑖 and  𝑗, 
which can be measured using Geoda software according to the electronic map of 1:4,000,000 
provided by National Geographic Information System website.  𝑊 is standardized after every 
element value being divided by the sum of its row, which makes the sum of element value in 
every row 1.  

3.3 Data sources and estimation method of CO2 emissions 

With reliability, integrity and consistency of primary concern, this research casts China as a test 
case and utilizes its panel data of 29 provincial administrative regions from 2002 to 2013 (Hong 
Kong, Macao, Taiwan, Qinghai, and Tibet not being included because of their incomplete data). 
These data are collected from China Statistical Yearbooks, China Energy Statistical Yearbooks, 
and the provincial statistical yearbooks published by the China National Bureau of Statistics. 

In addition, the panel data focus only on carbon emissions caused by human activities, 
which is approximately 90% of the total. Three methods for calculating fossil fuel combustion 
emissions of stationary and moving sources have been introduced by IPCC, and in this paper the 
first method is used to measure CO2 emissions because of its universal acceptance despite its 
(more or less) lack of accuracy. This technique is based on fuel quantity and the default 
emission factor. 

3.4 Estimator of empirical models 

A number of methods for estimating dynamic spatial panel data models are available (i.e., bias-
correct the maximum likelihood (ML) or quasi-maximum likelihood (QML) estimator, 
instrumental variables or generalized method of moments (IV/GMM), Bayesian Markov Chain 
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Monte Carlo (MCMC) method, etc.). However, in these methods the bias of 𝛿, which is the 
coefficient of 𝑊𝑦𝑖 in the model, becomes a problem. Not every method can deal with the bias 
effectively, but the ML and QML estimators can be widely considered to be bias-correct. Yu et 
al. (2008) constructed one bias corrected estimator for the Dynamic Spatial Panel Data model 
with 𝑦𝑖−1, 𝑊𝑦𝑖, 𝑊𝑦𝑖−1 and spatial fixed effects. The research was extended to include fixed-
time effects by Lee and Yu (2010). 

This paper takes 29 provincial administrative regions' datafrom 2002 to 2013 in China as 
sample. And its finite sample property may affect the validity and consistency of parameter 
estimation, which has been proved by some researchers (Lee and Yu, 2010). In this case，by 
reparameterization and data transformation, Yu et al. (2012) developed the consistency and 
asymptotics of the QML estimators and also proposed bias correction for QML estimates. For 
the QML estimators, Yu et al. see that they have some biases, but the bias corrected estimators 
reduce those biases onaverage, even when T is relatively small. It has been proved by a Monte 
Carlo experiment (Yu et al., 2012). Therefore such kind of method has been used in our 
research. 

Furthermore, supposing that there is significant spatial correlation, the finite sample 
properties of fixed effect test still need to be improved. In order to enhance the performance of 
fixed effect test, it is necessary carry out both LM test and Robust LM test for the panel models 
at the same time. 

4 Results and discussion 

4.1 Multicollinearity test for panel data 

A variance inflation factor (IF) was utilized to test the multicollinearity. Freund et al. (2006) 
indicated that if 0<VIF<10, multicollinearity is acceptable; if 10 <VIF<100, it implies 
multicollinearity; and if VIF<100, there is strong multicollinearity. Because the VIF of all 
variables in Eq. (1)are less than 4, the multicollinearity in our model is acceptable. 

4.2 Non-spatial panel model test 

4.2.1 Panel unit root test and panel co-integration test 

In order to determine whether the selected sample data is suitable for the spatial econometric 
model, we should carry out a series of tests based on the assumed non-spatial forms of our 
models firstly and then check whether the residuals are spatially correlated. This would be 
‘good practice’ as Gibbons and Overman (2012) put it. 

In order to avoid the pseudo-regression and ensure the validity of estimated results, it is 
necessary to verify the stationarity of each panel sequence. Based on the four most common 
methods of panel unit root test, the results are shown in Table 3, which indicate that the original 
hypothesis of the unit root is rejected. And so all the sequences are stable. 
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Since all the variables were stationary at the first difference, Pedroni test (1999, 2004) and 
Kao test (1999) are used to estimate panel cointegration. Table 4 shows the cointegration test 
results. All statistical tests are significant, rejecting the null hypothesis (that is, without 
cointegration). 

Table 3: Results of the panel unit root test on main variables 

Variable 
Test type 

( C，t，k) 

LLC test Fisher-ADF test Breitungtest IPS test 

Statistic P Statistic P Statistic P Statistic P 

𝑦 (C, 0, 0) 
-

10.3436 
0.0000 14.6035 0.0000 -5.6289 0.0000 -4.2902 0.0000 

𝑃 (C, 0, 0) -7.1905 0.0000 12.8851 0.0000 -6.0671 0.0000 -6.3841 0.0000 

𝐴 (C, 0, 0) -6.2665 0.0000 11.4679 0.0000 -5.9118 0.0000 -8.5837 0.0000 

𝑇 (C, 0, 0) -8.5393 0.0000 13.0215 0.0000 -3.7166 0.0001 -2.9247 0.0017 

𝑈𝑆 (C, 0, 0) -6.4734 0.0000 12.3430 0.0000 -6.9260 0.0000 -8.6858 0.0000 

𝑈𝑈 (C, 0, 0) -3.0666 0.0011 10.4081 0.0000 -6.6694 0.0000 -10.6946 0.0000 

Note: C, t and k indicate respectively constant term, time trend term and lag length k; the optimal lag lengths are 
obtained automatically with the Schwarz information criteria (SIC). 

Table 4: Panel cointegration test results 

Test method Statistic P 

Pedroni test 
Modified Phillips-Perron statistic 6.9947 0.0000 

Phillips-Perron statistic -4.4246 0.0000 
Augmented Dickey-Fuller statistic -4.2923 0.0000 

Kao test Augmented Dickey-Fuller statistic -4.6937 0.0000 

4.2.2 F test and Hausman test 

The panel data model usually comes in three forms, including Pooled Regression Model, Fixed 
Effects Regression Model and Random Effects Regression Model. On the one hand, in this 
section F test was used to determine whether our model may belongto Pooled Regression Model 
or Fixed Effects Regression Model. And its test result (F=544.59，P=0.0000) indicates that the 
latter model is more reasonable. On the other hand, according to the Hausman test result (chi-
square=25.02，P=0.0001), it can be proved that Fixed Effects Regression Model is more 
suitable for our research than Random Effects Regression Model. 
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4.3 Spatial panel data model identification 

4.3.1 LM test 

Table 5: LM test and Robust LM test for the panel models 

Test method Time fixed effect Regional fixed effect Time and regional fixed effect 

LM-lag 4.2412*** 1.1705 3.9853** 
Robust LM-lag 5.6230*** 6.5400*** 4.0477** 

LM-err 2.3115* 4.4362*** 2.7228* 

Robust LM-err 2.9933** 7.8057*** 2.7852* 

Note: * indicates significance at 10% level; ** indicates significance at 5% level; *** indicates   significance at 1% 
level. 

 
From the above, it can be concluded that the assumed non-spatial panel models belong to 

Fixed Effects Regression Models.And then they may have three basic forms, which respectively 
cover time fixed effect, regional fixed effect, and time and regional fixed effect. Based on the 
three kinds of models, classic LM test and Robust LM test both are utilized to ascertain whether 
the spatial correlation is involved in the models (Anselin et al., 2008). As shown in Table 5, 
almost every test is passed significantly and so we reject the null hypothesis that there is no 
spatial lagged term or spatial error term for the panel data. It can be seen that the spatial lagged 
and spatial error models are more appropriate for data analysis than the non-spatial panel 
models. 

4.3.2 Spatial autocorrelation test 

As shown in Figure 2, the Moran's I indexes did not fluctuate significantly and remained above 
0.15 from 2003 to 2013; their significance levels are always less than 5%. Total carbon 
emissions of provinces have a relatively strong positive correlation as a whole. That is, the 
provinces with higher emissions are closer to each other, as are the provinces with lower 
emissions. Also, the spatial scatters of carbon emissions are not fully independent, and the 
carbon emissions of one province can be influenced by those of its neighboring regions. 

We use Geoda to draw LISA clustering maps of carbon emissions for each of the provinces 
in 2000, 2005, 2010, and 2013, as shown in Figures 3–6. P-values for the colored regions in the 
four LISA clustering maps are all less than 0.01 except the blank regions don't pass the 
significance test. Figures 3–6 show, to some extent, heterogeneity and dependence of spatial 
dimension between the carbon emissions of provinces (which cannot be ignored). The provinces 
with substantial local spatial correlation present a characteristic of obvious regularity. The 
emissions distributions (HH, HL, LH and LL agglomeration areas) have changed little through- 
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Figure 2: Moran's I indexes of provinces' carbon emissions from 2003 to 2013 

 
 
out the period. More specifically, most of the hot spots with higher local Moran's I indexes are 
located in the provinces of Jiangsu, Shandong, Hebei, Shanxi, Henan, Liaoning, and 
Inner Mongolia. They are relatively concentrated geographically—located mainly in thenorth, 
northeast, and east of China. These provinces and their surrounding regions all have relatively 
high carbon emissions. Meanwhile, the blind spots of the LL agglomeration area are largely 
distributed in Qinghai, Guizhou, Guangxi, and Hainan. These provinces and their neighboring 
regions all have low carbon emissions. Provinces within the hot spots or blind spots have 
smaller spatial differences and stronger positive correlations for carbon emissions than the 
others. Provinces such as Jilin and Tianjin (surrounded by the hot spots) are in the LH 
agglomeration area and, in most years, have lower carbon emissions than regions adjacent to 
them. Guangdong, because of its faster economic development, emits more carbon than its 
neighboring regions of Guangxi, Jiangxi, and Hunan (HL agglomeration). HL agglomeration 
and LH agglomeration show a negative spatial autocorrelation. For the other blank regions in 
the LISA, clustering maps don't pass the significance test, which means the correlations of 
carbon emissions between the provinces and their neighbors are weak for a number of reasons. 
For example, energy data for Tibet is unavailable, which is partly responsible for 
the (statistically) non-significant results of its surrounding provinces. Also, Jiangxi, Fujian, 
Hubei, and Hunan border on provinces with much higher or lower carbon emissions, so there 
are no clear or significant correlations between them. The root cause may be the imbalance of 
economic development and energy consumption within these areas. 

4.3.3 LR test and Wald test 

In fact, according to the test results in Table 5, not only the existence of spatial correlation in the 
empirical models can be verified, but also the choice of model between SLPDM and SEPDM 
can be made. Despite all that, it is still not confirmed that the following estimated results can be 
very satisfactory for the empirical research, and sometimes the spatial lagged term and spatial  
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Figure 3: LISA clustering map of provinces' carbon emissions 
in 2000 

Figure 4: LISA clustering map of provinces' carbon emissions 
in 2005 

 
 

 

Figure 5: LISA clustering map of provinces' carbon emissions 
in 2010 

Figure 6: LISA clustering map of provinces' carbon emissions 
in 2013 

  
Note: Every map above  is not a complete map of the People's Republic of China, only those provinces used for this 
research analysis; the energy data for Tibet is unavailable. 
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error term can be coexisting. In such case, since SLPDM and SEPDM are nested in SDPDM, 
SDPDM could be estimated beforehand and then by LR and Wald test it is determined whether 
the model can be simplified to the form of SLPDM or SEPDM. Such a kind of econometric 
modeling process adopts the “general-to-specific approach”. In contrast, there is another one- 
“Specific-to-General approach.” 

In addition, besides the static form as shown by Eq. (4), SDPDM has the dynamic forms, 
which should also be taken into consideration in order to reinforce the selected models' 
explanatory power. The three kinds of dynamic forms have been expressed by Eq. (8)–(10). So 
for the following study there are four kinds of static or dynamic Durbin Models to be estimated. 
As shown in Table 6, the results of joint significance test (LR test) denote that all the models 
should only cover time effect. And then based on the selected models with time fixed effect, 
depending on the LR and WALD test results shown in Table 7, it is determined that SDPDM for 
the paper cannot be simplified to the form of SLPDM or SEPDM. In other words, for the 
following empirical analysis, the four kinds of SDPDMs with time fixed effect are more 
appropriate than the others. 

The empirical analysis was conducted by estimating the four Spatial Durbin models, with 
results reported in Table 8. Looking first at 𝑈2  and log-likelihood of the models, the fit to 
models (2), (3) and (4) is slightly better than to Model (1). Moreover, when comparing all the 
estimated coefficients and significance levels, the Dynamic Spatial Durbin Panel Data Model 
with time fixed effect and time lagged dependent variable (i.e., Model (2)), is better than Model 
(3) and (4). Thus only its results will be discussed below. 

Table 6: Joint significance test (LR test) for regional or time effect 

Model type Fixed effect type T-stat DOF P 

Static Spatial Durbin Panel 
Data Model 

Regional fixed effect 12.14 29 0.2760 

Time fixed effect 58.39 12 0.0000 

Dynamic Spatial Durbin 
Panel Data Model 
with time lagged 

dependent variable 

Regional fixed effect 10.45 29 0.4017 

Time fixed effect 45.21 12 0.0000 

Dynamic Spatial Durbin 
Panel Data Model 

with space-time lagged 
dependent variable 

Regional fixed effect 11.55 29 0.3166 

Time fixed effect 53.78 12 0.0000 

Dynamic Spatial Durbin 
Panel Data Model 

with both time lagged and 
space-time lagged 
dependent variable 

Regional fixed effect 10.30 29 0.4142 

Time fixed effect 44.92 12 0.0000 
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Table 7: LR and WALD test results of static and dynamic SDPDMs 

Model type LR-Spatial-Lag 
T-stat 

LR-Spatial-Error 
T-stat 

Wald-Spatial-Lag 
T-stat 

Wald-Spatial-Error 
T-stat 

Static Spatial Durbin Panel 
Data Model 23.02*** 21.13*** 25.98*** 24.19*** 

Dynamic Spatial Durbin 
Panel Data Model with time 
fixed effectand time lagged 

dependent variable 

15.12*** — 16.10*** 55.72*** 

Dynamic Spatial Durbin 
Panel Data Model with time 
fixed effectand space-time 
lagged dependent variable 

21.44*** — 21.95*** 73.87*** 

Dynamic Spatial Durbin 
Panel Data Model with time 

fixed effectand both time 
lagged and space-time lagged 

dependent variable 

15.39*** — 16.37*** 59.37*** 

4.3.4 Dependent variable of carbon emissions 

Figure 7: The growth rate of carbon emissions in China from 1995 to 2013 

 
Source: The total carbon emissions are calculated using data from the China Statistical Yearbook published by 
Chinese government. 
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Table 8: Estimates of static or dynamic SDPDMs with time fixed effect 

Variable 

Model (1) Model (2) Model (3) Model (4) 

Static Spatial Durbin 
Panel Data Model 

Dynamic Spatial Durbin 
Panel Data Model with time 
fixed effect and time lagged 

dependent variable 

Dynamic Spatial Durbin 
Panel Data Model with time 
fixed effect and space-time 
lagged dependent variable 

Dynamic Spatial Durbin Panel 
Data Model with time fixed effect 
and both time lagged and space-
time lagged dependent variable 

Coefficient T-stat Coefficient T-stat Coefficient T-stat Coefficient T-stat 

𝑙𝑙(𝐼)−1 - - 0.089*** 4.82 - - 0.087*** 4.720 
𝑊 ∗ 𝑙𝑙(𝐼)−1 - - - - 0.048 0.810 -0.027 -0.460 
𝑊 ∗ 𝑙𝑙(𝐼) -0.291*** -2.430 0.260*** 2.080 0.312*** 2.450 0.254*** 2.020 
𝑙𝑙(𝑃) 0.971*** 46.930 0.938*** 41.890 0.975*** 44.910 0.938*** 41.860 
𝑙𝑙(𝐴) 1.069*** 31.910 1.029*** 29.580 1.063*** 30.260 1.034*** 29.14 
𝑙𝑙(𝑇) 1.217*** 35.140 1.155*** 31.080 1.201*** 32.570 1.158*** 30.810 
𝑙𝑙(𝑈𝑈) -0.301*** -4.660 -0.315*** -4.850 -0.304*** -4.560 -0.319*** -4.89 
𝑙𝑙(𝑈𝑆) 0.139*** 3.150 0.106*** 2.370 0.123*** 2.700 0.107** 2.390 

𝑊 ∗ 𝑙𝑙(𝑃) 0.259** 2.020 0.242** 1.830 0.254** 1.890 0.248** 1.870 
𝑊 ∗ 𝑙𝑙(𝐴) 0.613*** 3.800 0.481*** 2.880 0.582*** 3.460 0.494*** 2.930 
𝑊 ∗ 𝑙𝑙(𝑇) 0.639*** 3.260 0.491*** 2.440 0.581*** 2.840 0.508*** 2.500 
𝑊 ∗ 𝑙𝑙(𝑈𝑈) -0.643*** -3.680 -0.614*** -3.410 -0.702*** -3.800 -0.605*** -3.340 
𝑊 ∗ 𝑙𝑙(𝑈𝑆) 0.487*** 3.090 0.399*** 2.450 0.440*** 2.590 0.415*** 2.490 

𝜎2 0.0458 0.0479 0.0503 0.0480 
𝑈2 0.9645 0.9714 0.9655 0.9719 

log-likelihood 40.1977 51.3215 45.6062 51.1148 

Note: * indicates significance at 10% level; ** indicates significance at 5% level; *** indicates significance at 1% level; subscript -1 indicates the 
variable's serially lagged value. 
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The estimated coefficient for 𝑙𝑙(𝐼)−1equals 0.089 and is statistically significant at the 1% 
level, which indicates that previous carbon emission shave a positive and significant impact on 
current carbon emissions. To be more precise, with 1% change of  𝐼−1 the carbon emission 
moves 0.089%. In Figure 7, despite declining for a very few years, carbon emissions in China 
grew from 4.06 to 12.46 billion tons at an average annual rate of 6.54%. Its year-on-year growth 
rate fluctuated between 0% and 10%, although it did reach 16.07% in 2004 and 17.35% in 2005. 
The trend line shows a continuous, progressive, and stable growth of carbon emissions over 
time, clearly showing that energy conservation and emissions reduction activities are continuous 
and cumulative, and their effect exhibits different pathways both in the current and following 
periods. 

In addition, the coefficient for 𝑾∗ 𝒍𝒍(𝑰)  is 0.260 at the significance level of 1%, indicating 
that increasing the carbon emissions of one province may lead to more carbon emissions in 
neighboring provinces. Carbon emissions of adjacent regions are correlated with each other, and 
successfully controlling carbon emissions in one province also drives the control of carbon 
emissions in neighboring provinces. 

4.3.5 Independent variable of urbanization rate 

The estimated coefficient for 𝑙𝑙(𝑈𝑈) is –0.315 and is statistically significant at the 1% level, 
implying that 1% increase of 𝑈𝑈may lead to 0.315% reduction in carbon emission. In fact, 
eachcoefficient of independent variables in Eq. (1) is interpreted as an elasticity between its 
corresponding independent variableand the dependent variable of carbon emission.Besides, the 
coefficient for 𝑊 ∗ 𝑙𝑙(𝑈𝑈) is –0.614 at the same significance level. In general, accelerating the 
rate of urbanization limits the increase of carbon emissions in both the local and neighboring 
regions. This result does not mean we forecast that an increase in the rate of urbanization will 
always be followed by a reduction in carbon emissions; urbanization is a complex construct 
having many factors, with the urbanization ratio being just one measurement of the aggregation 
of urban population. Many urbanization factors either directly or indirectly inhibit or promote 
carbon emissions in local or adjacent regions. These can be formed into a complete effect as 
shown by the statistical results. 

The urbanization rate has increased from 17.92% in 1978 to an all-time high of 54.77% in 
2014, accelerating significantly from the end of 1995 (Figure 8). In addition, urbanization may 
lead to higher or lower energy consumption and carbon emissions in different areas including 
household, production, and government policy. The final displayed effects depend on the 
balance between positive and negative effects. According to ecological modernization theory, 
researchers considered the existence of an inverted U-shape relationship between pollution per 
capita and urbanization (Ehrhardt-Martinez et al., 2002; York et al., 2003), and with increased 
urbanization, the correlation will change from positive to negative. The relationship between 
urbanization and carbon emissions may be positive or negative at certain stages depending on 
the resultant from different impacts of promoting or reducing carbon emissions caused by 
differentiated factors, some of which have strong spatial spillover effects. 
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Figure 8: Urbanization rate and average family size in Chinafrom 2000 to 2013 

 

 
First, household size is trending downward in China, with the average household size falling 

from 3.44 in 2000 to 2.98 in 2013 (Figure 8). In contrast, the urbanization rate always shows 
rapid growth. Household size is generally thought of as an important determinant of household 
carbon emissions because larger household size tends to create economies of scale (Dey et al. 
2007; Baiocchi and Minx, 2010; Jones and Kammen, 2011; Weber and Matthews, 2008; Tukker 
et al., 2010; Gough et al., 2011). When more people share a dwelling, they also share energy 
consuming appliances, thus consuming less energy for heating, cooling, and cooking than single 
occupants (Tukker et al., 2010). 

Second, urbanization could influence the development of some industries and industrial 
structure. The co-evolving movement of people from rural to urban areas is associated with 
industrialization. Figure 9 shows that the proportion of primary industry's added value to GDP 
has declined from 19.9% in 1995 to 9.5% in 2014, with a similar reduction in agriculture's 
proportion of employment. The change in the proportion of industry’s added value to GDP is 
relatively small and stable, fluctuating around 40%, despite a slightly declining trend after 2006. 
This does not diminish industry’s dominance constrained by the present developing stage of 
urbanization. In contrast, the proportion of tertiary industry has increased from 33.4% in 1995 to 
47.7% in 2014. The rising trend of construction’s added value to GDP has been more noticeable 
in recent years. Overall, tertiary industry has the lowest energy intensity when compared to 
industry and construction. Industrial adjustment, which is partly related to urbanization, affects 
carbon emissions in different ways. With the increase of industrial employment, agriculture's 
share of employment has dropped from 52.22% in 1995 to 29.50% in 2014 (Figure 9). On one 
hand, agricultural operations are mechanizing, resulting in a need for fewer employees. Modern 
industry and manufacturing is becoming less labor intensive and consumes more energy per unit 
of output (Jones, 1991). On the other hand, the movement of people and industry to cities has 
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Figure 9: Industrial structure and agriculture's proportion of employment in China from 1995 to 2014 

 
   Source: China Statistical Yearbook 

 
resulted in rapid urbanization (both in acreage and number of cities) most likely promoting 
construction of industrial and residential housing, urban infrastructure and municipal 
conveyance projects, and increasing investment in, and demand for, building materials, 
metallurgy, and equipment, real estate, finance, and insurance and logistics. This is partly 
explained by the proportion of construction and tertiary industry increasing at different rates. 
Clearly, the development of the service industry (partly driven by urbanization) has and will 
continue to play an increasingly-important role in energy-saving work. 

Third, urbanization may result in lower levels of energy consumption since cities benefit 
from energy efficiencies via economies of scale by providing and encouraging people to live in 
high-rise buildings and use public transit networks or less energy intensive modes of 
transportation. 

Fourth, urbanization may help to increase the incomes of both urban and rural residents, 
thus encouraging the consumption of more energy. The concentration of rural population, 
information, capital, technology and other factors of production in cities has resulted in 
remarkable development of the factor market (e.g., labor market) due to scaling effects. Urban 
residents have more job opportunities and higher income, especially with expansion of urban 
service industries. Moreover, the transfer of surplus rural labor to cities and towns helps grow 
consumer markets for agricultural products. On the other hand, upgrading the consumption 
structure and expanding the consumption area are accompanied by the disposable income 
growth, all of which affects energy consumption and carbon emission in different ways. 

Fifth, during periods of accelerated urbanization, the government can make enterprises 
reduce carbon emissions by crafting and implementing corporate and public policies governing 
the environment and industrial development. Moderately stable environmental control policies 
can strengthen technical innovation, and enterprise production can evolve into clean production 
in order to reduce carbon emissions. 
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4.3.6 Independent variable of urban primary index 

The estimated coefficient of  𝑙𝑙(𝑈𝑆)  is 0.106 at a significance level of 1%, while that of 
 𝑊 ∗ 𝑙𝑙(𝑈𝑆)  is 0.399 at 1%, showing that the urban primary index is positively correlated with 
carbon emissions, and also showing positive spatial spillover effects. In Figure 10, both carbon 
emissions and the average urban primary index increased from 2002 to 2013. Specifically, the 
increase of the urban primary index means the agglomeration effect is being fully exerted in the 
largest city, which may positively and/or negatively affect local and adjacent carbon emissions. 
In accordance with its estimated result, the increasing city size distribution in provinces overall 
indicate negative environmental impacts in local and surrounding regions. On one hand, the 
large urban primary index helps to promote technology innovation, the diffusion of knowledge, 
and the speed at which industry upgrades, and reduces transaction costs, risk of labor mismatch, 
and cost of services, contributing to an aggregate reduction in carbon emissions. Conversely, a 
primary city that cannot support its population may lead to high cost of living, heavy traffic, and 
a huge gap between big and small cities in technology and service facilities. Small cities may 
not be able to support technology diffusion, knowledge spillover, and transfers effectively 
resulting in negative externalities, i.e., environmental degradation and rising carbon emissions. 
The related socio-economic influences of local urbanization mentioned above also play a role in 
surrounding carbon emissions. Lastly, whether the effect on emission is positive or negative 
depends on which effect is dominant. 

Increasing urban scale is not necessarily better from the standpoint of energy 
savings and emissions reduction. China, with its continually rising carbon emissions, implies 
that the negative externality of urban scale is dominant; therefore, controlling and optimizing 
urban scale is important to global policymakers. Promoting urbanization does not mean simply 
to foster urban population increase. Cities should be maintained at optimal and reasonable sizes 
to ensure that the eco-friendly effects are greater than the polluting effects on the premise of 
urban progress and economic development. 

Figure 10: Carbon emissions and average urban primary index of Chinese provinces from 2002 to 2013 
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4.3.7 Other independent variables 

First, the estimated coefficient for  𝑙𝑙(𝑃) is 0.938 at a significance level of 1%, and the 
coefficient for 𝑊 ∗ 𝑙𝑙(𝑃)  is 0.242 at a significance level of 5%. This indicates that Chinese 
population growth increases energy demand, which in turn increases carbon emissions. 
Moreover, there are obvious spatial spillover effects in the provinces. When facing an aging 
population and steady population growth rate, advocating a low carbon lifestyle is one feasible 
way to achieve energy conservation and emissions reduction targets. 

Second, the estimated coefficient for 𝑙𝑙(𝐴)  is 1.029 at a significance level of 1% while the 
coefficient of 𝑊 ∗ 𝑙𝑙(𝐴) is significant (0.481). A nation’s energy consumption may reflect its 
level of economic activity and ability to meet the living standards of its citizens. Traditionally, 
economic growth leads to inevitable increases in carbon emissions; however, economic growth 
in one region has positive and strong spillover effects on the carbon emissions of surrounding 
areas mainly because of its driving force for economic improvement. Leaders should carefully 
consider the tradeoffs among reducing carbon emissions, increasing economic development, and 
improving their citizens’ standard of living. 

Third, the estimated coefficient of 𝑙𝑙(𝑇)  is 1.155 at a significance level of 1% while the 
coefficient of 𝑊 ∗ 𝑙𝑙(𝑇)  is 0.491 at 1% significance, indicating that a reduction in energy 
intensity can help cut carbon emissions. Doing so is dependent on factors such as technological 
innovation and local leaders who promote technology to optimize energy consumption. A 
reduction in energy intensity associated with the elements mentioned above can reduce carbon 
emissions in one province and have the same effect on its neighboring provinces. 

4.3.8 Regarding direct and indirect effects 

In Table 9, in the short run, with the exception that the indirect effect of 𝑙𝑙(𝑃)is not significant, 
the direct, indirect, and total effects are all significant and have the same signs as those of the 
estimated coefficients in Table 8. These results indicate that, in the short term, the growth of 
economic income, energy intensity, and urban primary index in one province increases carbon 
emissions in the local area and in adjacent provinces. Also, in the short-term, a rising 
urbanization rate in a local area can constrain carbon emissions in both local and adjacent 
regions. In the long-term, however, indirect effects are not as significant as those in the short 
term (i.e., indirect effects of   𝑙𝑙(𝑃) and  𝑙𝑙 (𝑇)). Their spillover effects on carbon emissions are 
very hard to maintain due to long-term uncertainty caused by interference from adjacent areas. 
The situation in the long-term is more complex; however, there are steady influences of  𝑙𝑙(𝑃), 
𝑙𝑙(𝐴), 𝑙𝑙(𝑇) and  𝑙𝑙(𝑈𝑈) on local carbon emissions in the future. It should be noted that the 
signs of direct and indirect effects of  𝑙𝑙(𝑈𝑈) are positive in the long-term; this is different from 
those exhibited in the short-term. From the foregoing, to some degree, our test result 
on the carbon emission effect of urbanization corresponds with He's research conclusion that 
there is an inverted U relationship between urbanization and CO2 emission (He et al., 2016). But 
more than that, our research also found that the indirect effects of 𝑙𝑙(𝑈𝑈) show a negative sign 
in the short-term but a positive sign in the long-term. This implies that one region's urbanization  
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Table 9: Estimated effects of Model (2) 

Variable 
Short term Long term 

Directeffect Indirecteffect Total effect Directeffect Indirecteffect Total effect 

𝑙𝑙 (𝑃) 0.940*** 
(41.32) 

-0.005 
(-0.09) 

0.935*** 
(16.20) 

0.971*** 
(20.72) 

-0.024 
(-0.43) 

0.947*** 
(12.78) 

𝑙𝑙 (𝐴) 1.019*** 
(34.81) 

0.185*** 
(2.69) 

1.204*** 
(34.81) 

1.148*** 
(17.39) 

0.182*** 
(2.41) 

1.330*** 
(12.71) 

𝑙𝑙 (𝑇) 1.152*** 
(31.70) 

0.155* 
(1.47) 

1.307*** 
(11.23) 

1.465*** 
(15.89) 

0.166 
(1.25) 

1.631*** 
(9.19) 

𝑙𝑙 (𝑈𝑈) -0.300*** 
(-4.64) 

-0.450*** 
(-3.44) 

-0.750*** 
(-4.97) 

0.108*** 
(2.31) 

0.153*** 
(2.75) 

0.261*** 
(2.84) 

𝑙𝑙 (𝑈𝑆) 0.100*** 
(2.24) 

0.308*** 
(2.13) 

0.408*** 
(2.81) 

0.014 
(1.36) 

0.037* 
(1.67) 

0.051* 
(1.77) 

Note:* indicates significance at 10% level; ** indicates significance at 5% level; *** indicates significance at 1% 
level; t-values are in parentheses. 

 
effect on its neighboring CO2 emission shows the same directional change as its urbanization 
effect on its local CO2 emission does. It should be noted that promoting the development of 
urbanization does not result in energy conservation and emissions reductions indefinitely; the 
high urbanization rate reaches a saturation point and begins to result in adverse environmental 
consequences. 

5 Conclusions 

This research investigates the effect of urbanization on carbon emissions empirically via the 
extended STIRPAT and Dynamic Spatial Durbin Panel Data Models. The Durbin model has 
been applied to a local microeconomic context (city and regional) for the first time, resulting in 
an analysis with a regional perspective and a dynamic feature. The analysis also reflects another 
effect of urbanization on carbon emissions by adding the variable of city size distribution to the 
model. It can enable the conclusions to provide mayors and policymakers with more useful 
methods for developing low-carbon urbanization strategies, especially in the field of regional 
coordination and controlling city size. 

(1) The effects of urbanization on carbon emissions are continuous and changing in both 
the short- and long-term. In the short-term, the urbanization rate increase and the shorter 
distance between cities or towns contribute to energy conservation and emissions reductions in 
local and adjacent regions. In the long-term, an uncontrolled increase in urbanization can 
hamper emissions control. Therefore, we should employ both long- and short-term strategies 
when selecting and implementing low-carbon pathways to urbanization. In the same way, it is 
very important to take maximum advantage of scale and agglomeration effects on reducing 
carbon emissions in both the short and long term. 

(2) Spatial autocorrelation and heterogeneity in carbon emissions between adjacent 
provinces exist. The carbon emissions of adjacent provinces are correlated, and the successful 
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control of carbon emissions in one province drives the control of carbon emissions in 
neighboring provinces. Provincial urbanization strategies to conserve energy and reduce 
emissions should not be separated from the overall regional environment. Each province should 
strive to coordinate the development of urban systems within its region to achieve lower carbon 
emissions. In addition, national low-carbon urbanization processes, procedures, and regulations 
should be diverse and changeable because of potential regional differences. 

(3) Further research, focusing on how regional and provincial policymakers can 
successfully differentiate, coordinate, and harmonize the goals of both long- and short-term 
strategies to achieve low-carbon urbanization, can be advantageous. During the complex and 
multifaceted process of urbanization, the different spillover effects of implemented technologies 
should be exploited to the most efficient and effective extent possible within the numerous 
provincial areas, and the entire regional area, to maximize the conservation of energy and 
reduce emissions.  

(4) The overall effect of an increasing rate of urbanization on carbon emissions has been 
examined. Urbanization increases resident income, accelerates industrialization, produces public 
transit networks or energy-free transport modes, and decreases household size, which affects 
carbon emissions in various ways. Therefore, we should not simply increase the rate of 
urbanization, but focus instead on achieving beneficial results via optimizing industrial 
structures—especially promoting low-carbon industries, advocating a low carbon lifestyle, and 
taking advantage of urbanization to strengthen innovation in low-carbon technologies. 

(5) As city size distribution changes with urbanization, leaders and policymakers should be 
aware of the potential negative effects within their local areas, as they have similar effects 
throughout the region. Promoting urbanization does not mean to simply foster an increase in 
urban population. During the urbanization process, city leaders should maintain population at 
optimum levels and cities at reasonable sizes to keep the eco-friendly effects larger than the 
polluting effects. 
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