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Abstract
In this paper, the effect of the social network on macroeconomic stability is examined using
an agent-based, network-based DSGE (dynamic stochastic general equilibrium) model. While
the authors' primitive (first-stage) examination has the network generation mechanism as its
main focus, their more in-depth second-stage analysis is based on a few main characteristics
of network topologies, such as the degree, clustering coefficient, length, and centrality. Based
on their econometric analysis of the simulation results, the authors find that the betweenness
centrality contributes to the GDP instability and average path length contributes to the inflation
instability. These results are robust under two augmentations, one taking into account non-
linearity and one taking into account the shape of the degree distribution as an additional
characteristic. Through these augmentations, the authors find that the effect of network
topologies on economic stability can be more intriguing than their baseline model may suggest:
in addition to the existence of non-linear or combined effects of network characteristics, the
shape of the degree distribution is also found to be significant.
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1 Motivation

The purpose of this paper is to examine the effect of the social network on macroe-
conomic stability using an agent-based, network-based macroeconomic model. We
shall simulate the macroeconomy using the agent-based DSGE (Dynamic Stochas-
tic and General Equilibrium) model, which is embedded with different network
topologies. We then examine the effect of these different network topologies on
the observed macroeconomic stability in terms of the GDP and inflation dynamics.
Before we proceed, the general background to what this research pursues shall first
be briefly reviewed.

1.1 The Two Lines of Research

A research subject on the relationship between social networks and macroeconomic
stability can be examined from several different perspectives or channels. In terms
of methodology, it does not have to rely on agent-based models. However, since
agent-based models have interactions of agents as one of their essential ingredients,
either explicitly or implicitly, (social) networks are naturally already there. In fact,
by and large, there are two major lines of research being pursued in the literature on
agent-based models; one relates to the network-based agent-based models, and the
other to the agent-based modeling of networks.1

The pioneering study by Mark Granovetter (Granovetter, 1973), while, formally
speaking, not involving an agent-based model, already incubated the idea of how
interpersonal networks can affect the information flow of the distribution of job
vacancies and how social networks can impact search and labor market behavior.
Later on, this line of research was generalized into the familiar network-based
discrete choice model or neighbors-based discrete choice model, as one of the
most important classes of agent-based models. In fact, the earliest agent-based
models, such as the checkerboard model or cellular automata, the Ising model, the
percolation model, and the kinetic model, can be regarded as models explicitly built
upon an interpersonal network upon which interactions of agents and the resultant
decision-making can be defined and operated.2

In this line of research, network topologies are exogenously fixed or, in other
words, are regarded as independent economic variables. The research question is
then concerned with how the resultant endogenous economic behavior depends on
the given network topologies, plus other given conditions. This line of research may
be useful for providing us with some thought experiments (what-if scenarios) to see
the possible economic effects of social network topologies; nevertheless, it does
not address a more fundamental issue, i.e., how these networks got there in the first
place.

Therefore, there is a second line of research which attempts to incorporate the
formation of network topologies as part of the model. Examples directly related to

1 For the brief review of these two directions, the interested reader is referred to Chen (2006).
2 For a review, see Chen and Li (2012).

www.economics-ejournal.org 2



conomics: The Open-Access, Open-Assessment E-Journal

our subject are Delli Gatti et al. (2010) and Delli Gatti et al. (2011), in which the
networks of firms and banks are endogenously determined and evolving. Not only
can this line of research be further connected to the increasing number of empirical
studies on networks, but may also help us see that some measures normally built
upon a given network, such as vulnerability, have to be updated over time.

Despite its potential generality and richness, few models are able to come up
with a scale which can simultaneously determine the evolution of the networks of
various economic agents (firms, banks, and households). What we have at this point
is either a study focusing on the evolution of one kind of network, e.g., the interbank
network, or the firm network, or else some very limited integration overarching
firms and banks. It is not entirely clear whether we need a fully-fledged version of
networks in our macroeconomic models, and, if so, to where and how far we can
actually advance.

1.2 The Approach and the Model Taken

The approach taken by this specific study belongs to the first line of development.
We take network topologies as given and, by means of thought experiments, study
whether these network topologies may have macroeconomic impacts. As with
other studies in the first-line research, the limitation is to assume away the possible
upward causation, which, of course, can be open to further exploration, if this initial
study can reveal its promising features.

Specifically, we take an agent-based version of the New Keynesian DSGE
model.3 In response to the recent criticisms (Colander et al., 2008; Colander, 2010;
Solow, 2010; Velupillai, 2011; Stiglitz, 2011), some researchers have attempted to
incorporate the three missing elements, i.e., bounded rationality, heterogeneity and
interactions, into the DSGE models (Orphanides and Williams, 2007; Branch and
McGough, 2009; Milani, 2009; Chen and Kulthanavit, 2010). This development
leads to a kind of ‘agentization’ of the DSGE models, known as the agent-based
DSGE models. These models are first initiated by De Grauwe (2010, 2011) and are
further developed by Chang and Chen (2012) and Chen et al. (2014).

The latter differs from the former according to the level of analysis. The
former (De Grauwe, 2010, 2011) starts at the mesoscopic level. It distinguishes
agents by types and hence the interaction, learning and adaptation of agents are
operated only based on the distribution over these types rather than going down
to individual agents. Since individuals are not directly involved, social networks,
i.e., the connections between these individuals, certainly have little role to play in
this model. The latter, on the other hand, starts at the microscopic level (individual)
level, and interaction, learning, adaptation and decision-making are all individually
based. It is a manifestation of the network-based discrete choice model. Social
3 There are a number of agent-based macroeconomic models directly formulated in the Keynesian
spirit, while the network structure has not become an explicit part of it. See, for example, Dosi et al.
(2010) and Dosi et al. (2013).
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networks in this model are obviously indispensable, since they are the driving force
behind the subsequent interactions of agents.

Chen et al. (2014) used the well-known Ising model, invented by the physicist
Ernst Ising in his PhD thesis in 1924, as a model for interacting agents with regard
to their mimetic behavior. This Ising model is operated with different embedded
network topologies. In this paper, we shall use the same model to address the
significance of network topologies to macroeconomic stability. Let us be more
precise in regard to what we try to do here. We shall simulate the macroeconomy
using the agent-based DSGE model augmented with the Ising model, which is
embedded with different network topologies. We shall then examine the effect
of these different network topologies on the observed macroeconomic stability in
terms of the output and inflation dynamics.

As for the chosen network topologies, we consider two stages with different
pursuits. In the first stage, we focus on network generation mechanisms, which
include fully-connected networks, random networks, regular networks, small-world
networks and scale-free networks. We then see whether there is any correspondence
between macroeconomic stability and these generation mechanisms. The reason that
we start with the network generation mechanism is because that earlier studies on
agent-based economic models mainly focus on the network generation mechanisms
(Albin and Foley, 1992; Wilhite, 2001). We should, however, realize that it is more
informative to base our analysis upon network characteristics rather than network
generation mechanisms. This is because the latter cannot uniquely define a network;
two network generation mechanisms may happen to lead to the same network.

There are many network characteristics; in this study, we restrict ourselves to
five frequently used characteristics, namely, degree, cluster coefficient, path length,
betweenness centrality and closeness centrality. It is possible to include others, but
we believe that this set of five serves as a good starting point for the key inquiry of
the paper. Therefore, in the second stage, our purpose is to understand the possible
correspondence between each of these characteristics and macroeconomic stability.
This correspondence is established through the econometric analysis in the form of
a simple linear regression with some extensions or augmentations. To do this, we
need samples that are sufficiently diversified to cover a reasonable range of various
network characteristics.

The remainder of this paper is organized as follows. In Section 2, we present
the agent-based DSGE model, including the Ising modeling of learning and ex-
pectations formation with the embedded social networks. Section 3 gives a brief
introduction to five network generation mechanisms (Section 3.1) as well as five
network characteristics (Section 3.2) to be used in this paper. Section 4 then presents
the simulation results and the related analysis and discussion, and is followed by
the concluding remarks in Section 5.

www.economics-ejournal.org 4
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2 The DSGE Model

2.1 The Standard DSGE Model

First, we describe the stylized New Keynesian DSGE framework. The model
consists of the following three equations:

yt = a1Etyt+1 +(1−a1)yt−1 +a2(rt −Etπt+1)+ εt (1)

πt = b1Etπt+1 +(1−b1)πt−1 +b2yt +ηt (2)

rt = (1− c1)(c2 + c3(πt −π
∗
t )+ c4yt−1]+ c1rt−1 +ut (3)

Equation (1) is referred to as the standard aggregate demand that describes
the demand side of the economy. It is derived from the Euler equation which is
the result of the dynamic utility maximization of a representative household and
market clearing in the goods market. The notation in Equation (1) has the following
meaning: yt denotes the output gap in period t, rt is the nominal interest rate and πt

is the rate of inflation. Here, we add a lagged output gap in the aggregate demand
equation to describe habit formation (Fuhrer, 2000). Et is the usual expectations
operator, to which we will come back later.

Equation (2) is a New Keynesian Phillips curve that represents the supply
side in the economic system. Under the assumption of nominal price rigidity and
monopolistic competition, the New Keynesian Phillips curve can be derived from
the profit maximization of a representative final goods producer and the profit
maximization of intermediate goods producers which are composed of a number
of heterogeneous households. To reflect the price rigidity, the intermediate goods
producers can adjust their prices through the Calvo pricing rule (Calvo, 1983). By
combining the first-order conditions of the final goods producer, the intermediate
goods producer and the Calvo pricing rule, we can obtain the New Keynesian
Phillips curve (Equation 2).

Equation (3) represents the Taylor rule commonly used for describing the
behavior of the central bank (Taylor, 1993).4 The idea is that the central bank reacts
to deviations of inflation and output from targets. In Equation (3), π∗ refers to the
inflation target pursued by the central bank. The coefficients c3 and c4 represent the
conflict resolution between the preference for price stability and economic growth;
in the case that these two pursuits are equally important for the central authority, c3
and c4 are identical. The presence of the one-period-lagged interest rate is to take
into account the smooth adjustment behavior of interest, and the coefficient c1 gives
the degree of smoothness.

Finally, εt , ηt , and ut are all white noise added to aggregate demand, aggregate
supply and the interest rate. Given these stochastic elements, Et , in Equation (1)
and Equation (2), is the expectations operator, denoting people’s expectations of the
GDP gap and the inflation rate.
4 There are different versions of the Taylor rule applied in the DSGE model, and the one which we
adopt here is the same, for example, as the one in Kazanas et al. (2011).
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The reduced form of the New Keynesian DSGE model is found by substituting
Equation (3) into Equation (1) and then by rewiring in the matrix notation. This
yields:[

1 −b2
0 1

]
×
[

πt

yt

]
=

[
0

a2(1− c1)c2

]
+

[
b1 0
−a2 a1

]
×
[

Etπt+1
Etyt+1

]
+

[
1−b1 0

a2(1− c1) 1−a1 +a2(1− c1c4)

]
×
[

πt−1
yt−1

]
+

[
0

a2c1

]
× rt−1 +

[
ηt

a2ut + εt

]
(4)

or, in a compact matrix notation,

AZt = CON+BEtZt+1 +CZt−1 +brt−1 +Vt (5)

where all notations above correspond one-to-one to the matrices in Equation (4) in
an order from left to right. The solution to (5) in terms of Zt is:

Zt = A−1[CON+BEtZt+1 +CZt−1 +brt−1 +Vt] (6)

The solution exists only if matrix A is non-singular. By obtaining the inflation rate
(πt) and output gap (yt) through Equation (6) and substituting them into Equation
(3), the interest rate (rt) can be determined accordingly.

2.2 The Agent-Based DSGE model

After describing the stylized New Keynesian DSGE model, we come to a variant
initiated by De Grauwe (De Grauwe, 2010, 2011), which differs from the standard
DSGE model in terms of the formation of expectations and its heterogeneity. In
the standard New Keynesian DSGE model, the representative agent always has
rational expectations. De Grauwe relaxed this stringent assumption and started the
agent-based version of the DSGE model by replacing the homogeneous rational
expectations of output with the heterogeneous boundedly rational counterparts.

This is done by using a two-type agent-based model, which is one of the most
frequently used agent-based models in the literature (Chen et al. , 2012). This type
of agent-based models starts with a description of the types of agents (Section 2.2.1),
the determination of the meso-structure in terms of these types (Section 2.2.2), and
the effect of the meso-structure on aggregate outcomes as well as the downward
causation (Section 2.2.3).

2.2.1 The Two Types of Agents

In our context, we assume that there are only two states for expectations, referring
to two types of agents. For the output (GDP gap) inflation, there are optimists and
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pessimists. The former form their expectations biasedly and systematically in an
upward manner, and the latter form their expectations with the same style but in a
downward manner. Technically, their forecasting rules are specified as follows:

Eo,tyt+1 = g, Ep,tyt+1 =−g, (7)

where“o” is an abbreviation for the optimist and “p” is an abbreviation for the
pessimist, and g (g > 0) denotes the degree of bias in the estimation of the output
gap, which is a parameter to be specified later in the simulation table.

Similarly, there are two types of agents in the inflationary expectations. One is
called the ‘fundamentalist’, who tends to believe that the realized inflation will be
the targeted inflation π∗, and the other is the ‘chartist’, who simply behaves as a
trend follower. Technically, these two expectations rules, E f ,t and Ec,t , are described
as follows:

E f ,tπt+1 = π
∗, Ec,tπt+1 = πt−1, (8)

where f and c are the abbreviations for the fundamentalist and the chartist.

2.2.2 The Meso-Structure and the Ising Model

Once after the two types of agents are specified, we need to know the size of each
in the model, not just the absolute size, but also the relative size, i.e., the share of
each in the market. While this size is treated as an exogenous variable in many
earlier agent-based models and still so even recently, there are more and more
models addressing it as a variable to be determined endogenously. The endogenous
determination mechanism normally involves switches between different types of
agents. If the types have been fixed, the learning and adaptation of agents are
mainly manifested through this switching mechanism. In this paper, this switching
or learning mechanism shall be modeled through the Ising model, to which we now
turn.

The Ising model originated from the dissertation of Ernst Ising (1900–1998)
(Ising, 1924). Ising studied a linear chain of magnetic moments, which are only
able to take two positions or states, either up or down, and which are coupled by
interactions between nearest neighbors. The model is strikingly successful in the
search for the transition between the ferromagnetic and the paramagnetic states. In
addition to physics, the model is also used in biology and the social sciences. In
economics, it was first used in Follmer (1974), and has been used to model opinion
dynamics (Orlean, 1995), financial markets (Iori, 1999, 2002) and tax evasion
(Zaklan et al., 2009).

Our model is composed of a finite number of agents, say N agents, who are
arranged in a specific network structure as we shall introduce in Section 3.1. The
Ising model characterizes each individual’s decision as a stochastic discrete choice.
In our case, each agent’s dual choice is influenced by his neighbor’s (magnetic field)

www.economics-ejournal.org 7
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in a stochastic manner. Specifically, in period t, agent i’s probability of being an
optimist (iy(t) = 1) or a pessimist (iy(t) =−1) and that of being a fundamentalist
(iπ(t) = 1) or a chartist (iπ(t) =−1) is stochastically determined by his interactions
with his neighbors in previous periods. For implementation, we further assume that
this local interaction can be summed up by a few statistics, for example, the number
of his optimists, pessimists, fundamentalists and chartists in agent i’s neighborhood
in period t−1. Then his choice in time t is assumed to be influenced by these local
statistics. A simple formalization of this stochastic discrete choice for the output
expectation, iy(t), is given by Equation (9).

Prob(iy(t) = 1) =
1

1+ exp(−2λmi,y(t))
(9)

In Equation (9), the decision to be optimistic (iy(t) = 1) or pessimistic (iy(t) =−1)
only involves one local statistic, i.e., mi,y(t). In line with the Ising model, this can
typically be the weighted average of the local optimistic forces and pessimistic
forces (or simply the local market sentiment), i.e., the market sentiment that agent i
can experience from his neighbors (magnetic field). More concretely,

mi,y(t) =
N

∑
j=1, j∈ϑi

wi j jy(t−1) (10)

ϑi is the set of all neighbors of i.5 wi j is the weight that represents the interaction
strength between i and j or j’s influential power on i. In a very simple setting, we
consider the uniform weight, i.e.,

wi j =
1

#{ j : j ∈ ϑi}
(11)

Agent i’s decision on inflationary expectations is determined is a similar manner.

Prob(iπ(t) = 1) =
1

1+ exp(−2λmi,π(t)
, (12)

where

mi,π(t) =
N

∑
j=1, j∈ϑi

wi j jπ(t−1) (13)

In addition to the local statistics mi,y(t) and mi,π(t) (the forces in the magnetic
field), the other variable appearing in Equations (9) and (12), is λ , the parameter

5 Later on, in Section 3, we shall formally introduce the notations related to the network. Borrowing
the notations from there, the set ϑi can be formally defined as

ϑi = { j : bi, j = 1}.

www.economics-ejournal.org 8
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which is normally known as the intensity of choice in the literature. The role of λ

can be highlighted as follows.

Prob(iy(t) = 1)→


1/2, if λ → 0.
1, if λ → ∞ and mi,y(t)> 0.
0, if λ → ∞ and mi,y(t)< 0.

(14)

Equation (14) is applicable to Prob(iπ(t) = 1), except that mi,y(t) has to be replaced
by mi,π(t). In terms of the Ising model, when λ is high, agents have the tendency to
align with their neighbors, whereas when it is low, that tendency is disturbed and
agents behave as if they are independent.

The switching mechanism characterized by stochastic choice models (9) and
(12) will then be applied to each agent i (i = 1,2, ...,N). Based on the choices
stochastically made, in each period in time, our relative size of each type of agent is
determined as:

αo,t =
#{i : iy(t) = 1}

N
, αp,t =

#{i : iy(t) =−1}
N

, (15)

and

α f ,t =
#{i : iπ(t) = 1}

N
, αc,t =

#{i : iπ(t) =−1}
N

. (16)

These fractions, αo,t and α f ,t (αp,t and αc,t) then give the meso-structure of the
economy at time t.

2.2.3 The Aggregate Effect of the Meso-structure

Given the fractions of the optimists and pessimists, αp,t and αo,t , and the fractions
of the fundamentalists and chartists, α f ,t and αc,t , the aggregated expected output
gap and the aggregated expected inflation in period t +1 can then be regarded as
the weighted average of the expectations held by the two types of agents, weighted
by their fractions, as shown in Equations (17) and (18).

Etyt+1 = αo,tEo,tyt+1 +αp,tEp,tyt+1 = (αo,t −αp,t)g (17)

Etπt+1 = α f ,tEo,tyt+1 +αc,tEp,tyt+1 = α f ,tπ
∗+(1−α f ,t)πt (18)

2.2.4 Remarks on Theoretical Foundations

Here we come to an intriguing point. Given the heterogeneity of the agent’s
expectations, while it is quite usual to use the weighted average, weighted by the
fraction of each type, as the aggregate expectations or the equivalent expectations
of the representative agents (Chen and Yeh, 2002), it is not entirely clear on what
grounds this weighted average can actually replace the expectations, Ei,tyt+1 and

www.economics-ejournal.org 9
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Ei,tπt+1, appearing in the DSGE model, Equations (1) and (2), originally derived
under the individual optimization scheme.

One possible justification is to treat or assume these two equations, the aggre-
gate demand and the Phillips curve, as emergent properties from an agent-based
macroeconomic model. In fact, this assumption is not totally stringent. In agent-
based models, the relationships among all economic variables are emergent and not
assumed or imposed. These include the famous Phillips Curve, Beverage Curve
and Okun’s Law. Unlike the conventional equation-based models which take these
relationships as given, agent-based models allow these relations to be studied as
endogenously emergent properties (Russo et al., 2007; Lengnick, 2013; Delli Gatti
et al., 2011).6 In this way, we shall say that there is indeed a mapping between
the weighted expectations and other aggregate variables. Of course, the exact form
of the emergent equations may depend on the details of the specific agent-based
model.

There is an another constraint to our approximation. The agent-based models,
as well demonstrated by Wolfram (2002), can generate four types of dynamics. In
addition to the fixed points, limit cycles, and chaos (pseudo randomness), it can
also generate the pattern known as “on-the-edge-of-chaos” and is computationally
irreducible. So far, no single agent-based macroeconomic model has formally
demonstrated the “on-the-edge-of-chaos” property in their model; nonetheless, due
to this possibility, it is likely that the emergent aggregate properties may constantly
change with the evolution of the economy, and hence there is no time-invariant form
of the functional relation, such as Equations (1) and (2). In this case, the effective
time horizon which can legitimize our approximation cannot be infinitely long or
can be rather limited.

In sum, without getting to these much more sophisticated models, one can take
Equations (1) and (2) as an approximation to the possibly emergent laws (equations).
The modeling strategy based on this simplification allows us to take a first step
toward the exploration of the possible effects of network topologies. Having known
this restriction, we shall proceed by assuming that the two expectations appearing
in Equations (1) and (2) can be replaced by the two in the form of (17) and (18).

3 Social Networks

In this section, we give a brief description of each network employed in this study
(Section 3.1). They are not exhaustive, and one can always add others, but as a
pioneering study, we believe that the ones considered are representative enough to

6 That the equation-based model can be given an agent-based interpretation has also been frequently
seen in other social sciences. For example, Uri Welinsky, the founder of NetLogo, frequently used the
famous Lokta-Volterra equation, a prominent equation in ecology, as an example to illustrate how the
same kind of phenomena can be generated by agent-based models (Wilensky and Reisman, 2006)
(see NetLogo Models Library: Sample Models/Biology, Wolf Sheep Predation). However, because of
the inclusion of geographical specifications, the Lokta-Volterra equation can only be considered as an
approximation of the result dynamics generated by the agent-based model.

www.economics-ejournal.org 10
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cover different characterizations of network topologies (Section 3.2). Later on, our
agent-based DSGE model will be embedded within these different network settings,
and their effects on macroeconomic behavior will be simulated and studied.

3.1 Network Generation Mechanisms

So far, the most powerful mathematical treatment of social networks is mathematical
graph theory. To recap, a graph (G) or a network G(V,E) is defined by a set of
vertices (nodes) V and a set of edges (links) E. In many social applications like
ours, each node corresponds to a single agent, and V = {1, ...,N} denotes the set
of all the agents considered in the economy. The number N is then the cardinality
of the set V or the size of the network. The set E can be represented as an N×N
binary matrix. E = {bi j : i, j ∈V} denotes the pairwise connections existing among
the agents; normally, bi j = 1 if such a connection exists between i and j, and zero if
there is no such connection. In addition, since self-connection has little application
value, we normally assume that bii = 0. The network is undirected if the matrix E is
symmetric, i.e., bi j = b ji. All the social network topology considered in this paper
is undirected.7

Following the current practice in the social network analysis, we consider a
number of frequently used network topologies in the literature. These network
topologies are at most served for the purpose of thought experimentations; it would
be hard to take any of it literally from an empirical viewpoint. Presumably, the
best use of them is simply to help us have a rough idea or a picture of the effect
of social networks on the macroeconomic performance. With this scope in mind,
we have considered the following network topologies: the fully-connected network,
the circle and the regular network, the small-world network, and the scale-free
network. Each of them will be briefly described as follows. All these networks are
also depicted in Figure 1.

Fully-connected network The fully-connected network has the feature that
agents are completely connected with each other. In other words, each agent
has N−1 links. An example of the fully-connected network is given in Figure 1
(first row, left).

7 The decision heuristic which we use in this paper is a very standard neighborhood-based decision
model, i.e., each agent’s decision is influenced by his neighbors. Since the neighboring relation is
symmetric, the network interests us is undirected. Needless to say, there are variations of this setting
which can lead to directed networks.

www.economics-ejournal.org 11
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]
�

Figure 1 Social Network Topologies

Circle and Regular Network In the fully-connected network, all interactions are
global; however, in many realistic settings, interactions are rather local and are
confined to the geographical constraints. There are a number of spatial networks,
such as cellular automata, that may be a better representation of these constraints.
We, however, consider an alternative with similar virtues but that is much less
computationally demanding, which is known as a regular network. In a regular
network, all agents are distributed and placed like a ring (Figure 1, first right and
second left) and each agent is connected with his k neighbors both on the left and the
right; k is a constant. A special case called the circle appears when the interaction is
extremely limited and k = 1 (Figure 1, first right). In addition to this extreme case,
a regular network with k = 2 is also considered (Figure 1, second left).

Small World and Random Network The regular network focuses only on lo-
cal interactions. It captures a kind of clustering activity, but does not allow for
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interactions crossing clusters. Nevertheless, inter-cluster interactions are important
in reality. Sociologist Mark Granovetter first noticed its significance in the labor
market and proposed the so-called weak-tie connection (Granovetter, 1973). A
network which allows for both local and bridging interaction was first proposed by
Watts and Strogatz (1998) and is known as the small-world network.

The small-world network combines the ideas of random networks and regular
networks. These two kinds of networks can be interestingly compared by the two
essential characterizations of network topologies, namely, the clustering coefficient
and the average distance. The clustering coefficient is a formal measurement of
the extent to which friends of mine are also friends of each other. The average
distance, denoted as the average length of the shortest path between two nodes,
is used to measure the average distance between two nodes, which corresponds
to the degree of separation in a social network. Watts and Strogatz (1998) show
that regular networks tend to have a larger clustering coefficient and also a larger
diameter; random networks of the equivalent size tend to have a smaller diameter
and also a smaller clustering coefficient.

To have a network with a large clustering coefficient but also a small average
distance, Watts and Strogatz proposed a network generation algorithm as follows.
Firstly, it generates a regular network with N nodes, each with 2κ neighbors.
Secondly, a rewiring probability, p, is applied to each link of each agent. If rewiring
takes places, then that link will be disconnected and rewired to a randomly selected
agent. By fine-tuning the probability parameter, p, a spectrum of small-world
networks, which has the random network and the regular network as two extremes,
can be generated. In fact, when p = 0, we have the regular network and, when
p = 1, we have the random network (Figure 1, first on the fifth row). In this study,
small-world networks with p equal to 0.1, 0.3, 0.5, 0.7, and 0.9 are employed and
they are exemplified in Figure 1 (right on the second, the two on the third and
fourth). Small-world networks, as compared to other random graphs with the same
number of nodes and edges, are characterized by clustering coefficients significantly
larger than expected and average shortest-path lengths smaller than expected.

Scale-Free Network Now, we have networks with a mixture of local and bridg-
ing connections, each up to a different degree. In addition, due to the randomness
introduced by the rewiring parameter, nodes (agents) can have different numbers
of connections, a property which is not shared by the regular networks. This phe-
nomenon, known as the degree distribution (see the definition below), corresponds
well with what we experience in real social settings: some agents have many more
connections than others. However, the way the degree distribution is introduced by
the rewiring parameter is basically random rather than by a certain social mecha-
nism. Therefore, one cannot directly control the degree distribution in a manner
that mimics the empirical degree distribution observed in real social contexts, such
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as the power law distribution.8 The power law distribution of the degree has been
found in many social contexts, such as the citation network of scientific publications
(Redner, 1998), the World Wide Web and the Internet (Albert et al., 1999; Faloutsos
et al., 1999), telephone call and e-mail graphs (Aiello et al., 2002; Ebel et al., 2002),
and in the network of human sexual contacts (Liljeros et al., 2001).

A scale-free network is a network with the power law property. Thus, the
number of links originating from a given node follows a power law distribution
represented by p(k) = k−γ where k is the number of links. The scale-free network
was first proposed by Barabási and Albert (1999), and hence is also known as the
BA model (the Barabási-Albert model). Barabási and Albert (1999) proposed an
algorithm, known as preferential attachment, to generate a scale-free network. The
idea of preferential attachment is similar to the classical “rich get richer” model
originally proposed by Simon (1955). By this algorithm, the network is initialized
with N0 agents with some initially randomly-generated connections and then new
agents are sequentially added to the network, one at a time. The new agent, say, i
(the ith agent entering the network), is then linked to each of the existing agents,
j ( j = 1, ..., i− 1), with a probability that is positively related to the number of
connections (degree) that agent j has. Equation (23) is an example of the preferential
attaching probability

Prob({bi, j = 1)}) =
(k j)

θ

∑
i−1
j=1(k j)θ

, (23)

where θ is a scaling factor. An example of the scale-free network with θ = 1 is
shown in Figure 1 (right, the last row).

8 A power law distribution is a density function which is proportional to a power function, i.e.,

y = f (x) = Prob(X = x)∼ x−γ , (19)

where X is a random variable. A nice feature of the power distribution is that it is scale free. A random
variable X is called scale free or said to have a scale-free distribution if

f (bx) = g(b) f (x). (20)

Intuitively, the shape of the distribution in an interval [x1,x2] is the same as that of [bx1,bx2] except
for a multiplicative constant. The definition above obviously applies to the power-law distribution
since

f (bx) = (bx)−γ = b−γ x−γ . (21)

The power law distribution has been cited as Pareto’s Law when what interests us is the tail distribution
of Equation (19), i.e.,

Prob(X ≥ x)∼ x−β , (22)

where β = γ−1.
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3.2 Characterizations of Network Topologies

To facilitate the later simulation study, it would be useful to characterize the chosen
network topologies by a few key variables, and then examine the effects of these
variables on the resultant macroeconomic behavior. Based on what we have dis-
cussed throughout this section and also the literature on social network analysis, we
restrict our attention to the following five major characterizations, namely, average
degree, average clustering coefficient, average path length, betweenness centrality
and closeness centrality. They shall be briefly described as follows.

Degree Distribution and Average Degree The degree of a specific vertex is the
number of links emanating from that vertex. A degree distribution f (k) gives the
probability of a randomly chosen vertex which has exactly k links. The power law
distribution discussed earlier, which has the form f (k) = k−γ , is one example of the
degree distribution.9 When the network has a finite size, f (k) can also be read as
a histogram that gives the percentage of the agents who have exactly k links. The
average degree is the mean associated with distribution f (k). When V is finite, it is
simply

k̄ =
∑

N
i=1 ki

N
, (24)

where N is the size of the network (the total number of agents in the network) and
ki is the number of the degrees of agent i.

Average Clustering Coefficient The clustering coefficient measures the tightness
of the local connection. Specifically, we are asking: if agent j is connected to i, and
l is also connected to i, is j also connected to l? Let ϑi be the set of neighbors of
agent i,

ϑi = { j : bi j = 1, j ∈V} (25)

Then the clustering coefficient of agent i, Ci, is defined as follows.

Ci =
#{(h, j) : bh j = 1,h, j ∈ ϑi,h < j}

#{ j : j ∈ ϑi}
(26)

The definition of the average clustering coefficient is thus straightforward.

C̄ =
1
n

n

∑
i=1

Ci (27)

By Equation (26), if agent i’s neighborhood is fully connected then the clustering
coefficient Ci is 1; otherwise, if they are poorly connected, then Ci is closer to zero.
Hence, the average clustering coefficient C̄ gives a general picture of how well
agents are locally connected.
9 See footnote 8.
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Average Path Length Average path length, defined as the average length of the
shortest path connecting two vertices, is used to measure the average distance
between two nodes, which corresponds to the degree of separation in a social
network. Given G(V,E), let d(i, j) be the length of the shortest path between the
vertices i and j. Then the mean shortest length of G(V,E) is simply the mean of all
d(i, j),

L =
1

1
2 N(N−1) ∑

i≥ j
d(i, j). (28)

The definition above may be problematic if there is an isolated vertex which actually
has no edge on any other vertices. So, G(V,E) with isolated vertices are not
considered here.

Centrality Centrality concerns the significance of individual agents in their re-
lation to the entire network. Intuitively, given a network topology, to identify the
leaders, the most influential persons, the most alerted agents, or the most vulnerable
positions of the network, centrality is the key measure to look at. The idea was
initiated by sociologist Linton Freeman (Freeman, 1977), who used a star network
to point out the three mainstays of centrality, namely, degree, betweenness and
closeness. The later development was to generalize the notion of centrality from the
star network to general network topologies. Along this line of development, the two
most crucial measures are betweenness centrality and closeness centrality, to which
we now turn.

Betweenness centrality measures how many times an agent sits on the shortest
path connecting two other agents. Formally, let ns,t be the total number of the
shortest paths connecting vertices s and t, and let ni

s,t be those passing through i.
Then the centrality of node i is defined as

CB(i) = ∑
s,t 6=i

ni
s,t

ns,t
(29)

The other key node centrality measure in networks is closeness centrality (Free-
man, 1978; Opsahl et al., 2010; Wasserman and Faus, 1994). It is defined as the
inverse of farness, which in turn, is the sum of the distances to all other nodes. As
the distance between nodes in disconnected components of a network is infinite,
this measure cannot be applied to networks with disconnected components. Equa-
tion (30) represents its mathematical formula where d(i, j) is the shortest distance
between i and j. Thus, the more central a node is, the lower is its total distance to
all other nodes. Closeness can be regarded as a measure of how quickly information
can be spread from s to all other nodes sequentially.

Cc(i) = ∑
i 6= j

1
d(i, j)

(30)
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4 Simulation Results and Analysis

In this section, we try to study the relationship between the social network and
macroeconomic stability. We shall use the agent-based (network-based) DSGE
model to generate the time series of two major macroeconomic variables, the output
gap and inflation, and then study the effects of the network topology on their stability
(volatility).10 To do so, we propose a two-stage analysis. A small-scale experiment,
like a pilot experiment, is attempted in the first stage. In this stage, we quickly
generate 10 different networks and obtain a quick grasp of their possible effect
on economic stability. As we shall see in Section 4.2, this initial exploration does
suggest some network effects and prompts us to go further to identify its possible
sources. Therefore, in the second stage (Section 4.3), we carry out a large-scale
simulation based on a large sample of networks with diversified characteristics. An
econometric analysis is applied to examine the effect of each network characteristic.

4.1 Simulation Design

The parameter setting involves two parts, one for the DSGE model and one for
the social interaction within the embedded social networks. The parameter values
of these two parts are given in the upper panel and the middle panel of Table 1.
While we take a simulation approach, to make the simulation results reasonably
interesting, the parameter values fed to the DSGE model are those actually studied
in the literature. In this paper, we take the values from De Grauwe (2010) and
Kazanas et al. (2011). Regarding the middle panel, our agent-based (network-based)
DSGE model is built upon the five different network topologies reviewed in Section
3, namely, the fully connected network, the regular (circle) network, the random
network, the small-world network, and the scale-free network. The parameters given
in the middle panel are those required for generating various network topologies.

In this article, the size of the networks is identically set to 100. Hence, the degree
for the fully connected network is 99, but that for others varies. It is set as two for
the circle network, and four for the regular, random, and small-world networks.11

To have a full spectrum between the regular network and the random network, we
consider the five rewiring rates ranging from low to high for small-world networks.
Finally, for the scale-free network, we grow the network with an initial set of 10
nodes with a probability of 0.5 of being connected to each other. We then introduce
new nodes one after the other and make them connect to the existing nodes with
a preferential attachment scheme (23) with the scaling parameter θ = 1. The last
entry of the middle panel gives the value of the key parameter in the stochastic
choice model, i.e., the intensity of choice.

10 Since the behavior of the central bank (the agent) is not part of our social network modeling, the
interest rate volatility due to the Taylor rule is not brought into the analysis.
11 For the random and small-world network, instead of controlling the degree per agent directly, what
we actually did is control the average degree of the network.
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Table 1 Parameter Settings of the Network-Based DSGE Models

The DSGE Model

π∗ 0.02 The central bank’s inflation target
a1 0.5 Coefficient of expected output in output equation
a2 -0.2 The interest elasticity of output demand
b1 0.5 Coefficient of expected inflation in inflation equation
b2 0.05 Coefficient of output in inflation equation
c1 0.8 Interest smoothing parameter in Taylor equation
c2 2 Constant in Taylor equation
c3 0.5 Coefficient of inflation gap in Taylor equation
c4 0.5 Output gap smoothing parameter in Taylor equation
q̄ 0 Threshold of output gap
g 0.01 Output forecasts of optimists
εt ,ηt ,ut 0.005 The size (standard deviation) of shocks (GDP, inflation and Taylor’s rule)

Social Networks and Interaction

N 100 Number of agents
k(k̄) 4 Average degree (random, regular, small-world)
p 0.1, 0.3, 0.5, 0.7, 0.9 Rewiring rate (small-world)
N0 10 Initial size (scale-free)
p0 0.5 Initial connecting probability (scale-free)
θ 1 Scaling factor (scale-free)
λ 0.1, 0.3, 0.5 0.7, 0.9 Intensity of choice (Ising)

Others

T 300 Number of simulation periods for each calibration experiment
R 100 Number of experiments for each calibration

Based on the parameter values given in the middle panel, we generate 10
networks as exemplified in Figure 1. The five characteristics, reviewed in Section
3.2, of the ten generated networks are summarized in Table 2.12 The agent-based
(network-based) DSGE model is then embedded with these networks, and for each
of these networks we run 100 times of simulation (R = 100), and each run lasts
for 300 periods (T = 300), as indicated in the bottom panel of Table 1. In this
way, at the end of each run, we will have the time series of the following three
variables: the output gap, inflation and the nominal interest rate. Each variable has
300 observations. We then compute the volatility (variance) of each series, and
further compute the average of these volatilities over 100 samples. The analysis is
then based on these sample volatility averages.

12 It is worth noting that there is such a possibility that i and j have no path connecting the two. In this
case, d(i, j) obviously has no finite distance, which may make the average path length problematic.
While in the literature it will be considered as infinity, that cannot help distinguish all network
topologies with different isolated components (nodes). In this article, the way in which we deal with
this problem is to assign a large distance, large enough to make such a distinction. Specifically, with a
network size of 100, we set d(i, j) = 999 if there is no path traveling through i and j, which is ten
times higher than the largest possible finite distance.
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Table 2 The Five Characteristics of the Ten Generated Networks

Network AD ACC APL MBC MCC

Fully-Connected 99 1.000 1.0000 0.0000 0.0101
Regular 4 0.500 12.8789 588.0000 0.0008
Circle 2 0.000 25.2525 1200.5000 0.0004
Random 4 0.036 3.4442 472.3707 0.0037
SW01 4 0.254 4.1230 687.2087 0.0031
SW03 4 0.098 3.5271 496.9631 0.0036
SW05 4 0.003 23.3632 556.2843 0.0038
SW07 4 0.265 3.4489 611.5324 0.0038
SW09 4 0.270 3.4358 364.1322 0.0034
Scale-Free 4.52 0.147 2.0513 4681.2521 0.0095

Some abbreviations are used in the table. SW01, SW03, SW05, SW07, and SW09 refer to the

small-world network with the rewiring rates 0.1, 0.3, 0.5, 0.7, and 0.9, respectively. “AD”, ‘ACC”,

“APL”, “MBC”, and “MCC” are the abbreviations for the average degree (24), average clustering

coefficient (27), average path length (28), maximum betweenness centrality (29), and maximum

closeness centrality (30), respectively.

4.2 Results: Initial Exploration

The mean volatility of the GDP gap and inflation over the 100 samples are given in
Tables 3 and 4. Numerically, these values seem to be close. To examine whether
they are statistically significantly different, we conduct the test in a 10-fold manner.
Basically, in each test, the volatility of one specific network is tested against the
remaining nine as a group to see whether the former is from the same distribution
defined by the latter, and we do this one by one for each network.13 The t statistic
for testing the null that it is from the same distribution is given in the parentheses in
the tables. Furthermore, we follow the statisticians’ convention to use the symbol ∗
if the p-value of the test is less than a certain threshold, and a significance level of
0.05 is chosen here.

From both tables, some results stand out. First, we can see that most networks
fail to distinguish themselves in regard to their effect on economic stability; however,
they are some networks for which the effect is rather significant. The most evident
one is the scale-free network. It is significantly different from others in terms of
the output gap volatility under all intensities of choice (λ ) and in terms of the
inflation volatility when λ is large enough. Second, if we take the regular network
and the random network as the two extremes of a spectrum, then we can see that
the in-between results (the results of those small-world networks) exhibit a similar
pattern. For example, the regular network has almost no idiosyncratic effect on

13 Since we have a sample of 100 observations for each network, it is still possible to conduct the test
for each pairs of network. However, if we do so there will be 225 tests altogether, and presenting the
results will then become too overwhelming. Hence, as an alternative, we decide to test the null that a
single network comes from the distribution defined by the other nine. We then do this in a ten-fold
manner.
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Table 3 The Network Effect on the Volatility of Output Gap

Network λ = 0.1 λ = 0.3 λ = 0.5 λ = 0.7 λ = 0.9

Fully 0.44099 0.43847 0.43591 0.43445 0.43210
(3.28)* (1.27) (1.22) (1.06) (0.70)

Regular 0.44119 0.43861 0.43601 0.43418 0.42507
(-4.84)* (0.95) (1.12) (1.21) (4.76)

Circle 0.44102 0.43839 0.43653 0.43464 0.43289
(1.99) (0.28) (0.61) (0.92) (0.30)

Random 0.44103 0.43852 0.43612 0.43471 0.43199
(1.64) (1.21) (1.01) (0.88) (0.75)

SW01 0.44102 0.43838 0.43593 0.43431 0.43275
(2.03) (1.58) (2.54)* (1.12) (0.37)

SW03 0.44106 0.43889 0.43588 0.43475 0.43260
(0.51) (0.36) (1.22) (0.85) (0.44)

SW05 0.44116 0.43891 0.43616 0.43429 0.43258
(-3.37)* (0.21) (0.97) (1.06) (0.45)

SW07 0.44111 0.43856 0.43616 0.43485 0.43249
(-1.34) (1.16) (0.97) (0.79) (0.50)

SW09 0.44096 0.43873 0.43648 0.43442 0.43229
(4.73)* (0.67) (0.66) (1.06) (0.60)

Scale-free 0.44120 0.44247 0.44640 0.45076 0.45012
(-5.40)* (-7.91)* (-129.94)* (-208.07)* (-22.35)*

The numbers shown above are the mean variances of 100 time series, each having 300 observations

obtained from the DSGE simulation using the respective network shown in the first column and

intensity of choice shown in the first row. The numbers shown inside the parentheses are the t-values

of the null that the mean variance in question is sampled from the same distribution which generates

the other nine. We follow the statisticians’ convention to use ∗ if the p-value of the test is less than

0.05.

either of the two volatilities; hence, neither do SW1 and SW3. Similarly, the random
network has no idiosyncratic effect in all scenarios, and this result is almost copied
by SW7 and SW9. Third, however the two extremes can hardly help harness the
one in the middle, i.e., SW=0.5, which shows its consistent idiosyncratic effect on
inflation volatility. Fourth, one may assume that the effect of the circle network
and the regular network should be very close, since the latter only differs from the
former in k (degree) by two. Nevertheless, this is not entirely the case and their
distinction can be found in the inflation scenario when λ is high. Fifth, one may
expect very different behavior from the fully connected network given its large
number of degrees, but its distinction can be found only in the inflation scenario.
Sixth, leaving the network topologies aside, we also find that the parameter (λ ),
the intensity of choice, plays a role here; however, its effect is rather uncertain,
and differs from one volatility to the other. For example, in the case of the GDP
volatility, the idiosyncratic effect of each network becomes quite prevalent when λ

is small, while it goes the other way round in the case of inflation volatility.
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Table 4 The Network Effect on the Volatility of Inflation

Network λ = 0.1 λ = 0.3 λ = 0.5 λ = 0.7 λ = 0.9

Fully 0.56061 0.51181 0.46553 0.42581 0.39581
(1.04) (2.19) (4.49)* (5.88)* (5.83)*

Regular 0.56063 0.51207 0.46685 0.42859 0.39881
(0.99) (1.52) (1.55) (1.42) (1.63)

Circle 0.56049 0.51257 0.46834 0.43122 0.40245
(1.30) (0.29) (-1.28) (-1.97) (-2.47)*

Random 0.56080 0.51222 0.46698 0.42885 0.39934
(0.63) (1.15) (1.30) (1.08) (1.03)

SW01 0.56063 0.51213 0.46664 0.42850 0.39923
(0.99) (1.10) (1.97) (1.54) (1.15)

SW03 0.56063 0.51216 0.46713 0.42895 0.39926
(0.99) (1.30) (1.01) (0.95) (1.12)

SW05 0.56534 0.51622 0.47069 0.43238 0.40239
(-174.75)* (-28.21)* (-7.38)* (-3.66)* (-2.39)*

SW07 0.56062 0.51201 0.46692 0.42901 0.39946
(1.02) (1.37) (1.42) (0.88) (0.90)

SW09 0.56058 0.51250 0.46713 0.42889 0.39950
(1.10) (0.46) (1.01) (1.03) (0.41)

Scale-free 0.56066 0.51322 0.47043 0.43480 0.40650
(0.94) (-1.29) (-6.4)* (-9.28)* (-10.50)*

The numbers shown above are the mean variances of 100 time series, each having 300 observations

obtained from the DSGE simulation using the respective network shown in the first column and

intensity of choice shown in the first row. The numbers shown inside the parentheses are the t-values

of the null that the mean variance in question is sampled from the same distribution that generates the

other nine. We follow the statisticians’ convention to use ∗ if the p-value of the test is less than 0.05.

In sum, Tables 3 and 4 do indicate the existence of the network effect on
economic stability, but the perplexing nature of the initial exploration does make
it hard to attribute the effect directly to the network generation mechanisms and
hence the family of networks. This is so because even under the same generation
mechanism (same family) the networks can still have very different characteristics.
For example, Table 2 clearly shows that SW05 can have an unusually longer average
path length, longer even than that of the regular network of the same k.14 In
additinion, if one is pondering why the scale-free network is so much different from
others, Table 2 may immediately suggest that the betweenness centrality and the
closeness centrality are things that draw attention.

Hence, a better way to form the question is not to ask what network generation
mechanism may contribute to economic stability or instability, but more fundamen-
tally, to ask what network characteristics may do. Once the essential characteristics
are identified, one can then check what characteristics a specific network generation
mechanism can feature and gauge its possible network effects. Therefore, in the
rest of this section, we shall start by generating a large sample of networks with

14 See footnote 13 for the appearance of this discrepancy.
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varying characteristics (Section 4.3.1). We will then run the DSGE model embedded
with these networks, and derive the volatility statistics as we did in Section 4.1. A
multivariate regression model is then applied to examine the possible contribution
of each characteristic to the observed volatilities (Section 4.3.2).

4.3 Significance of Network Characteristics

Coming to this stage, we have formally formulated our research question as to the
contribution of network topology to economic stability in terms of the five major
characteristics. In other words, we ask what the relationship is between the eco-
nomic stability and degree, clustering coefficient, average path length, betweenness
centrality and closeness centrality. It is this question which we believe no one, at
least, known to us, has asked before, and which makes this work a pioneering one
in the literature.

A formal econometric examination of the effect of network characteristics on
economic stability will involve a review of the possible functional form between the
stability variables and the characteristics included. One, therefore, has to address
what would be the appropriate functional form to do this, and what are those
characteristics to be included in the function. A rigorous treatment demands a rather
exhaustive work which cannot be completed in a single paper. The strategy which
we shall be trying here is to begin with a benchmark, which may not be sufficient
but could be minimal (necessary). We will then see what the fundamental results
which we can have from this minimal setup, and then go further to examine whether
these fundamental results are sensitive to some possible augmentations.

The two augmentations which we have in mind are the possible influence of
the more complex function (non-linearity) and the inclusion of other important
characteristics (omitted variables). However, even the exploration of the two aug-
mentations of the baseline model should be very limited; as we already notice, a
thorough exploration really requires exhaustive research, and there is obviously
more that is needed to be done in the follow-up studies.

With this blueprint in mind, our baseline model should be a linear function
of the five characteristics as reviewed in Section 3.2. This baseline model and
the related estimation will be detailed in Section 4.3.2 with a discussion of the
fundamental findings. We will then move to a specific variation of the linear form
in a direction toward non-linearity, namely, a polynomial Taylor-expansion form
(Section 4.3.3). Finally, we will attempt to add additional characteristics related to
the degree distribution to our baseline model (Section 4.3.4).

4.3.1 Network Generation

The idea of the second-stage simulation is to have a more extensive sampling so that
a thorough examination of the effect of various network characteristics is possible.
To achieve this goal, we first have to decide an ideal size of network sample and the
generation mechanism. Regarding the first point, given a degree of arbitrariness, we
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Table 5 Parameter Setting for Network Random Generation

Parameter Parameter Space

General

N 100 number of agents
λ 0.5 intensity of choice
T 300 number of simulation periods for each calibration experiment

Small-World Networks (437)

p [0,1] rewiring rate
κ [2,45] number of neighbors on the left and on the right

Random Networks (36)

Prob({bi, j = 1}) { 0.5 } probability of connecting any random pair

Scale-Free Networks (27)

N0 [5,90] initial size (scale-free)
p0 0.5 initial connecting probability
θ [0.2, 100] scaling factor

What are inside the parentheses are the numbers generated from the respective networks. There are

437 samples from the family of small-world networks, 36 from the family of random networks, and

27 from the family of scale-free networks.

decided to have a sample of 500 networks. We consider this size to be pragmatically
large enough for rigorous statistical analysis. Second, to have a large diversity of
network characteristics, of the five discussed in Section 3.1, we involve three network
generating mechanisms, namely, small-world networks, scale-free networks, and
random networks.15 Since each network can be characterized by a few parameters,
the idea of the random generating mechanism is simply to randomly select a set of
parameter values from the parameter space and then generate the network based
on the chosen parameter values. In Table 5, the parameter space for each type of
network is specified. Among the three network families, 437 are sampled from the
small-world networks, 36 from the random networks, and 27 from the scale-free
networks.16

Through this network random generation mechanism, we are able to generate
networks with an average degree from 2 to 80, an average cluster coefficient from 0
to 0.8240, an average path length from 1.1919 to 87.0463, a maximum betweenness
centrality from 13 to 4681, and a maximum closeness centrality from 0.003 to 1.

15 This is because the regular and the fully connected networks are largely fixed, and have little room
for generating varieties.
16 We actually generated more than 500 samples. This was so because the average path length can
be rather large when many components are disconnected. To try not to involve these “ill-behaved”
networks in our samples, we excluded some networks with gigantic average path length. Ideally, we
would hope to restrict the island type of samples since based on experience they are rarely seen in
modern societies with their advanced communication technology.
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Table 6 Characteristics of the Randomly Generated Networks: Basic Statistics

Network
Characteristics

Min Max Mean Variance

AD 2 80 39.6134 523.0591
ACC 0 0.8240 0.4288 0.0485
APL 1.1919 87.0463 3.4512 100.9276
MBC 13.0940 4681.677 277.9621 835680
MCC 0.0030 1 0.0090 0.0020

The above table shows the basic statistics of the five network characteristics over the 500 networks,

which are randomly generated using Table 5. “AD”, ‘ACC”, “APL”, “MBC”, and “MCC” are the

abbreviations for the average degree (24), average clustering coefficient (27), average path length (28),

maximum betweenness centrality (29), and maximum closeness centrality (30), respectively.

These ranges together with other statistics are shown in Table 6. This large range
and variation will certainly facilitate our regression analysis that is to be discussed
later (Section 4.3.2).

Notice that the large-scale simulation is all based on a single value of λ , i.e.,
λ = 0.5 (Table 5, the fourth row). As for this specific choice, some remarks are
made here. First of all, in Section 4.2, we have already highlighted the uncertain
effect of this parameter on volatilities. This may suggest that a fully fledged analysis
should also take a large range of λ s into account. However, if we do so, it will make
the current paper oversized. Second, given the pioneering nature of the paper, the
main goal is to establish a benchmark in the literature so that further visits and more
comparison work can be provided a basis with which to start. Therefore, a choice
of λ which is not large, and also not too small, serves this purpose well.

4.3.2 Regression Analysis

To examine the effect of network characteristics on economic stability, we may begin
with Equations (31) and (32), and estimate the coefficients of the two equations
individually, say, by ordinary least squares (OLS).

Var(output gap) = βy,0 +βy,1× AD+βy,2× ACC+βy,3× APL

+βy,4× MBC+βy,5× MCC+ξy
(31)

Var(inflation) = βπ,0 +βπ,1× AD+βπ,2× ACC+βπ,3× APL

+βπ,4× MBC+βπ,5× MCC+ξπ

(32)

However, in our case, there is reason to believe that the shock affecting the
output gap volatility may spill over and also affect the inflation volatility, and vice
versa, since they are generated by the same DSGE model. Hence, estimating these
equations as a set, using a single large equation, should improve efficiency. The
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Table 7 Multivariate Regression Analysis: Explained and Explanatory Variables

Notation Variables

Explained Variables

Vy Output Gap Volatility
Vπ Inflation Volatility

Explanatory Variables

X1 Average Degree (AD)
X2 Average Cluster Coefficient (ACC)
X3 Average Path Length (APL)
X4 Maximum Betweenness Centrality (MBC)
X5 Maximum Closeness Centrality (MCC)

latter approach is the familiar seemingly unrelated regression estimation (SURE).
SURE can be useful when the error terms ξy and ξπ are correlated. In this paper, we
do find the error terms of different volatility equations to be correlated; therefore,
SURE is applied. To do so, we rewrite the set of equations (31) and (32) into a
single equation as in (33). Equation (33) is written in a compact form. For all
notations used in this compact form, one can find their correspondence in Table 7.

Γ = β0 +βΨ+Ξ (33)

where

Γ =

(
Vy

Vπ

)
,β0 =

(
βy,0
βπ,0

)
,β =

(
βy 0
0 βπ

)
,Ψ =

(
X
X

)
,Ξ =

(
ξy

ξπ

)
.

and
X′ =

(
X1 X2 X3 X4 X5

)
,

βy =
(
βy,1 βy,2 βy,3 βy,4 βy,5

)
,

βπ =
(
βπ,1 βπ,2 βπ,3 βπ,4 βπ,5

)
.

Table 8 gives the SURE regression results. From this table, we can see that
not all network characteristics can have an effect on economic stability. The only
characteristic which has a consistent effect on both GDP fluctuations and inflation
fluctuations is centrality. Interestingly enough, the two centrality measures have an
opposite effect. The betweenness centrality plays a destabilizing role, whereas the
closeness centrality plays a stabilizing role. On the other hand, all five characteristics
can significantly contribute to the inflation stability or instability. The ones playing
the stabilizing role are the cluster coefficient and the maximum closeness centrality,
whereas the ones playing the destabilizing role are the average degree, average path
length, and maximum betweenness centrality.
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Table 8 The SURE Results

Output gap(×10−6) Inflation(×10−6)

Intercept 420163 (2507.24) ∗ 468401 (15015.9) ∗
AD -6.7 ( -0.5) 12 (4.75) ∗
ACC 824 (0.5447) -1370 (-5.40) ∗
APL 9.713 (0.2297) 213 (141.43) ∗
MBC 2.382 (27.59) ∗ 0.9817 (61.09) ∗
MCC -5160 (-3.05) ∗ -9820 (-31.16) ∗

R2 0.67066 0.98559
Adj R2 0.66732 0.98544

The table above shows the SURE regression results. The second and the fifth columns are the estimated

coefficients in the output gap equation and the inflation equation. The third and the sixth columns are

the t values of the respective coefficients. The fourth and the seventh columns denote the statistical

significance at the 5% level with the symbol “∗”.

4.3.3 Non-Linearity

It is appropriate to say that Equation (33) serves only as a starting point. The effects
of network characteristics on economic stability can be much more complex than
what Equation (33) can represent. However, there are infinite numbers of ways to
work with non-linear models. Our attempt here is, therefore, limited and is guided by
two basic inquiries: first, the presence or the absence of the non-linear effects, and
second, the robustness of the linear effects to the presence of the former. With these
goals in mind, we consider a general representation form of the universe of non-
linear models, namely, the polynomial approximation (the Taylor approximation).
Specifically, our two inquiries can be effectively addressed by some linear models
using Taylor expansion up to the second and the third order, as shown in Equations
(34), (35), and (36).

Γ = β
2
0 +β

2
Ψ+ γ

2
Ψ

2 +Ξ2 (34)

Γ = β
3
0 +β

3
Ψ+ γ

3
Ψ

3 +Ξ3 (35)

Γ = β
(q)
0 +β

(q)
Ψ+ γ

(q)
Ψ

(q)+Ξ(q), q = 1,2,3,4,5 (36)

where

Ψ
2 =

(
X2

X2

)
,Ψ3 =

(
X3

X3

)
,Ψ(q) =

(
X(q)

X(q)

)
(q = 1,2,3,4,5),
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and
X2′ =

(
X2

1 X2
2 X2

3 X2
4 X2

5

)
,

X3′ =
(
X3

1 X3
2 X3

3 X3
4 X3

5

)
,

X(1)′ =
(
X1X2 X1X3 X1X4 X1X5

)
,

X(2)′ =
(
X2X1 X2X3 X2X4 X2X5

)
,

X(3)′ =
(
X3X1 X3X2 X3X4 X3X5

)
,

X(4)′ =
(
X4X1 X4X2 X4X3 X4X5

)
,

X(5)′ =
(
X5X1 X5X2 X5X3 X5X4

)
.

These equations are the augmentations of the original linear model (33) with
the quadratic form (34), the cubic form (35), or the cross-product forms (36). Our
SURE of these seven different polynomial models suggest that non-linear effects do
in fact exist. These results are very voluminous; to keep the presentation smooth,
we, therefore, have decided to leave the details in the appendix (Tables 11 and 12),
and only highlight a few observations here.

From Table 11, we can see that the non-linear effects of the network characteris-
tics on the GDP stability are mainly manifested through the two centrality measures,
a result which is very similar to what we have in the baseline model. The two
centrality measures are not only significant in the quadratic form (β 2

y,4, β 2
y,5) and

the cubic form (β 3
y,4, β 3

y,5), but are also significant in many combined terms. In
fact, the combined terms which are significant all have centrality as a part of them
(such as β

(1)
y,14, β

(2)
y,24, β

(2)
y,25, β

(4)
y,41, β

(4)
y,42, β

(4)
y,45, β

(5)
y,52, β

(5)
y,53, and β

(5)
y,54). Therefore, for the

GDP stability, centrality seems to be the most important characteristic; it impacts
the GDP stability not only linearly, but also non-linearly.17 The prominent role of
centrality in economic stability can also be found in the inflation equation. The
two centrality measures are again significant in either the quadratic or cubic forms,
and most combined terms having centrality as a part are found to be significant.
Nonetheless, the effect of centrality on inflation stability is less certain since the
sign of its linear term flips from one equation to the other.

With the presence of these nonlinear effects, we then further examine the robust-
ness of the results obtained from Equation (33) (Table 8). The SURE augmented
with the quadratic, cubic and the cross-product terms are shown in Table 11 and
Table 12. By comparing these tables with our baseline results (Table 8), we can see
that the signs of some coefficients flip, from either positive to negative or negative
to positive. To have a better picture, a summary of these flips is given in Table 9.
There we denote the term by “0” if the sign of the respective coefficient changes
from the baseline model to the augmented model; otherwise, we denote it by “1” if
there is no such flip.
17 The non-linear effect of network characteristics is also found in other studies of economic networks;
for example, in a different setting, Gai and Kapadia (2010) found that the network connectivity
(degree) has a non-linear effect on the probability of contagion in the interbank network.
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Table 9 The SURE Augmented with Higher Order Terms

Network Ψ Ψ2 Ψ3 Ψ(1) Ψ(2) Ψ(3) Ψ(4 Ψ(5)

Characteristics

output gap

AD - 0 0 1 0 1 1 0
ACC - 1 1 1 1 0 1 1
APL + 0 1 1 1 1 1 0
MBC + 1 1 1 1 1 1 1
MCC - 0 0 1 1 0 0 0

inflation

AD - 0 0 0 0 1 0 0
ACC - 1 1 0 1 1 0 0
APL + 1 1 1 1 1 1 1
MBC + 0 0 1 1 1 1 0
MCC - 1 1 0 1 0 1 1

The second column shows the sign of the coefficient of each network characteristic under the baseline

model (33). The following columns show the robustness of these signs when the liner model is

augmented with the quadratic form (34), the cubic form (35), and the five different cross-product

forms (36). The “zero” cell indicates that the sign has flipped, whereas the “one” cell indicate that the

sign remains unchanged. Details of the SURE results of the non-linear augmentations can be found in

Tables 11 and 12.

For the GDP stability, since only the two centrality measures are significant
in the linear model (Table 8), our robustness check is, therefore, limited to these
two measures. Of the two centrality measures, it is interesting to notice that, even
with the augmentation in seven different directions, the effect of the betweenness
centrality remains statistically positive, whereas the closeness centrality seems
rather sensitive to the augmentations and it flips five times in the seven augmented
models. In addition, for the inflation stability, originally in Equation (33), all five
characteristics are significant; hence we run through all of these five to see their
robustness. Unlike the GDP equation, both centrality measures are somewhat
sensitive to the augmentations and flip between positive and negative. The only
characteristic that shows the robustness is the average path length. It consistently
demonstrates the adverse effect of the average path length on the inflation stability.

4.3.4 Other Characteristics

While the five characteristics used in this study very often appear in the network
literature, there is little doubt that they are not exhaustive. Some other characteristics
may exist and even may even play a role. We keep this possibility open, but, as
before (Section 4.3.3), we are interested in knowing whether the addition of the
other characteristics will affect our fundamental findings established in Section
4.3.2. Therefore, in this section, we try to include one more characteristic, i.e., the
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shape of the degree distribution, which may provide us with additional information
that is not revealed via the average degree and the other four characteristics.

However, the immediate problem which we encounter is that there is no well-
known characteristic in the network literature to capture the general information
of the degree distribution. Therefore, depending on what we are searching for,
different measures can be developed. In this article, we propose a measure which
has economic meaning, i.e., a measure in line with income distribution or wealth
distribution. We believe that the degree distribution, to some extent, can represent
income distribution through the social capital connection. Hence, a measure devel-
oped in this way may indirectly enable us to inquire into the relationship between
income distribution and economic stability.

If so, then a measure which is frequently used and can be easily calculated is
the ratio of the wealthy people’s income to the poor people’s income, as shown in
Equation (37).

DIP =
k75

k25
, (37)

where DIP stands for the degree distribution in terms of percentiles and k75 and k25
refer to the 75th and the 25th percentiles of the distribution in question. One can
also go further to have the measure of the inequality in a more extreme position as
in Equation (38).

DIE =
kmax

kmin
, (38)

where DIE stands for the degree distribution in terms of the extremes and kmax

and kmin refer to the maximum and minimum values of the degree distribution,
respectively.

With these two additional characteristics, we rerun SURE (33) and the results
are shown in Table 10. By comparing Table 10 with Table 8, we can find that the
results originally found in Table 8 remain unchanged. Those significant variables
remain significant with the signs unchanged. This shows that our earlier results are
very robust. It seems that the degree of inequality does in fact enhance the instability
of the economy, as the coefficients of DIP and DIE are all positive; however, they
are significant only in the GDP equation, and not the inflation equation.

www.economics-ejournal.org 29



conomics: The Open-Access, Open-Assessment E-Journal

Table 10 The SURE Augmented with the Shape of the Distribution

Output Gap(×10−6) Inflation(×10−6)

Intercept 417525 (435.19) ∗ 46267 (2606.96) ∗
AD -8.53 ( -0.64) 12 (4.72) ∗
ACC 9650 (0.71) -1360 (-5.38) ∗
APL 9.748 (1.21) 213 (141.30) ∗
MBC 2.384 (27.46) ∗ 0.9741 (60.24) ∗
MCC -5180 (-3.07) ∗ -9820 (-31.11) ∗
DIP 2707 (2.73) ∗ 117 (0.63)
DIE 516 (2.25) ∗ 17 (1.29)
R2 0.67588 0.98565
Adj R2 0.67126 0.98545

The above SURE is the SURE (33) augmented with two additional explanatory variables related to

the shape of the distribution, DIP and DIE. Other variables are defined in Table 7. Columns 2 and 5

are the estimated values, and Columns 3 and 6 are the associated t values. The coefficients which are

significant at the 5% level are marked by ∗ in Columns 4 and 7, respectively.

5 Concluding Remarks

While the rapid growth in the literature on social networks indicates the relevance
of the network topologies to economic performance, there is no formal thorough
examination of the effect of these network topologies on macroeconomic stability.
To the best of our knowledge, this is the first work in this direction. Given the
daunting nature of this research, we have adopted a strategy which can allow us to
at least have a foot in the door before we can move into the hall.

The strategy is to choose the macroeconomic model which is most accessible
to the inclusion of different network topologies of economic units. Having said
that, we are aware that most agent-based macroeconomic models would have such
network topologies, explicitly or implicitly, as part of their models, but not all of
them make it easier for the expansions to facilitate a large-scale simulation with
a large variety of network topologies as in the case in this paper. It turns out that
the agent-based DSGE model as initiated by De Grauwe (De Grauwe, 2010, 2011)
becomes a straightforward choice at this initial stage.

In this paper, we construct an agent-based New Keynesian DSGE model with
different social network structures to investigate the effects of the networks on
macroeconomic fluctuations. The network topologies used in this article are mainly
introduced for us to conduct thought experiments. While these networks may poten-
tially correspond to some real economic or social networks, there is no attempt to
provide them with any empirical ground or calibration, which requires a framework
very much different from the current setting. Hence, serious treatments of these
networks in the parlance of economics or endowing the associated parameters with
economic meaning can be superficial. Under this situation, to make the model
not unnecessarily complex, the network topologies employed here are undirected
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and discrete (equal-weighted), serving as a starting point for this line of research.
For pure thought experiments, it is certainly interesting to explore the directed and
weighted network topologies. This is a subject for further studies.

This simple but fundamental setting allows us to have several findings which are
worth summarizing. First, we find that the network characteristics can have some ef-
fects on the economic stability, and different economic variables may be sensitive to
different characteristics. Second, we also find, however, that few characteristics are
robust to different settings, in particular, with the non-linear augmentations. Third,
putting the two together, we do not find any single characteristic which is universally
important to both GDP and inflation. While the two centrality measures consistently
show their prominence in both the GDP and inflation equations, but the signs are
not robust across different equations. Fourth, the effect of the network topology
on economic stability is not limited to the five basic characteristics. In addition to
them, the shape of the degree distribution is also found to be important. Fifth, more
subtly, the effects of the network characteristics can exist in a nonlinear fashion,
with quadratic, cubic or combined effects. Without monotonicity, our understanding
and forecasting of the network effects certainly becomes more challenging. Sixth,
despite these perplexities, two characteristics quite clearly stand out throughout the
analysis, i.e., the (maximum) between centrality on the stability of GDP and the
average path length on the stability of inflation. It remains to be answered what
underlies these causal mechanisms. This actually calls for a theory of economic
stability in terms of network topologies, which deserves an independent study.

As we have said at the very beginning of the paper, there are many different
perspectives from which to look at the relationship between social networks and
the macroeconomy. The path which we have taken here is very much in the spirit
of sociologists, particularly Mark Granovetter, who are more interested in the
information functionality of social networks. This information perspective of social
networks has become the essence of a large class of agent-based models, namely,
network-based (neighbor-based) discrete choice models. Within this framework,
there have been various explorations into the effects of social networks, such as
the consumer’s choices of products, the producer’s choices of technology, and
the investor’s choice of stocks and investment strategies. In this vein, this paper
is simply an extension of these studies to agent-based macroeconomic models,
specifically, the agent-based DSGE model.

However, the network effect should not be limited to the information flow,
and hence we would like to add two remarks at the end of this paper. First of all,
in this paper, we do not consider the production perspective of social networks,
which economists and game theorists are most interested in. Many social networks,
broadly defined, such as interbank networks, supply chains, and company networks,
have a real production functionality. The vulnerability of an economy is often
investigated from this perspective. However, the current agent-based version of
the DSGE models, or, probably, the entire set of DSGE models, is not suitable for
exploration in this direction. Eurace (Cincotti et al. , 2012) or other agent-based
macroeconomic models may serve the purpose even better.
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This, then, brings us to our final remark. While in this paper we are able to
identify the economic significance of some essential characterizations of network
topologies, such as betweenness centrality and average path length, we, however,
have to express reservations on these findings in the sense that they are all from
a highly stylized economic model. As to whether these characterizations can be
neutral in other settings, in particular, those with specific institutional arrangements,
has yet to be addressed. When mathematicians, sociologists and physicists began
to characterize the network structures in their hands, they may or may not have
understood their full significance. It is then left for us to constantly search for the
unexplored deeper meanings with the possible serendipities of finding out other
missing characterizations.
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Appendix

In this appendix, we present the qualitative results of our non-linear augmentations
of the baseline model (33), as specified in Equations (34), (35), and (36). Since there
are a total of seven equations to run and each has 6 to 11 coefficients to estimate,
the presentation of all the estimates would be overwhelming. We have, therefore,
decided to skip the numerical details and only give the sign of the coefficient with
its significance. While the SURE estimates the GDP and the inflation equations
together; for convenience, the results of the seven GDP regressions are grouped
together and are given in Table 11, and the inflation regression results are also
grouped together and are given in Table 12 in the counterpart position.

There are seven SURE equations. All seven equations have the baseline model
as part of it and are then augmented with different non-linear components. Tables
11 and 12 can be divided into eight panels. The first panel consists of the estimation
results of all the coefficients of the baseline part, including the baseline model
itself. βy,i (i = 1, ...,5) and βπ,i (i = 1, ...,5) are the coefficients corresponding to
the characteristic Xi in the GDP equation (denoted by y) and the inflation equation
(denoted by π), respectively. The characteristic Xi is defined in Table 7. Panels
2 to 8 then show the regression results of the additional coefficients coming from
the specific non-linear augmentations, denoted by Ψ2, Ψ3, and Ψ(q)(q = 1, ...,5),
notations which are consistent with those in Equations (34) to (36).
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These augmentation specifications are indicated in the first row of both tables.
The columns led by these symbols, Ψ2, Ψ3, and Ψ(q), then give the regression
results of the specific non-linear augmentation. In addition to the baseline part
which is already shown in the first panel, the results of other coefficients are shown
in the respective panels, from Panels 2 to 8 corresponding to the augmentation Ψ2,
Ψ3, and Ψ(q)(q = 1, ...,5). The additional coefficients are coded in a very intuitive
way. We use β 2

y,i and β 3
y,i (i = 1, ...,5) to denote the coefficient corresponding to

the square of Xi (X2
i ) or the cube of Xi (X3

i ) in the GDP equation. We then use
β
(q)
y,qi (i = 1, ...,5; i 6= q) to denote the coefficient corresponding to the cross term

XqXi appearing in the GDP equation. The same coding scheme applies to Table 12,
except that y is replaced by π .

The two tables do not show the numerical values, only the sign of the coefficient
and its significance. The latter is denoted by ∗ if it is significant at the 5% level.
Notice that the second column led by Ψ is simply the baseline model, which is
already shown in Table 8; we simply replicate the sign and the significance level
here in order to facilitate the robustness check.
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Table 11 SURE Results of the Nonlinear Augmentations: GDP

Coefficients Ψ Ψ2 Ψ3 Ψ(1) Ψ(2) Ψ(3) Ψ(4) Ψ(5)

βy,1 - + + - + - - +(*)
βy,2 - - - - -(*) + - -(*)
βy,3 + - - + + + + -(*)
βy,4 +(*) +(*) +(*) +(*) +(*) +(*) +(*) +(*)
βy,5 -(*) +(*) + - -(*) + +(*) +(*)

β 2
y,1 -

β 2
y,2 +

β 2
y,3 +

β 2
y,4 -(*)

β 2
y,5 -(*)

β 3
y,1 -

β 3
y,2 +

β 3
y,3 +

β 3
y,4 -(*)

β 3
y,5 -(*)

β
(1)
y,12 -

β
(1)
y,13 +

β
(1)
y,14 +(*)

β
(1)
y,15 +

β
(2)
y,21 -

β
(2)
y,23 +

β
(2)
y,24 +(*)

β
(2)
y,25 +(*)

β
(3)
y,31 +

β
(3)
y,32 -

β
(3)
y,34 -

β
(3)
y,35 -

β
(4)
y,41 -(*)

β
(4)
y,42 +(*)

β
(4)
y,43 -

β
(4)
y,45 -(*)

β
(5)
y,51 -(*)

β
(5)
y,52 +(*)

β
(5)
y,53 +(*)

β
(5)
y,54 -(*)
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Table 12 SURE Results of the Nonlinear Augmentations: Inflation

Coefficients Ψ Ψ2 Ψ3 Ψ(1) Ψ(2) Ψ(3) Ψ(4) Ψ(5)

βπ,1 +(*) -(*) - -(*) -(*) +(*) -(*) -(*)
βπ,2 -(*) - - + - -(*) +(*) +
βπ,3 +(*) +(*) +(*) +(*) +(*) +(*) +(*) +(*)
βπ,4 +(*) -(*) -(*) +(*) +(*) +(*) +(*) -(*)
βπ,5 -(*) -(*) -(*) +(*) -(*) +(*) - -(*)

β 2
π,1 +(*)

β 2
π,2 +

β 2
π,3 +

β 2
π,4 +

β 2
π,5 +(*)

β 3
π,1 +

β 3
π,2 +

β 3
π,3 +

β 3
π,4 +(*)

β 3
π,5 +(*)

β
(1)
π,12 -

β
(1)
π,13 -

β
(1)
π,14 -(*)

β
(1)
π,15 +(*)

β
(2)
π,21 +

β
(2)
π,23 +

β
(2)
π,24 -(*)

β
(2)
π,25 +(*)

β
(3)
π,31 -(*)

β
(3)
π,32 -

β
(3)
π,34 -(*)

β
(3)
π,35 -

β
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