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Abstract
A meta-analysis (MA) aggregates estimated effects from many studies to calculate a single,
overall effect. There is no one, generally accepted procedure for how to do this. Several
estimators are commonly used, though little is known about their relative performance. A
complication arises when the sample of published studies is subject to sample selection due
to “publication bias.” This study uses Monte Carlo simulations to investigate the performance
of five different MA estimators in the presence of publication bias. The author considers two
kinds of publication bias: publication bias directed against statistically insignificant estimates,
and publication bias directed against wrong-signed estimates. The experiments simulate two
data environments. In the Random Effects environment, each study produces only one estimate
and the true effect differs across studies. In the Panel Random Effects environment, each study
produces multiple estimates, and the true effect differs both within and across studies. The
simulations produce a number of findings that challenge results from previous research.
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1 Introduction 

A meta-analysis (MA) is a systematic evaluation of a body of research that 
measures some “effect,” such as the effect of minimum wages on unemployment, 
or the price elasticity of electricity demand. It is no exaggeration to say that most 
areas of empirical study in economics are characterized by disparate, and often 
conflicting, effect estimates. Meta-analysis is an attempt to summarize and “make 
sense” of these disparate findings. Meta-analyses have a long tradition in the 
medical sciences, and are increasingly popular in economics.  

Meta-analyses generally have two main purposes. First, they provide an 
overall estimate of the size of the effect being researched. Second, they identify the 
reasons why estimates differ across studies. This study focuses on the first of those 
purposes. One way to obtain an overall estimate is to average the individual effect 
estimates reported by different studies. However, some effects are estimated with 
greater precision than others. This raises the question of how “best” to weight the 
respective estimates. The different answers to that question have given rise to a 
number of different estimators. 

A major concern in the estimation of an overall effect is “publication bias.” 
Publication bias occurs when the sample of studies available to the meta-analyst 
do not represent the population of all studies. Depending on the nature of the 
selection, the bias can cause estimates of the overall effect to either over- or under-
estimate the true, underlying effect(s). Estimators have also been developed to 
correct publication bias in meta-analyses. 

This study compares the performances of a wide variety of MA estimators. 
Any discussion of MA estimators is complicated by the fact that much of the 
terminology originates outside of economics. Terms such as “fixed effects” and 
“random effects” have entirely different meanings in the MA literature. In the MA 
literature, “fixed effects” refers to an estimation environment where different 
studies all estimate the same, underlying, effect. For example, it assumes that there 
is a single underlying price elasticity for electricity demand across all studies, even 
if the studies differ in time period, location, and type of consumer. Under this 
assumption, the only reason for studies to obtain different estimates is due to 
sampling error. “Random effects” refers to an environment where the “true, 
underlying effect” is not a single value, but a distribution of values. In this case, 
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the meta-analyst is interested in estimating the population mean associated with 
this distribution. 

Another term that is misleading is “Weighted Least Squares (WLS)”. In 
econometrics, WLS is a type of generalized least squares estimator in which 
observations are transformed by an individualized weight factor. Following this 
terminology, virtually every MA estimator is a WLS estimator. However, in the 
MA literature, the WLS estimator refers to a specific variant of the conventional 
“fixed effects” estimator that differs in how it estimates the variance of the 
residuals.  

The term “publication bias” can also be confusing. One meaning of publication 
bias refers to the selection process by which research is non-randomly selected 
into “publication” outlets.1 This can happen for a variety of reasons. It can happen 
when journals reject studies that report statistically insignificant estimates, or that 
are “wrong-signed.” It can happen when researchers anticipate rejection by 
journals due to undesirable results and choose not to write a paper based on 
unpromising preliminary results. And it can happen when researchers only report 
those regressions that are most supportive of their hypothesis, or that accord with 
their personal biases/preferences (cf. Doucouliagos and Paldam, 2009).2 Another 
meaning of publication bias is the numerical bias that arises from this selection 
process. Following conventional usage, this study uses “publication bias” both 
ways, and counts on the context to make clear which meaning is intended.  

A final complication is that there is no single, universally accepted procedure 
for performing a meta-analysis. Many studies follow the four-step procedure 
advocated by Stanley and Doucouliagos (2012, pages 78–79), known as the “FAT-
PET-PEESE” approach (terms to be defined below): 

• STEP ONE: Test for publication bias using the FAT; 
• STEP TWO: Test whether there is a zero mean effect using the PET;  

_________________________ 
1 “Publication” means that the estimated effects appear in print.  In this sense, a working paper or 
report can be considered as “published”, even if it does not appear in a journal of book.  Most meta-
analyses include these types of studies in their samples. 
2 The latter kind of publication bias can be reduced by journals insisting on extensive robustness 
checks and meta-analysts including all such robustness checks in their analysis. 
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• STEP THREE: If one fails to reject the null hypothesis of no effect in 
STEP TWO, conclude that there is no evidence of an empirical effect; 

• STEP FOUR: If one rejects the null hypothesis of no effect in STEP 
TWO, estimate using the PEESE. 

This study contributes to an understanding of the efficacy of this procedure by 
investigating the performance of the associated effect estimators. 

There are relatively few studies that examine the performance of MA 
procedures in the presence of publication bias. Stanley (2008) compares the 
performance of MA estimators on the dimensions of power, size, and mean 
squared error. His analysis produces a relatively sanguine evaluation of the ability 
of MA estimators to reliably detect, and estimate, variable effects: “Meta-
regression methods are found to be robust against publication selection. Even if a 
literature is dominated by large and unknown misspecification biases, precision-
effect testing and joint precision-effect and meta-significance testing can provide 
viable strategies for detecting genuine empirical effects” (Stanley, 2008, p. 103).  

Moreno et al. (2009) compares a large number of MA estimators on the 
dimensions of bias, coverage rates, mean squared error, and variance. They also 
come to an overall positive evaluation, at least for a subset of the estimators: “In 
this paper we have compared some novel and existing methods for adjusting for 
publication bias through an extensive simulation study. Results are encouraging, 
with several of the regression methods displaying good performance profiles” 
(Moreno et al. 2009, p. 12).  

Two recent papers by Stanley and Doucouliagos (2014, 2015) follow on earlier 
work by Koetse et al. (2010) and promote the “Weighted Least Squares” (WLS) 
estimator.3 Stanley and Doucouliagos argue that this estimator outperforms both 
the conventional, MA “fixed effects” and “random effects” estimators in the 
presence of publication bias. 

While all these studies make important contributions, they leave significant 
gaps in their coverage. For example, it is common to only consider two scenarios, 
“no effect” and “effect”, and to ignore the interaction of effect size and publication 
bias. Further, they assume each study only produces one estimate. They do not 
consider scenarios where studies produce multiple estimates of an effect, a 
_________________________ 
3 See Section 3.3 in Koetse et al. (2010), specifically Footnote 6. 
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common feature of economic studies. Finally, there is typically little effort made to 
ensure that the simulated samples “look like” the kinds of samples used in actual 
meta-analysis studies. 

The main results from this study are as follows. First, while MA estimators 
generally outperform a simple average of estimated effects, MA estimators often 
struggle to completely eliminate publication bias. Second, MA estimators that do 
not correct for publication bias often perform as well, or better, than those that do. 
Third, while “random effects” estimators are often more biased than other MA 
estimators, they sometimes are more efficient. Fourth, hypothesis testing about the 
mean true effect is generally unreliable for all estimators. And fifth, caution should 
be exercised in applying the FAT-PET-PEESE” approach. 

2 A Description of the Monte Carlo Experiments 

2.1 Conceptual Framework 

Figure 1 depicts the process that the Monte Carlo experiments are designed to 
model.4 I conceptualize the data generating process (DGP) that produces the meta-
analyst’s sample as consisting of four stages. Stage 1 is the DGP that produces 
individual observations of x and y for a given study i. Let this DGP be given by: 

(1)  𝑦𝑖𝑖 = 𝛼0 + 𝛼1𝑖𝑥𝑖𝑖 + 𝜀𝑖𝑖,  

where 𝛼1𝑖 is the “true” effect of x on y in study i. Note that the true effect may 
differ across studies. Stage 1 produces Ti observations of x and y, 
(𝑦𝑖𝑖 , 𝑥𝑖𝑖), t=1,2,...Ti. 

In Stage 2, the ith study uses this sample of Ti observations to estimate the 
effect of x on y. It estimates the equation, 

(2)  𝑦𝑖𝑖 = 𝛽0 + 𝛽1𝑖𝑥𝑖𝑖 + 𝜖𝑖𝑖, i = 1,2,...,Ti ; 

_________________________ 
4 Figure 1 and its discussion assume the random effects data environment, where true effects differ 
across studies and individual studies report only one estimate.  The extension to the panel random 
effects data environment – where true effects differ both within and across studies, and individual 
studies have multiple estimates – is straightforward. 
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Figure 1: The Data Generating Process for the Meta-Analyst’s Sample of Estimates 

STAGE DGP/Estimates Comments 

   

STAGE 1: 
Data-generating process 
(DGP) 

𝑦𝑖𝑖 = 𝛼0 + 𝛼1𝑖𝑥𝑖𝑖 + 𝜀𝑖𝑖 

𝛼1𝑖 is the “true” effect of x 
on y in study i. The true 
effect is allowed to vary 
across studies. 

↓ 

Individual observations (𝑦𝑖𝑖 , 𝑥𝑖𝑖), t=1,2,...Ti 

Ti is the number of 
observations in the ith 
study.  

↓ 

STAGE 2: 
Individual studies 

Estimate: 
𝑦𝑖𝑖 = 𝛽0 + 𝛽1𝑖𝑥𝑖𝑖 + 𝜖𝑖𝑖  

NOTE: Observations from 
a given study i come from 
the same DGP 

↓ 

STAGE 3 (unobserved): 
Pre-Publication Bias 
Sample 

�̂�11, �̂�12, … , �̂�1𝑁 

The different �̂�1𝑖 are the 
estimates of the effect of x 
on y from the different 
studies. Each estimate is 
measured with standard 
error, SE(�̂�1)𝑖  

↓ 

STAGE 4: 
“Published” studies = 
Post-Publication Bias 
Sample 

�̂�1, �̂�2, … , �̂�𝑀, M ≤ N 

It is these estimates that the 
meta-analyst uses to obtain 
an estimate of the “overall 
effect” of x on y, given by 
the mean of the distribution 
of 𝛼1𝑖 values. 

 
producing the coefficient estimate, �̂�1𝑖 with standard error, SE(�̂�1i).  

Stage 3 represents the sample of estimates that would be available to the meta-
analyst in the absence of publication bias. Let this sample be given by  
�̂�11, �̂�12, … , �̂�1𝑁, where N is the total number of estimated effects. Unfortunately, 
all of these estimates may not be observable to the meta-analyst. Publication bias 
may keep a subset of these estimates from seeing the light of day. This sample is 
termed the “Pre-Publication Bias Sample.“  
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Stage 4 consists of the estimates that survive the publication selection process. 
This sample consists of M estimates, �̂�1, �̂�2, … , �̂�𝑀, M ≤ N. This “Post-Publication 
Bias Sample” is what the meta-analyst uses to estimate the mean of the 
distribution of true effects, given by 𝛼: 

(3) 𝛼 = 𝐸(𝛼1𝑖). 

2.2 Publication Bias 

The experiments model two types of publication bias. The first type of publication 
bias assumes that the publication process discriminates in favour of studies that 
have statistically significant estimates, indicated by t-statistics with absolute values 
greater than or equal to 2. Studies with insignificant estimates can still get 
“published,” but only with a relatively small probability. The second type of 
publication bias discriminates against studies with “wrong-signed” estimated 
effects. Without loss of generality, it is assumed that economic theory posits that 
the correct sign of 𝐸(𝛼1𝑖) should be positive (as in value of life). Studies with 
negative estimates can still get “published”, but, again, only with a relatively small 
probability. 

2.2.1 Estimators 

The Monte Carlo experiments compare the performances of six different 
estimators with regard to their ability to reliably estimate 𝛼, the mean of the 
distribution of true effects of x on y. These consist of the “unadjusted” average (= 
OLS)—included as a benchmark—and five different MA estimators, two of which 
are specifically designed to address publication bias. The estimators are compared 
on three performance measures: bias, mean-squared error (MSE), and the Type I 
error rates associated with testing whether the estimate of 𝛼 equals its true value. 

The “Unadjusted” estimator: The Unadjusted estimator of the mean true effect 
of x on y is given by the OLS estimate of α in the equation below: 

(4) �̂�𝑖1 = α + νi, i = 1,2,…,M, 
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where �̂�𝑖1 is the ith estimated effect of x on y, and M is the number of estimates in 
the “Post-Publication Bias Sample.” Clearly, the unadjusted estimator simply 
calculates the arithmetic mean of estimated effects across studies. 

The “Fixed Effects” (FE) estimator: The FE estimator weights all the 
observations by the inverse of the estimated standard error of �̂�𝑖, SEi. It is 
motivated by the assumption that any variation in the estimated effects across 
studies is due solely to sampling error. The FE estimator of the mean true effect is 
the weighted least squares estimate of α in Equation (4): 

(5) 𝛽�𝑖1
𝑆𝑆𝑖

 = α∙� 1
𝑆𝑆𝑖

� + 𝜈𝑖
𝑆𝑆𝑖

 , i = 1,2,…,M; 

except that the residuals are standardized to produce a sample variance of 1.  
The “Weighted Least Squares” (WLS) estimator. The WLS estimator is 

identical to the FE estimator except that the residuals remain unstandardized. Note 
that the FE and WLS estimators produce identical estimates of α, but the 
associated estimates have different standard errors. 

The “Random Effects” (RE) estimator. The “RE” estimator is motivated by the 
assumption that differences in estimated effects across studies are due to (i) 
sampling variation, and (ii) genuine differences in the underlying effects. This 
second component is represented by 𝜏, which is the standard deviation of 
underlying effects across studies. If the two error components are independent, 
then the s.e.( �̂�𝑖) = �(𝑆𝐸𝑖)2 + 𝜏2 = 𝜔𝑖. The RE estimator of the mean true effect 
is given by weighted least squares estimation of α in Equation (4), with weights = 
𝜔𝑖:  

(6) 𝛽�𝑖1
𝜔𝑖

 = α∙� 1
𝜔𝑖

� + 𝜈𝑖
𝜔𝑖

 , i = 1,2,…,M. 

The PET estimator: The first of two MA estimators designed to address 
publication bias is the “PET” estimator. The name of this estimator derives from 
the fact that it is associated with a particular test within the FAT-PET-PEESE 
procedure known as the Precision Effect Test (PET). The PET adds the ith study’s 
estimated standard error of the estimated effect, (SEi), as an explanatory variable to 
Equation (4) to control for publication bias. It then estimates the value of the mean 
effect in the specification below.  
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(7) �̂�𝑖1 = α + ρ∙𝑆𝐸𝑖 + νi, i = 1,2,…,M. 

WLS estimation of α in Equation (7) provides an estimate of the mean true 
effect of x on y, adjusting for publication bias ρ: 

(8) 𝛽�𝑖1
𝑆𝑆𝑖

 = α∙� 1
𝑆𝑆𝑖

� + ρ + 𝜈𝑖
𝑆𝑆𝑖

, i = 1,2,…,M. 

The PEESE estimator: The second MA estimator designed to address 
publication bias is the “PEESE” estimator, where PEESE stands for Precision 
Effect Estimate with Standard Error (Stanley and Doucouliagos, 2012). This 
estimator is identical to the PET estimator, except that it replaces 𝑆𝐸𝑖 with (𝑆𝐸𝑖)2 
in Equation (7). This yields the following weighted least squares specification,  

(9) 𝛽�𝑖1
𝑆𝑆𝑖

 = α∙� 1
𝑆𝑆𝑖

� + ρ ∙ 𝑆𝐸𝑖 + 𝜈𝑖
𝑆𝑆𝑖

, i = 1,2,…,M. 

Note that there are no constant terms in the specifications of Equations (5), (6) 
and (9). 

Both the PET and PEESE estimators correct for publication bias by adding 
some form of the effect's standard error to the regression specification. The 
rationale for this approach is loosely linked to Heckman-type procedures for 
correcting sample selection bias (see Stanley and Doucouliagos, 2012,  
pp. 117ff.).5  

2.3 The Experiments 

The experiments study estimator performance within two different data 
environments. In the first data environment (“Random Effects”), each study 
produces only one estimate, and the true effect of x on y differs across studies; 
perhaps because the underlying samples cover different time periods or 
geographical units or different types of economic agents, or because the studies 
use different sets of control variables. In the second data environment (“Panel 
Random Effects”), each study produces multiple estimates, and the true effects are 
_________________________ 
5 While it may be semantically more accurate to refer to the PET and PEESE as alternative 
specifications of the WLS estimator, we will refer to them as estimators for ease of exposition. 
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heterogeneous both across and within studies. The latter scenario is the most 
realistic since most MA samples include more than one estimate per study. I 
include the former data environment both because it provides a bridge to previous 
literature, and to determine whether having multiple estimates per study 
substantially affects the results. 

In both data environments, the experiments begin by simulating a distribution 
of true effects that are normally distributed with mean value 𝑎. Random draws 
from this distribution generate study-specific “true effects”, 𝛼𝑖. The 𝛼𝑖’s are used 
to generate individual (y,x) observations, from which a single estimate is derived. 
This process is repeated for different draws of 𝛼𝑖 until a total of N estimates are 
produced. These estimates are then put through a publication bias “filter”, with the 
number of estimates in the Post-Publication Bias Sample, M, being determined 
endogenously. The respective estimators are applied to this sample to produce 
estimates of 𝑎, the mean of the distribution of true effects. This constitutes one 
meta-analysis study.   

The process is repeated to produce 10,000 simulated meta-analysis studies. 
The estimates for each of the estimators are then aggregated over these simulated 
studies and compared on the dimensions of bias, MSE, and Type I error rates. 

For each of the two data environments, I run experiments for nine different 
values of 𝑎: 0 (i.e., no overall effect), 0.5, 1, 1.5, 2, 2.5, 3, 3.5, and 4. When the 
distribution of true effects is centered on zero, there will be more statistically 
insignificant estimates, and more wrong-signed estimates, than when the 
distribution shifts to the right. As a result, the per cent of studies excluded by 
publication bias will be greatest at α = 0. As α increases and the distribution shifts 
to the right, fewer studies are impacted by publication bias. Eventually, for 
sufficiently large α, all studies are “published”, and the Post-Publication Bias 
Sample is identical to the Pre-Publication Bias sample. This experimental design 
allows me to investigate the interplay between the value of α and the consequences 
of publication bias. As will be demonstrated below, the consequences of 
increasing α will differ depending on the nature of the publication bias (statistical 
insignificance versus wrong-signed estimates). 
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3 Random Effects Data  

3.1 Experimental Design 

For the Random Effects data environment, I generate heterogeneity in true effects 
across studies by letting the true effect be normally and independently distributed 
with mean α and variance 1. In particular, the DGP producing individual 
observations for study i is given by: 

(10.A)   yit = 1 + αi ·xit + εit, t = 1,2,…,T, where 

(10.B)    αi = NID(α,1). 

All the studies have T = 100 observations. In order to generate different 
coefficient standard errors, I allow the DGP error term to have different variances 
across studies: 

(11.A)  εit = λi∙ NID(0,1), where  

(11.B)  λi = 0.5 + UID(0,30) 

λi controls the variance of the error term. The specification in Equation (11.B) 
serves to set both lower and upper bounds on the values of λi. It is important that 
the error variance not be too small, lest it produce unrealistically large precision 
values. At the same time, the variance has to be large enough to produce realistic 
MA samples.  

The specific parameter values used in the experiments were selected to 
simultaneously satisfy four criteria: 

1. Produce a realistic range of t-values for the estimated effects  
2. Produce realistic-looking funnel plots 
3. Cause the per cent of studies eliminated by publication bias to range between 

10 and 90 per cent (so all the MA studies are impacted by publication bias to 
some degree) 

4. Produce realistic values of “effect heterogeneity”  

“Effect heterogeneity” refers to the differences in true effects across studies. A 
measure of effect heterogeneity is I2, which provides an estimate of the total per 
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cent of variation in estimated effects that is due to factors other than sampling 
error (Higgins and Thompson, 2002; Higgins et al., 2003). I2 values of 70–95% are 
common in economics studies. For example, Stanley and Doucouliagos (2014, p. 
14) report that “among minimum wage elasticities, I2 is 90% (Doucouliagos and 
Stanley, 2009); it is 93% among estimates of the value of statistical life 
(Doucouliagos, Stanley and Giles, 2012) and 97% among the partial correlations 
of CEO pay and corporate performance (Doucouliagos, Haman and Stanley, 
2012).”  

Another parameterization of the experiments concerns publication bias. As 
discussed above, the experiments model two kinds of publication bias: selection 
against statistical insignificance, and selection against wrong-signed estimates. In 
both cases, statistically insignificant/wrong-signed estimates are allowed to be 
included in the Post-Publication Bias Sample, but with a relatively low probability. 
The experiments set this probability at 10 per cent.  

Finally, for each meta-analysis study, I fix the number of Pre-Publication Bias 
studies/estimates at 1,000. The number of Pre-Publication Bias studies/estimates 
that are selected into the Post-Publication Bias Sample is determined 
endogenously, and will differ for different values of α. As noted above, a total of 
10,000 meta-analysis studies are simulated. 

3.2 Random Effects: A Representative Meta-Analysis Sample 
(α = 1) 

Table 1 reports the distributions of (i) estimated effects, (ii) t-statistics, (iii) 
precisions, and (iv) I2 values for a representative6 MA data set simulated within 
the Random Effects data environment.7 The respective data characteristics 
(minimum value, maximum value, etc.) are averaged values over a 1,000 
simulated MA data sets. The samples were constructed using the design  
 

_________________________ 
6 “Representative” is defined as average values across 1,000 simulations. 
7 Empirical results are based on computer programs using Stata, Version 13.1. You find the 
associated .do files for all tables and figures here:http://dx.doi.org/10.7910/DVN/OI8XSG  . 

http://dx.doi.org/10.7910/DVN/OI8XSG


 

www.economics-ejournal.org  13 

Table 1: Sample Characteristics for a Simulated Meta-Analysis Data Set:  
Random Effects Case (α = 1) 

Variable Median Minimum P5% P95% Maximum 
PRE-PUBLICATION BIAS (100 per cent of estimates): 

Estimated effect 1.00 –7.40 –2.39 4.38 9.48 
t-statistic 0.79 –13.24 –1.47 5.92 42.49 
Precision (1/SE) 0.65 0.26 0.33 5.01 20.08 
I2 0.86 0.70 0.81 0.91 0.93 

PUBLICATION BIAS AGAINST INSIGNIFICANCE (33.0 per cent of estimates): 
Estimated effect 1.81 –7.42 –2.07 5.68 9.45 
t-statistic 2.54 –13.62 –2.34 12.58 42.73 
Precision (1/SE) 1.24 0.29 0.36 9.68 19.91 
I2 0.94 0.87 0.91 0.96 0.98 

PUBLICATION BIAS AGAINST NEGATIVE EFFECTS (74.7 per cent of 
estimates): 

Estimated effect 1.55 –5.02 0.05 4.78 9.41 
t-statistic 1.28 –5.05 0.03 7.33 41.98 
Precision (1/SE) 0.70 0.27 0.34 5.55 19.82 
I2 0.81 0.64 0.73 0.88 0.93 

 
parameters described above, with the mean true effect set equal to one (α = 1). The 
“Pre-Publication Bias” panel of the table reports sample characteristics for the 
population of 1,000 studies potentially available to the meta-analyst. The next two 
panels in the table summarize the Post-Publication Bias samples available to the 
meta-analyst, depending on the type of publication bias in effect.  

When α = 1, the two types of publication bias filter out a substantial number of 
estimates. Only 33.0 and 74.7 per cent of all estimates appear in the meta-analyst’s 
sample, depending on the type of the publication bias. The average minimum and 
maximum values of estimated effects in the Pre-Publication Bias sample are  
[–7.40, 9.48].8 In the post-publication bias samples, the average ranges are [–7.42, 
9.45] and [–5.02, 9.41], respectively. The average estimation bias associated with 

_________________________ 
8 These are “average” minimum and maximum values because they are the minimum and maximum 
values averaged over the 1,000 simulated meta-analysis samples. 
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the median estimate in the two publication-biased samples is 81% and 55%, 
respectively.  

The median t-statistic in the Pre-Publication Bias sample is 0.79. This 
compares to median t values of 2.54 and 1.28 in the two Post-Publication Bias 
samples. Note that even when publication bias discriminates against insignificant 
results, there are still some studies that have low t-statistics due to the probabilistic 
nature of the bias/selection process (10% are still published). Precision (1/SE) is 
used in a number of MA procedures to weight individual observations (see above). 
Relative weights across different observations can differ by a factor of 50 or more.  

Table 1 also shows that the meta-analysis samples are characterized by a 
substantial amount of non-sampling-error-related heterogeneity, as measured by I². 
In the Pre-Publication Bias sample of 1,000 individual studies, 86% of the 
variation in the estimated effects is attributed to effect heterogeneity for the 
median MA study. The corresponding percentages for the publication-biased 
samples are 94% and 81%. As noted above, these values are typical for economics 
studies. 

The purpose of Table 1 is to demonstrate that the parameters chosen for the 
Monte Carlo experiments produce samples that approximately “look like” those 
used in actual meta-analyses. While MA samples certainly differ, the range of 
estimated effects, t-statistics, precision, and I2 values in Table 1 would not attract 
attention for being unusual. Since external validity is always an issue with Monte 
Carlo studies, good practice should ensure that the samples under study are similar 
to ones that occur in actual empirical work. 

Figure 2 presents representative funnel plots both before and after publication 
selection. The vertical line indicates the mean true effect (=1). The top figure 
shows the scatter plot of estimates, graphed against their respective standard 
errors, with the most precise estimates plotted at the top of the funnel. The fact that 
there are multiple “true effects” causes the top of the “funnel” to be diffused. The 
same diffuse pattern is evident in both of the Post-Publication Bias funnel plots.  

It is apparent from the funnel plots that publication selection distorts the 
distribution of estimates around the mean true effect, even when effect standard 
errors are very small. This induces a bias in the estimates of overall effect—a bias 
that the different MA estimators will be challenged to eliminate.  
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Figure 2: Example of Funnel Plots for a Simulated MA Data Set:  
Random Effects (α=1) 

A. Pre-Publication Bias (N=1,000) 

 
 
 

B. Post-Publication Bias against statistical insignificance (N=160) 
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Figure 2 continued 
 

C. Post-Publication Bias against wrong-signed estimates (N=560) 
 

 
 

3.3 Random Effects: Performance Tests 

Tables 2 and 3 compare the six different estimators across three performance 
dimensions: (i) Average Estimate of Mean True Effect, (ii) Mean Squared Error 
(MSE), and (iii) Type I Error Rates associated with the hypothesis 
𝐻0: 𝑡𝑡𝑡𝑡 𝑣𝑎𝑣𝑡𝑡 =  𝛼. With respect to (iii), the significance level is set at 5 per 
cent, so rejection rates should likewise be equal to 5 per cent. Table 2 reports the 
results when publication bias is directed against statistical insignificance. Table 3 
examines publication bias against wrong-signed estimates. Each of the estimators 
is studied for a set of mean true effect values (= α) ranging from 0.0 to 4.0 in half 
unit steps. 

The top panel of Table 2 reports the average estimates of mean true effects for 
each of the respective estimators. The first two columns report the value of the true 
effect (α) and the average per cent of studies included in a MA study, where the 
average is taken over 10,000 simulated MA studies..  The first thing to note is that 
there is a strong relationship between the size of the true effect and the number of 
studies that survive publication bias against statistical insignificance. When α = 0, 

0
.5

1
1.

5
2

2.
5

3
3.

5
s.

e.
 o

f e
ffe

ct

-5 0 5 10 15
effect

Funnel plot



 

www.economics-ejournal.org  17 

an average of 27.1% of all studies appear in the meta-analyst’s sample. As α 
increases and the mean of the distribution of estimated effects moves away from 
zero, more and more studies produce significant estimates. When α = 4, an average 
of 70.4% of estimates/studies survive publication bias and are included in the 
meta-analyst’s sample. 

The next column reports results for the Unadjusted estimator. When α = 0 and 
publication bias discriminates against insignificant estimates, the average 
estimated value of α for the Unadjusted estimator—averaged across the 10,000 
MA studies—is 0.00. The Unadjusted estimator is an unbiased estimator of the 
true effect when α = 0 because sampling error is equally likely to produce 
significant estimates that are above and below the true effect. However, as α 
increases, publication bias disproportionately omits studies with estimates below 
the true effect since, ceteris paribus, studies with small estimated effects are more 
likely to have small t-values. When α = 1.0, the Unadjusted estimator 
overestimates the mean true effect by approximately 82%.. As α increases, fewer 
and fewer studies are affected by publication bias. While the table does not show 
this, further increases in α would eventually cause the publication bias associated 
with the Unadjusted estimator to disappear.  

Continuing with the top panel of Table 2, we turn our attention to the 
performances of the five MA estimators. Of particular interest is the first two, the 
PET and PEESE estimators, which are specifically designed to address publication 
bias. With respect to estimation bias, both estimators do very well compared to the 
Unadjusted estimator. When α = 1, the average estimates of the mean true effect 
for the PET and PEESE estimators are 1.02 and 1.12, translating to biases of 2 and 
12%, respectively. When α = 2, the estimates are 1.95 and 2.06, respectively. In 
fact, for every value of α, the PET and PEESE estimators substantially reduce bias 
relative to the Unadjusted estimator. This success seemingly validates the use of 
the PET and PEESE estimators to correct for publication bias. 

The next two columns report the performance of the FE estimator and its near 
twin, the WLS estimator. These estimators perform almost as well as the PET and 
PEESE estimators, even though they do not explicitly correct for publication bias. 
The explanation lies in how the study estimates are weighted. In one way or 
another, all four of these estimators weight by the inverse of the estimated 
coefficient’s standard error. As seen from the funnel plots in Figure 2, any 
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Table 2: Comparative Performance of Meta-Analysis Estimators:  
Random Effects/Publication Bias against Insignificance 

α Percent Unadjusted PET PEESE FE WLS RE 
Average Estimate of Mean True Effect 

0.0 27.1 0.00 0.00 0.00 0.00 0.00 0.00 
0.5 28.7 1.01 0.52 0.59 0.61 0.61 0.89 
1.0 33.0 1.82 1.02 1.12 1.15 1.15 1.58 
1.5 39.1 2.44 1.48 1.60 1.63 1.63 2.09 
2.0 45.9 2.94 1.95 2.06 2.09 2.09 2.53 
2.5 52.8 3.40 2.43 2.52 2.56 2.56 2.96 
3.0 59.2 3.84 2.93 3.00 3.04 3.04 3.40 
3.5 65.1 4.28 3.42 3.49 3.53 3.53 3.84 
4.0 70.4 4.71 3.93 3.99 4.02 4.02 4.29 

Mean Squared Error 
0.0 27.1 0.026 0.059 0.037 0.036 0.036 0.012 
0.5 28.7 0.286 0.056 0.043 0.044 0.044 0.164 
1.0 33.0 0.693 0.049 0.046 0.050 0.050 0.340 
1.5 39.1 0.888 0.043 0.036 0.041 0.041 0.352 
2.0 45.9 0.893 0.042 0.028 0.032 0.032 0.285 
2.5 52.8 0.815 0.046 0.026 0.027 0.027 0.216 
3.0 59.2 0.711 0.044 0.024 0.024 0.024 0.160 
3.5 65.1 0.609 0.044 0.024 0.023 0.023 0.120 
4.0 70.4 0.511 0.042 0.024 0.022 0.022 0.089 

Type I Error Rates 
0.0 27.1 0.05 0.08 0.07 0.89 0.47 0.03 
0.5 28.7 0.92 0.09 0.12 0.90 0.55 0.95 
1.0 33.0 1.00 0.08 0.16 0.92 0.64 1.00 
1.5 39.1 1.00 0.08 0.13 0.91 0.65 1.00 
2.0 45.9 1.00 0.09 0.09 0.89 0.61 1.00 
2.5 52.8 1.00 0.10 0.07 0.88 0.59 1.00 
3.0 59.2 1.00 0.10 0.07 0.87 0.60 1.00 
3.5 65.1 1.00 0.10 0.07 0.87 0.59 1.00 
4.0 70.4 1.00 0.10 0.07 0.87 0.61 1.00 
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estimator that heavily weights precise estimates is likely to produce estimated 
effects close to the mean true effect.. In other words, while the PET and PEESE 
estimators are successful in greatly reducing publication bias, their success has 
little to do with the inclusion of an SE term in the specification (see Equations 7 
through 9).  

The last column reports the estimates for the RE estimator. The RE estimator 
is the estimator specifically designed to address heterogeneity in true effects. It is 
tailored to match the data environment in which the simulations are conducted. 
Despite that fact, it is the most biased of the five MA estimators. This seemingly 
paradoxical result has been noted by other researchers (Doucouliagos and Paldam, 
2013, p. 586; Stanley and Doucouliagos, 2012, p. 83).  

The middle panel of Table 2 focuses on MSE performance, with smaller MSE 
values indicating greater efficiency. The Unadjusted estimator performs poorly 
compared to the MA estimators for all values of α > 0.  Among MA estimators 
when α > 0, the PEESE and FE/WLS estimators generally perform best. 
Interestingly, the FE/WLS estimators are almost always more efficient than the 
PET estimator, despite sometimes having greater bias (e.g., when α = 0.5).  This 
shall be discussed in greater detail below.  

Finally, when it comes to hypothesis testing, the bottom panel of Table 2 
suggests that caution is in order. The FE, WLS, and RE estimators all produce 
Type I error rates that are unacceptably large. For example, when α = 0.0, the FE 
and WLS estimators reject the hypothesis that α = 0.0 in 89% and 47% of the tests, 
despite the fact that the hypothesis is true. This compares with an expected 
rejection rate of 5% given the 5% significance level employed in the tests. The 
PEESE estimator is substantially better, though it also produces Type I error rates 
substantially larger than 5% when 0.5 ≤ 𝛼 ≤ 1.5. Given these unattractive 
choices, one might use be tempted to conclude that the PET estimator is 
serviceable for hypothesis testing. However, subsequent results will render this 
option less tempting. 

Table 3 repeats the preceding analysis for the case when publication bias 
discriminates against negative effect estimates. The Unadjusted estimator again 
produces substantially biased estimates of the mean true effect, now even when 
𝛼 = 0. Unlike the previous case, the MA estimators also produce biased estimates 
when α is relatively small. For example, when 𝛼 = 1, the associated biases range  
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Table 3: Comparative Performance of Meta-Analysis Estimators:  
Random Effects/Publication Bias against Wrong Sign 

α Percent Unadjusted PET PEESE FE WLS RE 

Mean Estimate of True Effect 

0.0 55.0 1.26 0.61 0.66 0.69 0.69 0.91 

0.5 65.4 1.52 0.90 0.95 0.97 0.97 1.18 

1.0 74.7 1.81 1.21 1.26 1.29 1.29 1.49 

1.5 82.0 2.12 1.59 1.63 1.65 1.65 1.85 

2.0 87.4 2.48 2.01 2.05 2.07 2.07 2.24 

2.5 91.3 2.86 2.49 2.51 2.53 2.53 2.66 

3.0 94.0 3.27 2.98 3.00 3.02 3.02 3.11 

3.5 95.9 3.70 3.48 3.50 3.51 3.51 3.58 

4.0 97.2 4.15 3.99 4.00 4.01 4.01 4.06 

Mean Squared Error 

0.0 55.0 1.602 0.405 0.461 0.498 0.498 0.828 

0.5 65.4 1.053 0.184 0.218 0.241 0.241 0.467 

1.0 74.7 0.654 0.073 0.087 0.099 0.099 0.245 

1.5 82.0 0.392 0.038 0.037 0.041 0.041 0.122 

2.0 87.4 0.229 0.032 0.024 0.025 0.025 0.060 

2.5 91.3 0.133 0.033 0.023 0.022 0.022 0.030 

3.0 94.0 0.078 0.035 0.023 0.022 0.022 0.016 

3.5 95.9 0.045 0.035 0.024 0.022 0.022 0.009 

4.0 97.2 0.026 0.035 0.024 0.022 0.022 0.006 

Table3 continued 
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Table 3 continued 

Type I Error Rates 

0.0 55.0 1.00 0.89 0.96 1.00 1.00 1.00 

0.5 65.4 1.00 0.74 0.91 1.00 1.00 1.00 

1.0 74.7 1.00 0.29 0.53 0.98 0.96 1.00 

1.5 82.0 1.00 0.10 0.18 0.91 0.79 1.00 

2.0 87.4 1.00 0.08 0.09 0.87 0.68 1.00 

2.5 91.3 1.00 0.08 0.07 0.87 0.65 0.92 

3.0 94.0 1.00 0.08 0.07 0.87 0.65 0.63 

3.5 95.9 0.94 0.08 0.07 0.87 0.66 0.36 

4.0 97.2 0.70 0.08 0.07 0.87 0.66 0.20 

 
from 21% to 49%. These biases get smaller as 𝛼 increases and the proportion of 
included studies becomes larger.  

Table 3 tells a story for MSE performance that is similar to Table 2. The 
FE/WLS estimator often performs as well, and sometimes slightly better, than the 
PET and PEESE estimators. Interestingly, when α ≥ 3, the RE estimator is most 
efficient, despite being the most biased. The explanation has to do with the fact 
that RE estimates have generally smaller variances than other MA estimators.9 
This is illustrated in Figure 3, which plots the distribution of RE and PEESE 
estimates when α = 3. Figure 3 makes the general point that the MA estimators 
can have substantially different variances, so that a single focus on biasedness can 
be insufficient when comparing estimator performance.10,11 Finally, as in Table 2, 

_________________________ 
9 The RE estimator divides the estimated effects by (SEi + τ2), while the other MA estimators divide 
by SEi.  The effect of adding a large, constant value to SEi serves to reduce the variation in the 
weighting term.  As a result, the RE estimator will generally have smaller variance than the other MA 
estimators. 
10 For example, in their response to Mekasha and Tarp (2013), Doucouliagos and Paldam (2013, p. 
586) state, “One fundamental difference is that M&T13 strongly advocate the use of the random 
effects model, whereas D&P08 draw statistical inferences from the fixed effects models. Stanley 
(2008) and Stanley and Doucouliagos (2012) show that while both fixed and random effects 
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Type I error rates for the FE, WLS, and RE estimators are unacceptably large. 
Unlike Table 2, both the PET and PEESE estimators have unacceptably large Type 
I error rates for small values of α. As we shall see, as disappointing as these results 
are, they get worse. 

Summarizing the results for the Random Effects data environment, we find 
that the MA estimators that do not explicitly correct for publication bias often 
perform as well, if not better, than those that do. While the MA estimators always 
reduce estimation bias in our experiments, they do not always eliminate it. And  
 
Figure 3: Distribution of RE and PEESE Estimates in the RE Case, α=3, Publication Bias 

against Wrong Sign 

 
 
 

_________________________ 
weighted averages are biased in the presence of publication selection, fixed effects averages are less 
biased (this explains why M&T13 find significantly larger meta-averages with the random effects 
weighted average).”  Our results show that just because the FE estimator is less biased than the RE 
estimator, that does not imply that the associated estimates are “better.” 
11 The same phenomenon can be observed for the Unadjusted estimator.  For large values of α, the 
Unadjusted estimator has lower MSE than all but the RE estimator.   
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while the RE estimator is generally the most biased, it sometimes offers efficiency 
gains over the other MA estimators. Finally, the results with respect to hypothesis 
testing are generally very poor.  

Monte Carlo simulations and external validity. One problem with Monte Carlo 
analyses is that it is difficult to determine if the associated artificial data represent 
empirical situations that a researcher would actually encounter. I have tried to 
address that concern in reporting representative sample characteristics for the 
simulated data in Table 1. Another approach to determine whether the funnel plots 
of Figure 2 are realistic is to compare them with funnel plots published in the 
literature.  

Figure 4 presents examples of funnel plots from the MA literature. These can 
be compared with the funnel plots of Figure 2. Panel A shows little evidence of 
publication bias and is most comparable to Panel A of Figure 2. Panel B shows 
some evidence of bias against statistical significance and is most comparable to 
Panel B of Figure 2. Panel C shows clear evidence of publication bias against 
wrong-signed estimates (since this is a price elasticity, positive coefficients would 
be regarded as “wrong-signed”) and is therefore comparable to Panel C of Figure 
2. Together, these funnel plots provide additional evidence that the artificial data 
analyzed in this study are similar to actual data encountered by MA researchers.  

Figrue 4: Examples of Funnel Plots from the Meta-Analysis Literature (Random Effects) 

A. Mekasha and Tarp (2013, Figure 1, p. 571) 

  
Figure 4 continued 
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Figure 4 continued 

B. Ringquist (2013, Figure 6.7, page 252) 

 
 

 

C. Nelson (2014, Figure 1, p. 184) 

 



 

www.economics-ejournal.org  25 

4 Panel Random Effects Data Environment 

4.1 Panel Random Effects: Design of Monte Carlo Experiments 

SIMULATING THE STUDIES. The last set of experiments examines the 
performance of the respective MA estimators when studies have multiple 
estimates, and true effects differ both across and within studies.12 

There is a debate in the literature as to whether MA studies should include all 
estimates from a study, or just one, or a selected few. To the extent a consensus 
exists, it is that MA estimators should include all the estimates, but correct for 
error correlation across estimates within studies (Stanley and Doucouliagos, 2012; 
Ringquist, 2013).  

The Monte Carlo experiments fix the number of Pre-Publication Bias studies at 
100, each with 10 estimates per study, where each estimate is based upon 100 
observations. True effects are modelled as differing both within and across studies, 
with the differences within studies being smaller than the difference across studies. 
Equations (10.A) and (10.B) from the Random Effects data environment are 
modified accordingly to be:  

(10'.A)   yijt = 1 + αij ·xij,t + eijt, t = 1,2,…,100, where 

(10’.B1) αij = αi + 0.5*N(0,1) , j = 1,2,…,10., and 

(10’.B2) αi = α + 2*N(0,1) , i = 1,2,…,100. 

The different weights on the standard normal variates in (10'.B1) and (10’.B2) 
are designed to capture the idea that effects are more likely to be similar within a 
study than across studies. 

The error terms are modelled similarly, with error variances again differing 
both within and across studies, but with most of the variation occurring across 
studies. Equations (11.A) and (11.B) are modified from the Random Effects data 
environment to be: 

_________________________ 
12 This study is unique in analysing estimator performance in the presence of publication bias when 
studies have multiple estimates.  While Bijmolt and Pieters (2001) use Monte Carlo simulations to 
analyze meta-analysis estimators under single and multiple sampling, they do not incorporate 
publication bias. 
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(11.A)   eijt = λij· NID(0,1), where  

(11.B1) λij = λi + UID(0,1), and 

(11.B2) λi = 0.5 + 30*UID(0,1). 

As in the Random Effects data environment, these DGP parameters are 
designed to simultaneously satisfy the four criteria listed above.  

Publication bias is also treated differently in the panel random effects 
environment. The experiments assume that the bias works at the level of the study, 
and not the individual estimate. In the case of bias against statistical insignificance, 
I assume that in order to be published, a study must have most of its estimates (7 
out of 10, or more) be statistically significant. If the study meets that selection 
criterion, all the estimates from that study are “published.” If the study does not 
meet that criterion, none of the estimates from that study are published. An 
identical “7 out of 10, or more” rule applies to publication bias against wrong-
signed estimates. 

Another difference has to do with the specification of the MA regressions. I 
modify Equation (4) to include multiple estimates per study: 

(12) �̂�𝑖𝑖1 = α + 𝜈𝑖𝑖,  

Dividing through by the appropriate standard error (either SEij or 𝜔𝑖𝑖 =

��𝑆𝐸𝑖𝑖�2 + 𝜏2) produces the FE, WLS, and RE estimators as described above. 
The PET estimator follows the recommendation of Stanley and Doucouliagos 

(2012, see (i) Equation 5.5, p. 85, and (ii) Equation 5.9, p. 101): 

(13) �̂�𝑖j1 = α + ∑ 𝛾𝑖𝑆𝐸𝑖𝑖𝐷𝑖𝑖 + 𝜈𝑖𝑖,  

where Di is a dummy variable that takes the value 1 for study i and 0 for other 
studies. Dividing through by 𝑆𝐸𝑖𝑖 produces the following specification: 

(14) 𝛽�𝑖𝑖1

𝑆𝑆𝑖𝑖
 = α � 1

𝑆𝑆𝑖𝑖
� + ∑ 𝛾𝑖𝐷𝑖𝑖 + �𝜈𝑖𝑖�

𝑆𝑆𝑖𝑖
 . 
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The panel version of the PEESE estimator is given by: 

(15) 𝛽�𝑖𝑖1

𝑆𝑆𝑖𝑖
 = α � 1

𝑆𝑆𝑖𝑖
�  + ∑ 𝛾𝑖𝑆𝐸𝑖𝑖𝐷𝑖𝑖 + �𝜈𝑖𝑖�

𝑆𝑆𝑖𝑖
 . 

For all estimators except the FE estimator, coefficient standard errors are 
calculated using a clustered robust procedure to allow for within-study correlation 
of error terms.13  

4.2 Panel Random Effects: A Representative Meta-Analysis Sample 
(α = 1) 

Table 4 is similar to Table 1, except that it characterizes a representative MA 
sample within the Panel Random Effects data environment. It reports average 
characteristics of a representative MA sample with a mean true effect of one (α = 
1). A total of 100 studies (= 1,000 effect estimates since each study has 10 
estimates) is included in the Pre-Publication Bias sample. An average of 21.9% 
and 56.6% of these survive to the Post-Publication Bias samples, respectively.  

The range of estimated effects and t-statistics is somewhat broader than their 
analogues in Table 1. The average minimum and maximum values of estimated 
effects in the Pre-Publication Bias sample are [–8.95, 10.89]. In the Post-
Publication Bias samples, the average ranges are [–5.34, 8.88] and [–5.36, 10.85], 
respectively. For the α = 1 case, the respective publication biases generate 
numerical effect biases of 140% when publishing is biased against statistical 
insignificance, and 123% when the bias is against “wrong-signed” (= negative) 
estimates.  

The median t-statistic in the Pre-Publication Bias sample is 0.68. This 
compares to median t values of 3.68 and 1.72 in the two Post-Publication Bias 
samples. The range of precision values, and measures of heterogeneity I2 are 
similar to those reported in Table 1. 

 

_________________________ 
13 Unlike the other estimators, the FE estimator imposes the assumption of a constant variance of 1 
on the variance of the residuals in Equations (4) and (12). Allowing a robust form of error 
correlations is at odds with this assumption.   
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Table 4: Sample Characteristics for a Simulated Meta-Analysis Data Set: Panel Random 
Effects Case (α = 1) 

Variable Median Minimum P5% P95% Maximum 

PRE-PUBLICATION BIAS (100% of estimates): 
Estimated 
effect 

0.99 –8.95 –3.51 5.51 10.89 

t-statistic 0.68 –17.76 –2.90 7.05 33.43 
Precision 
(1/SE) 

0.63 0.26 0.33 4.01 12.99 

I2 0.91 0.73 0.83 0.97 0.99 
PUBLICATION BIAS AGAINST INSIGNIFICANCE (21.9% of estimates): 

Estimated 
effect 

2.40 –5.34 –3.08 6.02 8.88 

t-statistic 3.68 –17.57 –7.84 16.90 33.42 
Precision 
(1/SE) 

1.83 0.45 0.60 7.21 12.69 

I2 0.97 0.87 0.94 0.99 1.00 
PUBLICATION BIAS AGAINST NEGATIVE EFFECTS (56.6% of estimates): 

Estimated 
effect 

2.23 –5.36 –0.84 6.21 10.85 

t-statistic 1.72 –2.93 –0.50 10.15 33.42 
Precision 
(1/SE) 

0.69 0.27 0.34 4.29 11.64 

I2 0.83 0.51 0.69 0.94 0.98 

Figure 5 shows corresponding funnel plots for the Pre- and Post-Publication 
Bias samples. The vertical line reports the overall mean of true effects (α = 1). The 
diffusion at the top of the funnels in each panel reflects the heterogeneous nature 
of true effects. The distorting effects of publication bias are clearly evident in the 
two Post-Publication Bias funnel plots.  
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Figure 5: Example of Funnel Plots for a Simulated MA Data Set:  
Panel Random Effects (α=1) 

A. Pre-Publication Bias (N=1,000) 

 

B. Post-Publication Bias against statistical insignificance (N=160) 

 
 

Figure 5 continued 
  

0
1

2
3

4
5

s.
e.

 o
f e

ffe
ct

-10 -5 0 5 10
effect

Funnel plot

0
.5

1
1.

5
2

s.
e.

 o
f e

ffe
ct

-5 0 5 10
effect

Funnel plot



 

www.economics-ejournal.org  30 

Figure 5 continued 

C. Post-Publication Bias against wrong-signed estimates (N=560) 

 

4.3 Panel Random Effects: Performance Tests  

As we have seen in previous cases, the Unadjusted estimator provides an unbiased 
estimate of the mean true effect when α = 0 and publication bias discriminates 
against statistical insignificance. As α increases, publication bias at first worsens, 
then eventually starts to improve as more studies are “published.” The numerical 
bias for the Unadjusted estimator can be quite substantial. For example, when α = 
2.0, the Unadjusted estimator estimates an average value for α of 3.36 (Table 5). 

With respect to bias, the PET and PEESE estimators perform best of all MA 
estimators. For example, when α = 2.0, the PET and PEESE estimators produce a 
mean estimate of α equal to 2.24, compared to 2.37 and 3.13 for the MA 
estimators that do not correct for publication bias.  

Superiority on the dimension of bias does not necessarily translate into 
superiority in MSE performance. While the PET and PEESE estimators are least 
biased, they are also least efficient among the MA estimators, and sometimes even 
less efficient than the Unadjusted estimator. This seeming anomaly was previously 
addressed in the discussion around Figure 3. As Figure 6 demonstrates, this 
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Table 5: Comparative Performance of Meta-Analysis Estimators:  
Panel Random Effects/Publication Bias against Insignificance 

α Percent Unadjusted PET PEESE FE WLS RE 
Mean Estimate of True Effect 

0.0 19.2 0.01 0.01 0.01 0.01 0.01 0.01 
0.5 19.9 1.09 0.61 0.61 0.66 0.66 1.01 
1.0 22.0 2.05 1.20 1.21 1.29 1.29 1.90 
1.5 25.2 2.78 1.73 1.74 1.85 1.85 2.59 
2.0 29.5 3.36 2.24 2.24 2.37 2.37 3.13 
2.5 34.7 3.84 2.74 2.75 2.86 2.86 3.60 
3.0 40.4 4.26 3.21 3.21 3.31 3.31 4.00 
3.5 46.4 4.65 3.66 3.67 3.76 3.76 4.39 
4.0 52.8 5.03 4.11 4.12 4.20 4.20 4.77 

Mean Squared Error 
0.0 19.2 0.506 1.765 1.553 0.874 0.874 0.443 
0.5 19.9 0.796 1.767 1.554 0.879 0.879 0.655 
1.0 22.0 1.435 1.700 1.506 0.880 0.880 1.111 
1.5 25.2 1.866 1.673 1.465 0.851 0.851 1.387 
2.0 29.5 2.000 1.531 1.341 0.782 0.782 1.428 
2.5 34.7 1.916 1.461 1.277 0.722 0.722 1.312 
3.0 40.4 1.671 1.415 1.231 0.652 0.652 1.094 
3.5 46.4 1.397 1.335 1.159 0.577 0.577 0.874 
4.0 52.8 1.126 1.287 1.107 0.527 0.527 0.670 

Type I Error Rates 
0.0 19.2 0.05 0.29 0.28 0.97 0.17 0.05 
0.5 19.9 0.15 0.29 0.29 0.97 0.17 0.14 
1.0 22.0 0.43 0.29 0.29 0.97 0.19 0.37 
1.5 25.2 0.71 0.30 0.30 0.97 0.22 0.62 
2.0 29.5 0.89 0.29 0.29 0.97 0.23 0.80 
2.5 34.7 0.95 0.29 0.29 0.97 0.23 0.88 
3.0 40.4 0.98 0.29 0.29 0.96 0.21 0.90 
3.5 46.4 0.98 0.27 0.26 0.96 0.18 0.89 
4.0 52.8 0.98 0.28 0.27 0.96 0.17 0.84 
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time it is the PET estimator that has greatest variance, which explains its poor 
efficiency performance. Among MA estimators, the FE/WLS estimators are 
generally most efficient, though the RE estimator is best for low values of α. 

Finally, when it comes to hypothesis testing, the lesson from the bottom panel 
of Table 5 could perhaps be summarized as “don’t.” In almost every case, the 
Type I error rates are so much larger than 5% that any results from hypothesis 
testing about the mean true effect should be regarded as highly dubious. 

Table 6 shows that all five of the MA estimators produce estimates of α that 
are positively biased when publication bias is directed against wrong-signed 
(negative) estimates. While the MA estimators always produce estimates that are 
less biased than the Unadjusted estimator, the reduction in estimation bias is often 
quite small. For example, when α = 2.0, the Unadjusted estimator produces a mean 
estimate of 2.89, while the PET, PEESE, and FE/WLS estimators produce 
estimates of 2.66, 2.66, and 2.68, respectively. The bias in estimated effects 
disappears only as publication bias becomes less severe and more studies are 
included in the MA sample. The RE estimator is most biased of all MA estimators 
across all values of α. 

Figure 6: Distribution of All Estimators: Panel RE Case, α=1,  
Publication Bias against Insignificance 
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Table 6: Comparative Performance of Meta-Analysis Estimators:  
Panel Random Effects /Publication Bias against Wrong Sign 

α 
Percen

t 
Unadjuste

d 
PET PEESE FE WLS RE 

Mean Estimate of True Effect 
0.0 38.4 2.01 1.74 1.74 1.77 1.77 1.88 
0.5 47.7 2.19 1.92 1.92 1.94 1.94 2.07 
1.0 56.8 2.40 2.14 2.15 2.17 2.17 2.29 
1.5 65.6 2.63 2.40 2.40 2.41 2.41 2.53 
2.0 73.6 2.89 2.66 2.66 2.68 2.68 2.80 
2.5 80.6 3.19 3.00 3.00 3.01 3.01 3.11 
3.0 86.2 3.51 3.35 3.35 3.36 3.36 3.45 
3.5 90.6 3.87 3.73 3.73 3.73 3.73 3.82 
4.0 93.9 4.26 4.14 4.14 4.14 4.14 4.22 

Mean Squared Error 
0.0 38.4 4.090 3.897 3.664 3.414 3.414 3.592 
0.5 47.7 2.900 2.884 2.672 2.388 2.388 2.513 
1.0 56.8 2.002 2.176 1.999 1.672 1.672 1.709 
1.5 65.6 1.312 1.703 1.522 1.143 1.143 1.106 
2.0 73.6 0.830 1.362 1.194 0.796 0.796 0.689 
2.5 80.6 0.507 1.231 1.061 0.609 0.609 0.418 
3.0 86.2 0.299 1.173 1.004 0.502 0.502 0.245 
3.5 90.6 0.172 1.143 0.980 0.445 0.445 0.144 
4.0 93.9 0.105 1.142 0.973 0.423 0.423 0.092 

Type I Error Rates 
0.0 38.4 1.00 0.78 0.90 1.00 0.99 1.00 
0.5 47.7 1.00 0.67 0.77 1.00 0.92 1.00 
1.0 56.8 1.00 0.54 0.61 1.00 0.77 1.00 
1.5 65.6 1.00 0.44 0.47 0.99 0.56 1.00 
2.0 73.6 1.00 0.36 0.38 0.97 0.38 0.98 
2.5 80.6 0.97 0.32 0.33 0.96 0.28 0.87 
3.0 86.2 0.79 0.30 0.30 0.96 0.21 0.60 
3.5 90.6 0.49 0.28 0.27 0.95 0.17 0.34 
4.0 93.9 0.26 0.28 0.27 0.96 0.16 0.18 
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Table 6 provides further support that inferiority on the dimension of biasedness 
does not imply inferiority on efficiency. The RE estimator is now either best or 
close to best on the dimension of MSE for all values of α It is also worth noting 
that for large values of α, the Unadjusted estimator is more efficient than every 
MA estimator except the RE estimator. Reliability in hypothesis testing for all the 
estimators continues to be abysmal across the full range of α values.  

5 Possible Directions for Future Research 

While this study has focussed on the performance of MA estimators in a variety of 
experimental settings, there are many performance issues deserving study that it 
has not addressed. One issue concerns the weighting of individual estimates. As 
discussed above, most MA estimators weight either by the standard error of the 
estimated effect, 𝑆𝐸𝑖, or by a term that expands this to include unobserved 
heterogeneity in true effects across estimates, �(𝑆𝐸𝑖)2 + 𝜏2. Another possibility is 
to expand the weighting to incorporate correlation across estimates from the same 
study. Currently, most MA studies adjust standard errors for correlation of 
estimates from the same study, but ignore this correlation in calculating coefficient 
estimates. To address this omission, Ringquist (2013, pp. 218ff.) suggests using 
generalized estimating equations (GEE).  

A related issue concerns how best to handle different numbers of estimates per 
study. If all coefficient estimates had the same estimated standard errors, 
conventional MA estimators would weight all estimates the same. Thus, a study 
that reported 100 estimates would implicitly receive 100 times the weight of a 
study that reported just one estimate. An alternative is to give equal weight to 
studies, as opposed to (standardized) estimates. Examples include Havranek and 
Irsova (2015) and Reed and Sidek (in press). 

Another issue is the potential endogeneity of the standard error. Endogeneity 
arises whenever a study characteristic systematically affects both the estimated 
effect from that study, and the standard error of that effect. For example, a study 
that employs GLS methods to correct for nonspherical errors will produce both 
different coefficient estimates and different standard errors than a study that uses 
OLS methods applied to the same data. The potential consequence of this 
endogeneity is that it biases coefficient estimates in any specification that includes 
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SE as an explanatory variable. Havranek (in press) suggests using the number of 
observations as an instrument. 

A final issue concerns the handling of outliers. On the one hand, “outliers”, as 
in exceptionally precise effect estimates, are the key to improving estimates of 
overall effects (Stanley et al., 2010). On the other hand, if these highly precise 
coefficient estimates are biased by omitted study characteristics, they can produce 
misleading estimates. A variety of methods exist to measuring, and correcting, the 
influence of outliers (Williams, 2015). 

6 Conclusion 

This study uses Monte Carlo simulations to investigate the performances of five 
different meta-analysis (MA) estimators in the presence of publication bias: the 
Precision Effect Test (PET) estimator, the Precision Effect Estimate with Standard 
Errors (PEESE) estimator, the Fixed Effects (FE) estimator, the Weighted Least 
Squares (WLS) estimator, and the Random Effects (RE) estimator. Two types of 
publication bias are analyzed: publication bias directed against statistically 
insignificant estimates, and publication bias directed against wrong-signed 
estimates.  

The simulated experiments are conducted within two different data 
environments. In the Random Effects data environment, each study produces only 
one estimate, and the true effect of x on y differs across studies, perhaps because 
the underlying samples cover different time periods or geographical units or 
different types of economic agents, or because the studies use different sets of 
control variables. In the Panel Random Effects data environment, each study 
produces multiple estimates, and the true effects are heterogeneous both across and 
within studies. The latter scenario is the most realistic since most MA samples 
include more than one estimate per study.  

Table 7 summarizes the main findings of this study. It also identifies the 
specific experimental results in this study that support those findings. First, while 
MA estimators generally outperform a simple average of estimated effects, MA 
estimators often struggle to eliminate publication bias. Second, MA estimators that 
do not correct for publication bias often perform as well, or better, than those that 
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Table 7: Main Results from Simulation Experiments 

 RESULT 

1 

While MA estimators generally outperform a simple average of estimated 
effects, MA estimators often struggle to eliminate publication bias.  
EVIDENCE FROM PANEL RE: See top panel (Mean Estimate of True Effect) 
of Table 6. 
EVIDENCE FROM RE: See top panel of Table 3 for low values of α. 

2 

The FE/WLS estimators—which do not correct for publication bias—often 
are equally efficient, and sometimes more efficient, than the PET and 
PEESE estimators, which do correct for publication bias.  
EVIDENCE FROM PANEL RE: See middle panel (MSE) of Table 6.  
EVIDENCE FROM RE: See middle panel of Table 3 for large values of α. 

3 

The RE estimator is often more biased than other MA estimators, but 
sometimes more efficient. 
EVIDENCE FROM PANEL RE: See top and middle panels of Table 6.  
EVIDENCE FROM RE: See top and middle panels of Table 3 for large values 
of α. 

4 

Hypothesis testing about the mean true effect is generally unreliable for all 
estimators. 
EVIDENCE FROM PANEL RE: See bottom panel (Type I Error Rates) of 
Table 5  
EVIDENCE FROM RE: See bottom panel of Table 3 for small values of α. 

5 
With respect to the four-step FAT-PET-PEESE procedure advocated by 
Stanley and Doucouliagos (2012), the simulation results suggest caution 
about two of the steps. 

5A 

• STEP TWO: Test whether there is a zero mean effect using the PET.  
Simulation results indicate that hypothesis testing using the PET when 
α=0 is not reliable. 

EVIDENCE FROM PANEL RE: See bottom panel of Table 5.  
EVIDENCE FROM RE: See bottom panel of Table 3. 

5B 

• STEP FOUR: If one rejects the null hypothesis of no effect in STEP 
TWO, estimate using the PEESE.  
Simulation results indicate that the FE/WLS and RE estimators are 
sometimes more efficient than the PEESE estimator. 

EVIDENCE FROM PANEL RE: See FE/WLS results in middle panel of 
Table 5.  
EVIDENCE FROM RE: See RE results in middle panel of Table 3 for large 
values of α.  
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do. Third, while the RE estimator is often more biased than other MA estimators, 
it is sometimes more efficient. Fourth, hypothesis testing about the mean true 
effect is generally unreliable for all estimators. And fifth, caution should be 
exercised when using the four-step FAT-PET-PEESE procedure (Stanley and 
Doucouliagos, 2012, pp. 78–79). 

These findings challenge results from previous research, which are also based 
on Monte Carlo simulations. The intended takeaway from this study is not that 
previous research is necessarily wrong. Rather, it highlights the need for additional 
research in order to develop best practice for meta-analyses. One way to reconcile 
conflicting results from different studies is to allow researchers access to the 
programming code used to produce those results. You can download the Stata 
programming code used to produce all the results in this study here: 
http://dx.doi.org/10.7910/DVN/OI8XSG. This should make it easy for researchers 
to check for robustness from modifications of the experimental design. 

Until such time that a consensus can be developed, I suggest two 
recommendations for meta-analysts interested in identifying “true effects” from 
publication-biased samples. The first is that meta-analysts should use a variety of 
MA estimators in their research. In particular, they should include results from 
MA estimators that do not correct for publication bias even if there is evidence that 
publication bias exists in their sample. The second recommendation is that 
hypothesis testing about the true mean effect should be viewed with substantial 
scepticism.  

On the positive side, this study provides further evidence that current MA 
procedures generally offer improvements on simple averaging of published 
estimates. Nevertheless, there is much room for improvement. It is hoped that this 
research will stimulate future efforts in this direction. 
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