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Abstract
This paper presents some new stochastic dominance (SD) criteria for ranking
transformations on a random variable, which is the first time that this is done for
transformations under the discrete framework. By using the expected utility theory,
the authors first propose a sufficient condition for general transformations by first
degree SD (FSD), and further develop it into the necessary and sufficient condition
for monotonic transformations. For the second degree SD (SSD) case, they divide the
monotonic transformations into increasing and decreasing categories, and further derive
their necessary and sufficient conditions, respectively. For two different discrete random
variables with the same possible states, the authors obtain the sufficient and necessary
conditions for FSD and SSD, respectively. The new SD criteria have the following
features: each FSD condition is represented by the transformation functions and each SSD
condition is characterized by the transformation functions and the probability distributions
of the random variable. This is different from the classical SD approach where FSD and
SSD conditions are described by cumulative distribution functions. Finally, a numerical
example is provided to show the effectiveness of the new SD criteria.
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1 Introduction 

In real world, many human activities in insurance and financial fields induce risk 
transformations. For example, we assume that an investor owns a house where X  denotes the 
value of the house (a random variable). The investor can insure the house with various levels of 
deductions. By choosing two different deduction policies, the investor creates different 
transformations ( )m X and ( )n X . Then an interesting question occurs: which deduction policy 
(transformation) dominates the other? In other words, how to find an effective approach for 
ranking these transformations so as to choose the beneficial one? 

Stochastic dominance (SD) is one of the most famous approaches to comparing pairs of 
prospects. Presented in the context of expected utility theory, the SD approach has the 
advantage that it requires no restrictions on probability distributions. Well-known specifications 
of SD are first degree SD (FSD) and second degree SD (SSD), which by far attract most of the 
attention in SD research. Due to the advantage mentioned above, the SD approach has been 
proved to be a powerful tool for ranking random variables and employed in various areas of 
finance, decision analysis, economics and statistics (See e.g., Meyer, 1989; Levy, 1992, 2006; 
Chiu, 2005; Li, 2009; Blavaskyy, 2010, 2011; Deutsch and Silber, 2011; Bibi, Duclos and 
Audrey, 2012; Yalonetzky, 2012; Tzeng et al., 2013; Loomes et al., 2014; Valentini, 2015; 
Tsetlin et al., 2015). Unfortunately, the SD approach is inefficient to rank transformations on 
random variables because it relies on the cumulative distribution functions (CDFs) of random 
variables, which are hard to calculate. In other words, the SD approach cannot be used directly 
to rank transformations.  

To the best of the authors’ knowledge, there are only two papers studying SD criteria for 
transformations on the continuous random variables under the conditions of increasing, 
continuous, and piecewise differentiable transformations (see Meyer, 1989 and Levy, 1992). 
However, there is little research which focuses on ranking transformations under the discrete 
framework. It should be pointed out that the outcomes of transformations for continuous random 
variables cannot be extended directly to the discrete system. In real life, we notice that the 
discrete random variables are ubiquitous and even the continuous random variables should be 
discretely handled in many cases, so it is necessary to find new SD criteria for ranking 
transformations on discrete random variables. 

The paper aims to develop some new SD criteria for ranking transformations on the discrete 
random variable, which is the first time to investigate the ranking approach for the discrete 
system. In order to construct such theoretical paradigm, we start from the FSD rule by applying 
the expected utility theory, and derive a sufficient condition (See Theorem 1). We further extend 
the sufficient condition into a sufficient and necessary condition by restricting attention to 
monotonic transformations. In this case the FSD rule is determined exclusively by the difference 
between the compared transformation functions (See Theorem 2). For the case of SSD, we first 
divide the monotonic transformation functions into increasing and decreasing categories, 
respectively. For the increasing transformation functions, we respectively develop a sufficient 
condition and a sufficient and necessary condition for SSD by using the transformation 
functions and the probability distributions of the random variable (See Theorem 3 and Theorem 
4). For decreasing transformations, we also respectively obtain a sufficient condition and a 
sufficient and necessary condition for SSD, which are different from those related to increasing 
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transformations (See Theorem 5 and Theorem 6). In addition, for two different discrete random 
variables with the same possible states, we provide the sufficient and necessary conditions for 
FSD and SSD, respectively (See Theorem 7). 

Compared with the classical SD rules, the new SD criteria have the following advantages: 
(1) the new SD criteria can directly rank transformations on a discrete random variable, while 
the classical SD rules do not work; (2) the new SD criteria make us avoid the tedious 
computation of CDFs, whereas this can not be done in the classical SD rules. In this sense, the 
new theoretical paradigm we derived can be regarded as a useful complement to the classical 
SD theory. Finally, a numerical example is provided to show the effectiveness of the new SD 
criteria. 

The rest of this paper is organized as follows. Section 2 reviews the existing SD rules. 
Section 3 and Section 4 present the SD criteria of transformations by FSD and SSD, 
respectively. Section 5 makes a comparison between the new SD criteria and the classical SD 
rules. Section 6 gives a numerical example to show the efficiency of the new SD method and 
Section 7 draws the conclusions.  

2 Preliminaries 

This section introduces the definition of stochastic dominance, and the SD criteria for 
transformation on the continuous random variable. 

Let X  and Y  be two random variables with support in the finite interval [ , ]a b , and their 

CDFs will be denoted by ( )F x  and ( )G x , respectively. Define ( ) ( 1)( ) ( )
xn n

a
F x F x dx−= ∫ (

2,3,n = 3 ) with (1) ( ) ( )F x F x= , and define ( ) ( )nG x  similarly. Moreover, we denote nU  as 

the class containing all the functions u  with 1 ( )( 1) 0 ( 1,2, , )k ku k n+− ≥ = 3 , where u  is a real-
valued function and ( )ku  is the k -th derivative of u . 
 

Definition 1. (Levy, 1992) (i) X  dominates Y  by FSD if ( ) ( )F x G x≤  for any real number x ;  

(ii) X  dominates Y  by SSD if (2) (2)( ) ( )F x G x≤  for any real number x ; 

(iii) X  dominates Y  by n  th degree SD ( 3n ≥ ) if  
( ) ( )( ) ( )k kF b G b≤  for 1, 2, ,k n= 3 ,                                                                         (1) 

and 
( ) ( )( ) ( )n nF x G x≤  for all a x b≤ ≤ .                                                                             (2) 

The SD rules and the relevant class of preferences kU  are related in the following way: 

X  dominates Y  by FSD if and only if [ ( )] [ ( )]E u X E u Y≥  for any 1u U∈ . 

X  dominates Y  by SSD if and only if [ ( )] [ ( )]E u X E u Y≥  for any 2u U∈ . 
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X  dominates Y  by n th degree SD ( 3n ≥ ) if and only if [ ( )] [ ( )]E u X E u Y≥  for any 

nu U∈  and ( ) ( )( ) ( )k kF b G b≤  for 1, 2, ,k n= 3 . 

Integral conditions (1) and (2) mean that the SD approach relies on CDFs of the random 
variables, and it is inefficient to rank transformations on the random variable. To overcome this 
shortcoming, Meyer (1989) proposes the following results. 
 

Lemma 1. (Meyer, 1989) Given a continuous random variable X  with the density ( )f x  and 
support in the interval [ , ]a b . If ( )m x  and ( )n x  are non-decreasing, continuous and piecewise 
differentiable functions, then 

(i) the transformed random variable ( )m X  dominates ( )n X  by FSD if and only if 

{ ( ) ( )} ( ) 0m x n x f x− ≥  for all x  in [ , ]a b ,                                                                     (3) 

(ii) the transformed random variable ( )m X  dominates ( )n X  by SSD if and only if 

{ ( ) ( )} ( ) 0
x

a
m t n t f t dt− ≥∫  for all x  in[ , ]a b .                                                                  (4) 

Lemma 1 provides the FSD and SSD criteria, which are only valid for non-decreasing, 
continuous and piecewise differentiable functions, and these SD criteria cannot be directly 
applied to ranking transformations on the discrete random variable. However, in the real world, 
discrete random variables are ubiquitous and even the continuous random variables should be 
discretely handled in many cases, so it is significant to find SD criteria for ranking 
transformations on discrete random variables. Considering that FSD and SSD have more 
practical implication than higher degree SD rules, this paper will focus on FSD and SSD rules in 
the remaining.  

3 Dominance Conditions for FSD 

Let X  be a discrete random variable whose prospects are characterized by 1 1{ , ; , , }n np x p x3  

with 1 2 nx x x< < <3  and support in the finite interval [ , ]a b . Assume that two transformed 

random variables ( )m X and ( )n X are denoted as 1 1{ , ( ); , , ( )}n np m x p m x3  and 

1 1{ , ( ); , , ( )}n np n x p n x3 , or shortly as 1 1{ , ; , , }n np m p m3  and 1 1{ , ; , , }n np n p n3 , 
respectively. Then, an interesting question arises: given a discrete random variable X and two 
transformed random variables ( )m X  and ( )n X , under what conditions will one 
transformation dominate the other for a given order?  

Since Lemma 1 is only suitable for transformations on the continuous random variable, and 
it is invalid for the discrete random variable case, we need to develop new SD criteria for 
transformations on the discrete random variable. 

http://www.economics-ejournal.org/
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We will first discuss the FSD conditions for ranking ( )m X  and ( )n X  using expected 
utility. That is, when is [ ( ( )]E u m X  larger than or equal to [ ( ( )]E u n X  for all increasing utility 
functions?  
 

Theorem 1. The transformed random variable ( )m X  dominates ( )n X  by FSD if  

i im n≥  for all 1, 2, ,i n= 3 .                                                                                       (5) 

Proof. See Appendix A. □ 

In order to better understand the meaning of Theorem 1, Figure 1 shows its graphical 
illustration. Differently from the classical SD rules, the areas 1,S 2 ,S 3 , nS  in Figure 1 are 

derived by the difference between ( )m x  and ( )n x  at ix ( 1, 2, ,i n= 3 ) by multiplying the 

corresponding probability of ix , rather than the CDFs. Here we let ( ) ( ) ( )d x m x n x= − , then 

i i id m n= −  denotes the difference of ( )m x  and ( )n x  at ( 1, 2, , )ix i n= 3 . Furthermore, we 

take n  points 1 2, , , nA A A3  at the horizontal axis, such that 1 1,OA p= 1 2 2 ,A A p= ,3

1n n nA A p− = . We stipulate that a geometric area takes a positive value when it lies above the 
horizontal axis and takes a negative value when it lies below the horizontal axis, and then we 
can use the notation iS  to represent the algebra value of a rectangular area whose base and 

height are denoted as ip  and id  ( 1, 2, ,i n= 3 ), respectively. From Figure 1 we notice that 

i im n≥  is equivalent to 0iS ≥ ( 1, 2, ,i n= 3 ). Therefore, we can conclude that ( )m X  

dominates ( )n X  by FSD if all the n  areas 1 2, , , nS S S3  are all non-negative. 
 

Figure 1: The graphical illustration of Theorem 1 
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Theorem 1 presents a sufficient condition for determining FSD relations which only 
involves the transformation function. Apparently, it is much easier to compare the 
transformation functions than to compare the CDFs of transformed random variables.  

However, we see that condition (5) is only a sufficient condition for ( )m X  dominating 
( )n X  by FSD, rather than a necessary and sufficient condition. A natural question is whether 

condition (5) is also necessary. The following example shows that the answer is negative and 
the rest of this section is devoted to finding the necessary and sufficient condition. 
 

Example 1. Suppose that a random variable X  yields the outcomes 1,− 0  and 1 with equal 

probabilities
1
3

. If 2( ) 1m x x= − , 2( ) 1n x x= −  and ( ) 1p x x= − , then their probability 

distributions are shown as follows (See, Table 1). 
 

(a) Table 1 reports that the transformed random variable ( )m X  takes 0  with probability 
2
3

 and 

1 with probability 
1
3

. Then, from Theorem 1, we see that ( )m X  dominates X  by FSD. 

However, it follows from Table 1 that 3 3( ) 0 1m x x= < = . This fact shows that condition (5) is 
not necessary when the dominating transformation ( )m x  is non-monotonic. 
(b) From Table 1 we see that the transformed random variable ( )n X  takes 1−  with probability 
1
3

 and 0  with probability 
2
3

. Hence, by comparing CDFs of X  and ( )n X , from Theorem 1 

we can deduce that X  dominates ( )n X  by FSD. On the other hand, Table 1 shows that 

1 11 0 ( )x n x= − < = , which means that condition (5) is not necessary when the dominated 
transformation ( )n x  is non- monotonic. 
(c) We notice that from Table 1 the transformed random variable ( )p X  takes values 0,1  and 

2  with equal probability 
1
3

. Then, the relative position of CDFs of X  and ( )p X  indicates 

that ( )p X  dominates X  by FSD, whereas we have 3 3( ) 0 1p x x= < = , which indicates that 
 

Table 1: Probability distributions of , ( ), ( )X m X n X  and ( )p X  

X  −1 0 1 

( )m X  

( )n X  

( )p X  

Pr( )x  

0 

0 

2 

1
3  

1 

−1 

1 

1
3  

0 

0 

0 

1
3  
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condition (5) is still not necessary when one transformation is increasing and the other is 
decreasing. 

Based on the above analysis, we conclude that condition (5) is not necessary if ( )m x  and 
( )n x  are not comonotonic. The following theorem shows that condition (5) will be sufficient 

and necessary when the transformation functions are comonotonic. 
Theorem 2. Supposing that the transformation functions ( )m x  and ( )n x  are comonotonic, 

( )m X  dominates ( )n X  by FSD if and only if i im n≥  for all 1, 2, ,i n= 3 . 

Proof. See Appendix A. □ 

Figure 1 can also illustrate the graphical presentation of Theorem 2, that is, ( )m X  
dominating ( )n X  by FSD is equivalent to the situation that the n  areas 1 2, , , nS S S3  are non-
negative. 

 
Remark 1. Theorem 2 provides a sufficient and necessary condition by restricting attention to 
monotonic transformations, and this condition only depends on the transformation function. In 
this sense it presents a simple way for determining FSD relations between two comonotonic 
transformations. This situation is different from the case of the classical SD rules for FSD in 
which we need to take a tedious calculation to obtain the CDFs of the transformed random 
variables. Therefore, Theorem 2 plays an active part in dealing with realistic problems via the 
new SD criterion we derived. The assumption of monotonous condition is appropriate because it 
is a common feature of transformations in the fields of insurance and decision analysis (see 
Meyer, 1989).  

4 Dominance Conditions for SSD 

In this section, we try to find some dominant criteria for SSD. It is well known that SSD 
condition in the classical SD approach is more complicated than the case of FSD. In order to 
find SSD criteria for ranking transformed discrete random variables, we will divide the 
monotonic transformation functions into increasing and decreasing ones, respectively. 
 

Theorem 3. If ( )m x  is increasing and 

1
( ) 0

k

i i i
i

m n p
=

− ≥∑  for all 1, 2, ,k n= 3 ,                                                                      (6) 

then the transformed random variable ( )m X  dominates ( )n X  by SSD. 

Proof. See Appendix B. □ 

Figure 2 makes a graphical explanation about Theorem 3. We investigate these n  
rectangular areas from left to right in Figure 2 and find that if the sum of the first k (

1, 2, ,k n= 3 ) rectangular areas are all non-negative, then we can conclude that ( )m X  

http://www.economics-ejournal.org/
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dominates ( )n X  by SSD. In other words, the condition of 
1

( ) 0
k

i i i
i

m n p
=

− ≥∑  is equivalent to 

the case of 
1

0
k

i
i

S
=

≥∑ ( 1, 2, ,i n= 3 , 1, 2, ,k n= 3 ). 

Figure 2: The graphical illustration of Theorem 3 

 
 

 

 

 

 

 

 

  

        

Remark 2. Theorem 3 presents a sufficient condition for one transformation dominating the 
other by SSD via the transformation functions and the probability distributions of the random 
variable, which again makes us avoid the tedious computation of CDFs, whereas this can not be 
done in the classical SD theory.  

Similar to Theorem 1, condition (6) in Theorem 3 is only sufficient rather than necessary 
and sufficient. Again is natural top ask whether condition (6) is also necessary. The following 
example shows that the answer is no. 
 

Example 2. We assume that a random variable X  yields the outcomes 1,− 0  and 1 with equal 

probability 
1
3

, and that 2( ) 1n x x= −  and ( ) 2q x x= − . Their probability distributions are 

listed in Table 2. 

Table 2: Probability distributions of , ( )X n X  and ( )q X  

X  −1 0 1 

( )n X  

( )q X  

Pr( )x  

0 

2 

1
3  

−1 

0 

1
3  

0 

−2 

1
3  

O A1 A2 A3 An-1 An p 

d1 
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By analyzing the data in Table 2, we can make the following statements. 

(a) X  dominates ( )n X  by SSD via the hierarchical property of the SD rules. However,

1 1 1
1[ ( )] 0
3

x n x p− = − < , which implies that condition (6) is not necessary if the dominating 

transformation is increasing and the dominated transformation is non-monotonic. 
(b) X  dominates ( )q X  by SSD, while 1 1 1[ ( )] 1 0x q x p− = − < . This means that the 

condition (6) is not necessary if the dominating transformation is increasing and the dominated 
transformation is decreasing. 

  (c) 
1
[ ( ) ] 0( 1, 2,3)

k

i i i
i

q x x p k
=

− ≥ =∑ . However, step (b) tells us that X  dominates ( )q X  

by SSD, rather than ( )q X  dominates X . This implies that the condition (6) could not be 
sufficient if the dominating transformation is not increasing. 
  Based on the above statements (a)-(c), we conclude that if either of the two transformations is 

not increasing, the condition (6) will not be sufficient and necessary. This situation indicates 

that we should concentrate on the case of two increasing transformations. 

 

Theorem 4. Suppose that ( )m x  and ( )n x  are both increasing. Then, ( )m X  dominates ( )n X  

by SSD if and only if 
1

( ) 0
k

i i i
i

m n p
=

− ≥∑  for all 1, 2, ,k n= 3 . 

Proof. See Appendix B. □ 

Theorem 4 can also be illustrated by Figure 2. Recall that in Figure 2 the SSD conditions 
depend on the n rectangular areas, we investigate these rectangular areas from left to right and 
find that if the cumulative sum of the first ( 1, 2, , )k k n= 3 rectangular areas is non-negative, 
then ( )m X  dominates ( )n X  by SSD; If the cumulative sum of the first ( 1, 2, , )k k n= 3  
rectangular areas is non-positive, then ( )n X  dominates ( )m X  by SSD; Otherwise, there is no 
SSD relation between ( )m X  and ( )n X .    

Compared with Theorem 2, Theorem 4 reduces the requirement of the n rectangular areas. 
That is, any of the n rectangular areas except for the first one may take negative value, but the 
cumulative sum of the first ( 1, 2, , )k k n= 3  rectangular areas (from left to right) must be non-
negative. It also means that if ( )m X  dominates ( )n X  by FSD, then ( )m X  dominates ( )n X  by 
SSD, which is in accordance with the hierarchical property of SD rules.  
 

Remark 3. Similarly to Theorem 3, Theorem 4 shows that we can determine the SSD relations 
between two transformed random variables by the transformation functions and the probability 
function of the original random variable, rather than by CDFs of the transformed random 
variables. More precisely, the signs of the tail conditional expectations 

[ ( ) ( ) | ]( 1, 2, , )kE m X n X X x k n− ≤ = 3  determine the SSD relations between the two 
transformed random variables. Compared with the classical SSD rule, CDFs of random 

http://www.economics-ejournal.org/
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variables are absent in Theorem 4, which allows us avoid the tedious computation of CDFs. As 
a result, Theorem 4 provides us a simple way to determine the SSD relations only by means of 
the transformation functions and the probability function of the random variable. 

Recall that when ( )m x  and ( )n x  are comonotonic, there exists a unified necessary and 
sufficient condition for FSD case (see Theorem 2). However, this statement is not valid for 
SSD. That is, we need to seek a necessary and sufficient condition for SSD if ( )m x  and ( )n x  
are both decreasing. We first provide a sufficient condition as follows. 
 

Theorem 5. If ( )m x  is decreasing and 

( ) 0
n

i i i
i k

m n p
=

− ≥∑  for all 1, 2, ,k n= 3 ,                                                             (7) 

then the transformed random variable ( )m X  dominates ( )n X  by SSD. 
Proof. See Appendix B. □ 

  In order to better interpret the meaning of Theorem 5, Figure 3 gives the graphical 
illustration of Theorem 5. We investigate these n  rectangular areas from right to left (just the 
opposite directions as what we do with Figure 2), and obtain that if the cumulative sum of the 
first ( 1, 2, , )k k n= 3  rectangular areas is non-negative, then ( )m X  dominates ( )n X  by SSD. 

In other words, the condition of ( ) 0
n

i i i
i k

m n p
=

− ≥∑  can be expressed by S 0
n

i
i k=

≥∑  

( 1, 2, ,k n= 3 ). 

 

Figure 3: The graphical illustration of Theorem 5 
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Remark 4. Compared with Theorem 3, a new condition (7) in Theorem 5 is introduced to 
substitute condition (6) in Theorem 3. This new formulation is suitable for discussing the SSD 
relations of the decreasing transformations.  
 

Theorem 6. Suppose that ( )m x  and ( )n x  are both decreasing. Then, ( )m X  dominates ( )n X  

by SSD if and only if ( ) 0
n

i i i
i k

m n p
=

− ≥∑  for all 1, 2, ,k n= 3 . 

Proof. See Appendix B. □ 

The graphical illustration of Theorem 6 can also be expressed by Figure 3. We investigate 
these n  rectangular areas in Figure 3 from right to left. If the cumulative sum of the first 

( 1, 2, , )k k n= 3  rectangular areas is non-negative (resp. non-positive), then ( )m X  dominates 
( )n X  (resp. ( )n X  dominates ( )m X ) by SSD. Otherwise, there is no SSD relation between 
( )m X  and ( )n X . 

In addition, from Figure 1, Figure 2 and Figure 3, we find that Theorem 6 and Theorem 4 
both reduce the condition requirement of Theorem 2 in which all the n  rectangular areas are 
non-negative, that is, Theorem 6 and Theorem 4 argue that these n  rectangular areas can take 
negative values, but the precondition is that the cumulative sum of the first ( 1, 2, , )k k n= 3  
rectangular areas should be non-negative. The difference between Theorem 6 and Theorem 4 is 
that Theorem 6 sums up the rectangular areas from right to left, while Theorem 4 does it from 
left to right. Undoubtedly, Theorem 6 and Theorem 4 are homogeneous in essence except that 
the former deals with increasing transformations while the latter copes with decreasing ones. 

5 Comparison of the New SD Criteria and the Classical SD Rules 

Up to now, we have constructed some new SD criteria to rank transformations on a discrete 
random variable. We must point out that the stochastic dominance for transformations is not a 
new concept, but a necessary and useful supplement to the classical stochastic dominance. 
More specifically, the stochastic dominance for transformations is used to rank the transformed 
random variables, while the classical stochastic dominance can be used to compare the risk of 
any two random variables, but the classical stochastic dominance is ineffective when dealing 
with transformations on the same random variable. Since Meyer’s SD criteria can only rank 
transformations of the continuously distributed random variables, the new SD criteria developed 
in Section 3 and Section 4 overcome the weakness of the existing SD approach. 

To better understand these two types of SD rules, Table 3 shows their main differences from 
three aspects: application scope, expression approach and the specific criteria.  

Remark 5. It should be pointed out that as a partial order relation, the SD approach is not 
useful to rank all the random variables. However, as a screening device, the SD approach can 
divide the whole decision making set into an efficient subset and an inefficient one, and then the 
decision maker choose within  the efficient former (See, e.g., Li 2009; Blavaskyy, 2010, 2011; 
Tzeng et al.,2013; Loomes et al., 2014; Tsetlin et al., 2015). Such statements are also suitable to 
our new SD criteria. 

http://www.economics-ejournal.org/
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Table 3: Comparison of the New SD Criteria and the Classical SD Rules 
 The new SD criteria  The classical SD rules 

Application  

scope  

two transformed random variables 

( )m X  and ( )n X  

two ordinary random 

variables X  and Y  

Expression 

approach 

transformation functions ( )m x , ( )n x  and 

probability function ( )p x  of X  

difference of CDFs of 

X  and Y  

FSD rule 
( ) ( )i im x n x≥  for all 1, 2, ,i n= 3  

( ( )m x  and ( )n x  are comonotonic) 

( ) ( )F x G x≤  for all real 

numbers x  

SSD rule 

(1)
1

( ) 0
k

i i i
i

m n p
=

− ≥∑  for all 1, 2, ,k n= 3  

( ( )m x  and ( )n x  are both increasing) 

(2) ( ) 0
n

i i i
i k

m n p
=

− ≥∑  for all 1, 2, ,k n= 3  

( ( )m x  and ( )n x  are both decreasing) 

(2) (2)( ) ( )F x G x≤  for all 

real numbers x  

   

We further study the intrinsic links between the two types of SD rules in the following. Note 
that the two transformations ( )m X  and ( )n X  on a random variable can also be regarded as two 
special random variables, then there should exist the corresponding random variables X  and Y  
generating similar SD rules as ( )m X  and ( )n X  do. Given two comonotonic transformation 
functions ( )m X  and ( )n X , if we apply these functions to a discrete random variable, we get 
the same pair of random variable 1 1{ , ; , , }n nX p x p x= 3  with 1 2 nx x x< < <3  and 

1 1{ , ; , , }n nY p y p y= 3  with 1 2 ny y y< < <3 . In contrast, if the above two discrete random 
variables have the same support, they can be regarded as two increasing transformation 
functions applied to a discrete random variable. Following Theorem 2 and Theorem 4, we draw 
the following conclusion: 
 

Theorem 7. If the two discrete random variables 1 1{ , ; , , }n nX p x p x= 3  with 
1 2 nx x x< < <3  and 1 1{ , ; , , }n nY p y p y= 3  with 1 2 ny y y< < <3  have the same possible 

future states, then we have: 

(1) X  dominates Y  by FSD if and only if i ix y≥  for all 1, 2, ,i n= 3 ; 

(2) X  dominates Y  by SSD if and only if 
1

( ) 0
k

i i i
i

x y p
=

− ≥∑  for all 1, 2, ,k n= 3 . 

Theorem 7 shows that the new SD criteria can rank not only the transformations on a 
discrete random variable, but also different random variables with the same possible states. 
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Compared with the FSD and SSD algorithms provided by Levy (2006) for equal-probability 
distributed and discrete random variables, Theorem 7 further extends these two algorithms to 
more general discrete random variables on condition that they have the same possible states. 

Numerical Example  

This section provides a numerical example to illustrate how to determine the SD relations for 
transformations by using the new SD criteria and further determine the efficient set of decision 
making. 

With the accelerating trend of population aging, the pension fund gap of China is becoming 
increasingly wide. For example, the World Bank stated that the size of China's 2001 to 2075 
pension fund gap is 9.15 trillion Yuan (Wang et al. 2014). To effectively control the pension 
fund gap, one of the important approaches is to increase the investment return of the pension 
fund. However, in real world, the government pension sector of China can not directly invest the 
pension fund, so it authorizes several institutional investors to invest. Then, there is a principal-
agent relationship between the government pension sector of China and each institutional 
investor. For a given return rate on investment, different institutional investors may provide 
different revenue-sharing proposals except for the common commission for the agency. As 
mentioned, the new SD criteria can divide the whole choice set into an efficient subset and an 
inefficient one.  

Owing to the uncertainty of the stock market, there is an enormous risk for investing money 
in the stock market. Let X  denote the rate of return on investing money in stock market and its 
probability distribution is shown as in Table 4. Assume that there are four institutional investors 
who can provide revenue-sharing proposals denoted by X , ( )m X , ( )n X  and ( )r X , 
respectively. Table 5 shows the probability distributions of the four different revenue-sharing 
proposals. 

Table 4: The probability distribution of the rate of return on investment X  

X  −50% −10% 5% 20% 50% 

Pr( )x  1
8  1

4  1
4  1

4  1
8  

   
 
We assume that revenue-sharing proposals ( )m X , ( )n X  and ( )r X are as follows: 

2 , 0
5( )
4 , 0
5

x x
m x

x x

 ≤= 
 >


,
4 , 0

( ) 5
, 0

x x
n x

x x

 ≤= 
 >

, and 
3( ) 5%
5

r x x= + . 

  According to ( )m X , the institutional investor A will allocate four fifths of investment 
return rate to the government pension sector of China if the return rate is positive, and he will 
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allocate two fifths of the the return rate to the government pension sector if the return rate is 
negative. Similarly, according to ( )n X , the institutional investor B will distribute the total 
return rate to the government pension sector if the return rate is positive (meaning he only takes 
the commission in this situation), otherwise, he will distribute four fifths to the government 
pension sector if the return rate is negative. According to ( )r X , the institutional investor C will 
allocate three fifths of the return rate plus five percent (regarded as risk-free interest rate) to the 
government pension sector. In addition, the implication of the revenue-sharing proposal X  is 
that the institutional investor D will assign the total return rate to the government pension sector 
and he only takes the commission. 

       Table 5: Probability distributions of revenue-sharing proposals , ( ), ( )X m X n X , ( )r X  

X  −50% −10% 5% 20% 50% 

( )m X  −20% −4% 4% 16% 40% 

( )n X  −40% −8% 5% 20% 50% 

( )r X  −25% −1% 8% 17% 35% 

Pr( )x  1
8  1

4  1
4  1

4  1
8  

  
 To find the efficient set and the inefficient set, we need to make pairwise comparisons. 

Note that the four revenue-sharing proposal functions are all increasing, so we can determine 
the FSD and SSD relations between them by Theorem 2 and Theorem 4, respectively. We now 
perform some comparisons ((a1) to (a3) below) to determine the FSD relations and some other 
comparisons ((b1) to (b2) below) to determine the SSD relations.  

(a1) The revenue-sharing proposal X does not dominate any other revenue-sharing 
proposals by FSD because 1 50%x = − is far less than the values of 1 1,m n  and 1r ; The proposal 

( )m X  does not dominate X  by FSD because 4 4m x< ; The proposal ( )n X  dominates X  by 

FSD because i in x≥  holds for 1, 2, ,5i = 3 . Therefore, X  should be ruled out from the 
efficient set of the revenue-sharing proposals, and only ( ), ( )m X n X  and ( )r X  are kept in the 
efficient set. 

(a2) There is no FSD relation between ( )m X  and ( )n X  because 1 1m n>  while 5 5m n< . 

Similarly, there is no FSD relation between ( )m X  and ( )r X  for 1 1m r>  while 3 3m r< . So, no 
revenue-sharing proposals in this step will be deleted from the efficient set. 

(a3) There is no FSD relation between ( )n X  and ( )r X  because 1 1n r<  but 5 5n r> . 
Therefore, in this step, there will be no revenue-sharing proposals removed from the efficient 
set. 

(b1) In this step, we will determine the SSD relations between ( )m X  and ( )n X .  

http://www.economics-ejournal.org/


Economics: The Open-Access, Open-Assessment E-Journal 11 (2017–14) 

www.economics-ejournal.org 15 

Since 1 1 1( ) 0.025m n p− = , 2 2 2( ) 0.01m n p− = , 3 3 3( ) 0.0025m n p− = − ,

4 4 4( ) 0.01m n p− = −  and 5 5 5( ) 0.0125m n p− = − , it is easy to verify that 
1

( ) 0
k

i i i
i

m n p
=

− ≥∑  

for all 1, 2, ,5k = 3 . Therefore, according to Theorem 4, we can conclude that ( )m X  
dominates ( )n X  by SSD. That is, ( )n X  should be ruled out from the efficient set, and only 

( )m X  and ( )r X  are kept in the efficient set. 
(b2) In this step, we will determine the SSD relations between ( )m X  and ( )r X .  

  On the one hand, from Table 5 we obtain that 1 1 1( ) 0.00625m r p− = , 2 2 2( ) 0.0075m r p− = −  

and 1 1 1 2 2 2( ) ( ) 0.00125 0m r p m r p− + − = − < , so ( )m X  does not dominate ( )r X  by SSD. 

On the other hand, 1 1r m<  implies that ( )r X  does not dominate ( )m X  by SSD. 

Therefore, according to Theorem 2 and Theorem 4, we can determine the FSD relations and 
SSD relations among the four revenue-sharing proposals. The above computational procedure 
shows that ( )n X  dominates X  by FSD, and ( )m X  dominates ( )n X  by SSD, so X  and 

( )n X  are ruled out from the efficient set. That is, ( )m X  and ( )r X  are kept in the efficient 
set, and X  and ( )n X  are included in the inefficient set. 

6 Conclusion 

Very often insurance activities induce transformations of an initial risk, which results in a new 
problem of how to rank transformations on the same random variable. Although the SD 
approach has been proved to be a powerful tool for ranking random variables, it is inefficient in 
ranking transformations for it relies heavily on the cumulative distribution functions.  

In this paper we have developed some new FSD and SSD criteria for ranking 
transformations on a discrete random variable, and this is the first time that this is done for the 
discrete case. With these new SD criteria, we can determine the SD relations between 
transformations directly by the transformation functions and the probability distribution of the 
original random variable. Since there is no need to tediously compute the transformations of 
CDFs and their integral, the new SD criteria are more efficient to rank transformations than the 
classical SD rules. In this sense, the newly established theoretical paradigm, so far as ranking 
transformations on the discrete random variable, can be viewed as a good substitute for the 
cirteria based on the cumulative distribution functions in the classical SD approach. Moreover, 
by using the new SD criteria, we provide new FSD and SSD algorithms for any two discrete 
random variables with the same support, which extend Levy’s FSD and SSD algorithms for 
equal-probability distributed random variables to a more general case. 

The new SD criteria we developed only compare transformations of the same random 
variable. It would be useful to extend the analysis to the ranking of transformations on more 
than one random variables and to consider higher-degree SD rules for transformations. 
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Appendix A 

Proof of Theorem 1. For any utility function 1( )u x U∈ , we have 

    [ ( ( )] [ ( ( )]E u m X E u n X−
1
[ ( ) ( )]

n

i i i
i

u m u n p
=

= −∑
1

( )( ) 0
n

i i i i
i

u m n pξ
=

′= − ≥∑ ,       (A1) 

where iξ  is among im  and in  for all 1 i n≤ ≤ .□ 

Proof of Theorem 2. The sufficiency is obvious from Theorem 1. We then only need to 
prove the necessity. 

Suppose that ( )m x  and ( )n x  are both increasing, we will use the reduction to absurdity to 
prove this conclusion. If there exists a number j such that 1 j n≤ ≤  and j jm n< , then we can 

define the utility function with the following form: 
,

( ) ,

,

j j

j j

j j

m x m
u x x m x n

n x n

 <


= ≤ ≤
 >

.                                                                                              (A2) 

From the function (A2), it is easy to see that 1( )u x U∈ , ( )j ju m m= , ( )j ju n n=  and 
(a) if i j< , then ( )i ju m m=  and ( ) ( )i iu m u n≤  since jm  is the minimum of ( )u x ; 

(b) if i j> , then from the monotonous property of ( )u x  and ( )n x , we get ( )i ju n n=  and 

( ) ( )i iu m u n≤  since jn  is the maximum of ( )u x . 
  Therefore, from the analyses of (a) and (b), we can conclude that ( ) ( )i iu m u n≤  for all 

1 i n≤ ≤  and i j≠ . Combining it with the assumption j jm n< , we derive that 

[ ( ( )] [ ( ( )]E u m X E u n X−
1
[ ( ) ( )]

n

i i i
i

u m u n p
=

= −∑  

         
1

1 1
[ ( ) ( )] [ ( ) ( )] [ ( ) ( )]

j n

i i i j j j i i i
i i j

u m u n p u m u n p u m u n p
−

= = +

= − + − + −∑ ∑  

         [ ( ) ( )] ( ) 0j j j j j ju m u n p m n p≤ − = − < ,  (A3) 

which is a contradiction with the assumption of ( )m X  dominating ( )n X  by FSD. 

If ( )m x  and ( )n x  are both decreasing, it is obvious that ( )m x−  and ( )n x−  are both 
increasing. Since X  dominates Y  by FSD if and only if Y−  dominates X−  by FSD (see 
Shaked and Shanthikumar, 2007), we have    
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( )m X  dominates ( )n X  by FSD 

⇔ ( )n X−  dominates ( )m X−  by FSD 

⇔ ( ) ( )i in x m x− ≥ − for all 1, 2, ,i n= 3  

⇔ ( ) ( )i im x n x≥ for all 1, 2, ,i n= 3 .□ 

Appendix B 

Proof of Theorem 3. If i im n≥  holds for all 1, 2, ,i n= 3 , then by Theorem 1, we can derive 
that ( )m X  dominates ( )n X  by FSD. Hence, ( )m X  dominates ( )n X  by SSD via the 
hierarchical property of SD rules. Otherwise, let 

 1 2{ |1 , } { , , , }i i ri i n and m n j j jΦ = ≤ ≤ < = 3  denote the set of all the subscripts which 

violate the condition (1), where 1 21 rj j j n≤ < < < ≤3 . 

  According to the condition (6), we have 
1

1
( ) 0

j

i i i
i

m n p
=

− ≥∑  and 

1

1 1 1

1

1
( ) ( )

j

i i i j j j
i

m n p n m p
−

=

− ≥ −∑ . Then, there exist rj  numbers 11 21 1, , ,
rj

p p p3 , such that  

               1 10 (1 )i ip p i j≤ ≤ ≤ < , 1 10( )i rp j i j= ≤ ≤ , (B1) 

and 

               
1

1 1 1

1

1
1

( ) ( )
j

i i i j j j
i

m n p n m p
−

=

− = −∑  .                                                                  (B2) 

 Similarly, from 
2

1
( ) 0

j

i i i
i

m n p
=

− ≥∑ , we get 

1 2

1 1 1 2 2 2

1

1 1

1 1
( ) ( ) ( ) ( )

j j

i i i j j j i i i j j j
i i j

m n p m n p m n p n m p
− −

= = +

− + − + − ≥ −∑ ∑ .      (B3) 

Substituting Equations (B1) and (B2) into (B3), we obtain 

 
1 2

2 2 2

1

1 1

1 1
1 1

( )( ) ( )( ) ( )
j j

i i i i i i i i j j j
i i j

m n p p m n p p n m p
− −

= = +

− − + − − ≥ −∑ ∑ . 

Therefore, there exist rj  numbers 12 22 2, , ,
rj

p p p3  such that  

2 1 20 (1 )i i ip p p i j≤ ≤ − ≤ < , 
1 2 0jp = , 2 20( )i rp j i j= ≤ ≤ ,      (B4) 

and 

2

2 2 2

1

2
1

( ) ( )
j

i i i j j j
i

m n p n m p
−

=

− = −∑  .                                                      (B5) 
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  Repeating this process for r  times, we can conclude that there exist rj  numbers 

1 2, , ,
rr r j rp p p3  such that 

( 1)0 (1 )ir i i r rp p p i j−≤ ≤ − ≤ < ,
1

0
r rj r j rp p
−
= = ,                               (B6) 

and 

               
1

1
( ) ( )

r

r r r

j

i i ir j j j
i

m n p n m p
−

=

− = −∑ .                                                                   (B7) 

  For any utility function 2( )u x U∈ , by using the differential mean value theorem, we have 

    [ ( ( )] [ ( ( )]E u m X E u n X−  

1
[ ( ) ( )]

n

i i i
i

u m u n p
=

= −∑
1

( )( )
n

i i i i
i

u m n pξ
=

′= −∑  

1 1
( )( ) ( )( )

r

r

j n

i i i i i i i i
i i j

u m n p u m n pξ ξ
= = +

′ ′= − + −∑ ∑ ,                                            (B8) 

Where iξ  is among im  and in  for all 1 i n≤ ≤ . 

  Obviously, ( ) 0iu ξ′ ≥  and ( ) 0i i im n p− ≥  for all 1rj i n+ ≤ ≤ . Then, we have 

    [ ( ( )] [ ( ( )]E u m X E u n X−
1

( )( )
rj

i i i i
i

u m n pξ
=

′≥ −∑  

1

1
( )( ) ( )( )

r

r r r r

j

i i i i j j j j
i

u m n p u m n pξ ξ
−

=

′ ′= − + −∑  

1 1

1 1
( )( ) ( ) ( )

r r

r

j j

i i i i j i i ir
i i

u m n p u m n pξ ξ
− −

= =

′ ′= − − −∑ ∑ .                                (B9) 

  For any 1 1ri j≤ ≤ − , it follows from the increasing property of ( )m x  and ( )n x  that 

1ri jm m −≤  and 1ri jn n −≤ . Hence, we can derive that 1 1 1max{ , }
r r r ri j j j jm n m mξ − − −≤ = ≤ . Due 

to the decreasing property of ( )u x′ and
r rj jm ξ≤ , we can conclude that 

              [ ( ( )] [ ( ( )]E u m X E u n X−
1

1
[ ( ) ( )] ( )( ) 0

r

r r

j

j j i i i ir
i

u m u m n p pξ
−

=

′ ′≥ − − − ≥∑ .□    (B10) 

Proof of Theorem 4. The sufficiency of this theorem can be immediately obtained from 

Theorem 3. We then only need to prove the necessity. 
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Suppose that the condition of 
1

( ) 0
k

i i i
i

m n p
=

− ≥∑  (for all 1, 2, ,k n= 3 ) is invalid, we then 

let S  denote the set of all subscripts violating this condition, i.e.,

1
{ | ( ) 0,1 }

k

i i i
i

S k m n p k n
=

= − < ≤ ≤∑ . Let r  be the minimum of S , we then have r rm n< . 

Define 
,

( )
,

r

r r

x x n
u x

n x n
≤

=  >
, we find that 2( )u x U∈ . According to the definition of ( )u x  and the 

monotonicity of ( )m x , ( )n x  and ( )u x , we conclude that 
(a) if 1 i r≤ ≤ , we get ( )i iu m m= , ( )i iu n n= ; 

(b) if r i n< ≤ , we have ( ) ( )i iu m u n≤  for the reason that ( )i ru n n=  and rn  is the maximum 

of ( )u x . 

So, 

[ ( ( )] [ ( ( )]E u m X E u n X−
1
[ ( ) ( )]

n

i i i
i

u m u n p
=

= −∑  

       
1 1
[ ( ) ( )] [ ( ) ( )]

r n

i i i i i i
i i r

u m u n p u m u n p
= = +

= − + −∑ ∑  

       
1

( ) 0
r

i i i
i

m n p
=

≤ − <∑ , 

which is a contradiction with ( )m X  dominating ( )n X  by SSD.□ 

Proof of Theorem 5. If i im n≥  holds for all 1, 2, ,i n= 3 , then by Theorem 1, we have that 

( )m X  dominates ( )n X  by FSD. We further conclude that ( )m X  dominates ( )n X  by SSD via 

the hierarchical property of SD rules. Otherwise, let 

1 2{ |1 , } { , , , }i i ri i n and m n l l lΨ = ≤ ≤ < = 3  denote the set of all the subscripts which violate 

condition (7), where 2 11 rl l l n≤ < < < ≤3 . 

According to condition (7), we have 
1

( ) 0
n

i i i
i l

m n p
=

− ≥∑  and 

1 1 1

1 1
( ) ( )

n

i i i l l l
i l

m n p n m p
= +

− ≥ −∑ . Then there exist rn l−  numbers 11 ( )1, ,
rn lp p −3 , such that

1 10 ( )i ip p l i n≤ ≤ < ≤ , 1 10 ( )i rp l i l= < ≤  and  

1 1 1

1

1
1
( ) ( )

n

i i i l l l
i l

m n p n m p
= +

− = −∑ .                                          (B11) 
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  Similarly, from 
2

( ) 0
n

i i i
i l

m n p
=

− ≥∑ , we get 

1

1 1 1 2 2 2

2 1

1

1 1
( ) ( ) ( ) ( )

l n

i i i l l l i i i l l l
i l i l

m n p m n p m n p n m p
−

= + = +

− + − + − ≥ −∑ ∑ , 

or             

1

2 2 2

2 1

1

1 1
1 1
( )( ) ( )( ) ( )

l n

i i i i i i i i l l l
i l i l

m n p p m n p p n m p
−

= + = +

− − + − − ≥ −∑ ∑ . 

Hence, there exist rn l−  numbers 12 22 ( )2, , ,
rn lp p p −3 , such that 2 1 20 ( )i i ip p p l i n≤ ≤ − < ≤ , 

1 2 0lp = , 2 20 ( )i rp l i l= < ≤  and  

2 2 2

2

2
1
( ) ( )

n

i i i j j j
i l

m n p n m p
= +

− = −∑ .                                         (B12) 

  After repeating this process for r  times, we can draw the conclusion that there exist rn l−  

numbers 1 2 ( ), , ,
rr r n l rp p p −3  such that ( 1)0 ( )ir i i r rp p p l i n−≤ ≤ − < ≤ ,

1
0

rl rp
−
=  and 

                   
1
( ) ( )

r r r
r

n

i i ir l l l
i l

m n p n m p
= +

− = −∑ .                                                                 (B13) 

  For any utility function 2( )u x U∈ , by using the differential mean value theorem, we have 

     [ ( ( )] [ ( ( )]E u m X E u n X−
1
[ ( ) ( )]

n

i i i
i

u m u n p
=

= −∑  

   
1

( )( )
n

i i i i
i

u m n pξ
=

′= −∑ ( iξ  is among im  and in ) 

           
1

1
( )( ) ( )( )

r

r

l n

i i i i i i i i
i i l

u m n p u m n pξ ξ
−

= =

′ ′= − + −∑ ∑ .                                           (B14) 

It is obvious that ( ) 0iu ξ′ ≥  and ( ) 0i i im n p− ≥  for all 1 1ri l≤ ≤ − . Then 

     [ ( ( )] [ ( ( )]E u m X E u n X− ( )( )
r

n

i i i i
i l

u m n pξ
=

′≥ −∑  

1
( )( ) ( )( )

r r r r
r

n

i i i i l l l l
i l

u m n p u m n pξ ξ
= +

′ ′= − + −∑  
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1 1
( )( ) ( )( )

r
r r

n n

i i i i l i i ir
i l i l

u m n p u m n pξ ξ
= + = +

′ ′= − − −∑ ∑ .                              (B15) 

  Since ( )u x′  is decreasing, 1 1 1max{ , }
r r r ri l l l lm n m mξ + + +≤ = ≤  for any 1rl i n+ ≤ ≤  and 

r rl lm ξ≤ , we get that 

          [ ( ( )] [ ( ( )]E u m X E u n X−
1

[ ( ) ( )] ( )( ) 0
r r

r

n

l l i i i ir
i l

u m u m n p pξ
= +

′ ′≥ − − − ≥∑ .□ (B16) 

Proof of Theorem 6. The sufficiency of this theorem can be immediately obtained from 

Theorem 5. We then only need to prove the necessity. 

Suppose that the condition of ( ) 0
n

i i i
i k

m n p
=

− ≥∑  (for 1, 2, ,k n= 3 ) is invalid, we then let 

T  denote the set of all subscripts violating this condition, i.e.,

{ | ( ) 0,1 }
n

i i i
i k

T k m n p k n
=

= − < ≤ ≤∑ . In addition, we denote l  as the maximum of T . Let 

,
( )

,
l

l l

x x n
u x

n x n
<

=  ≥
, we then have 2( )u x U∈ . According to the definition of ( )u x  and the 

monotonicity of ( ), ( )m x n x  and ( )u x , we conclude that 
(a) if 1 i l≤ < , we get ( )i lu n n=  and ( ) ( )i iu m u n≤  since ln  is the maximum of ( )u x ; 

(b) if l i n≤ ≤ , we have ( )i iu m m= , ( )i iu n n= . 

So, 

[ ( ( )] [ ( ( )]E u m X E u n X−
1
[ ( ) ( )]

n

i i i
i

u m u n p
=

= −∑  

       
1

1
[ ( ) ( )] [ ( ) ( )]

l n

i i i i i i
i i l

u m u n p u m u n p
−

= =

= − + −∑ ∑  

       ( ) 0
n

i i i
i l

m n p
=

≤ − <∑ , 

which is a contradiction with the assumption that ( )m X  dominates ( )n X by SSD.□ 
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