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1 Introduction 

The aphorism that “a rising tide raises all boats” and the theory that advances in 
economic well-being of the rich ultimately “trickle down” to the poor have 
frequently been cited as reasons for believing that growth elevates poor from 
poverty.1 These are essentially notions regarding the nature of income or 
consumption processes as stochastic processes. Economists interested in growth, 
consumption and convergence issues of various forms have a long tradition of 
modeling income or consumption as a stochastic process (either of a stationary or 
of a random walk variety), presumably because such processes provide simple and 
effective descriptions of income and consumption paths for modeling purposes but 
also because such formulations, in the form of consumption and growth 
regressions, provided a useful way of relating consumption trends and growth rates 
to initial conditions.  

A microeconomic literature that built on Modigliani and Brumberg (1954) and 
Friedman (1957) developed models of agents who maximized the present value of 
lifetime happiness (0∫TU(C(t))e–r*tdt) subject to the present value of lifetime wealth 
(0∫TY(t)e–rtdt) where U(  ) is an instantaneous felicity function, Y is income, r* is 
the individuals rate of time preference and r is the market lending rate. Browning 
and Lusardi (1996) show that this taken together with the assumption of a constant 
relative risk aversion and no bequest motive preference structure leads to a 
consumption smoothing model of the form: 

( *) /( ) (0)r r tC t e Cς−=  
where ζ is the risk aversion coefficient and by implication g = (r–r*)t/ζ is the 

consumption growth rate. The empirical counterpart of this equation is the familiar 
(non-stationary) random walk model: 

ln ( ) ln( ( 1)) ( )C t C t g e t= − + +  
These types of formulations are also close to those used by macro modelers in 

developing savings and income equations in a growth literature that yields a 

_________________________ 
1 Recently there has been considerable interest in the “rising tides” notion (Freeman 2001; Hines et  
al. 2001; Burgess et al. 2001) which the Oxford Dictionary of Quotations (Knowles 2004) attributes 
to the Kennedy family. Anderson (1964) is responsible for the “trickle down” theory. 
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stationary process. Here the usual empirical model of conditional convergence in 
the growth literature comes from a first-order Taylor series approximation to the 
dynamic path of capital and/or output around its steady-state growth, it is a 
proposition about mean reversion, not about unit roots (see e.g. Barro and Sala-i-
Martin 1991, Mankiw et al. 1992 and Temple 1999). So, given a Cobb–Douglass 
technology Y=KαHβ(AL)(1–α–β) where Y is output, H is human capital stock, A is 
technology and L is labour  letting y(t) = Y(t)/L(t) the first order Taylor Series 
expansion of lny(t) around its steady state lny* yields: 

dlny(t)/dt = λ[lny*–lny(t)] 

where λ=(n+g+δ)(1–α–β) with n and g being respectively exogenous labour and 
technology growth rates and δ is the physical capital depreciation rate. This leads 
to a stationary version of the above per capita consumption equation (in terms of 
income) of the form: 

lny(t)–lny(0)=(1–e–λt)lny*– (1–e–λt)lny(0) 

Surprisingly, for the link does not appear to have been made very often in the 
income size distribution and economic well-being literatures,2 such models have 
implications for, and provide predictions as to, the progress of inequality, poverty 
and polarization that would be of interest to those interested in various aspects of 
empirical well-being. 

Stochastic process theory also provides a motivation for fitting particular size 
distributions of income or consumption (since the nature of the stochastic process 
has strong implications for the nature of the size distribution of income). There are 
advantages associated with fitting size distributions parametrically. Poverty 
calculations of the non-parametric variety can be difficult, especially when sample 
sizes are small or the poverty group is small in number relative to the size of the 
population because information on the relevant tail of the distribution is sparse and 
changes in the tails of distributions can be very difficult to get a handle on (see 
Davidson and Duclos (2013) for a discussion that highlights this problem). A 
parametric distribution that fits the data well can provide substantive information 
about the nature of such tails. Furthermore if incomes are truly governed by such 

_________________________ 
2 Battistin et al. (2009), Deaton and Paxson (1994), Meghir and Pistaferri (2004), Meyer and Sullivan 
(2003), Neal and Rosen (2000), O’Neill (2005) and Osberg (1977) are exceptions. 
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processes poverty, inequality or polarization policies need to focus on changing 
the structure of the processes or at least mitigating their effects and obviously a 
full understanding the processes and their implications will help in this regard. 
Indeed some policies, such as defining a poverty frontier (social security net) or 
lower boundary below which incomes are not permitted to fall, can become part of 
the process, changing its structure and the nature of the resultant size distribution 
of income. This in turn provides a powerful test of the effectiveness of such a 
policy in terms of the extent to which the distribution conforms to that predicted 
by the process structure. 

Alternatively one may construe the population as a collection of subgroups 
each with their own process with the poor as a particular sub group, an entity in 
itself, with a unique stochastic process defining its path as opposed to the paths of 
the other presumably more advantaged groups in society. The societal income 
distribution then in effect becomes a mixture distribution governed by the variety 
of processes defining the separate groups and the mixture coefficients which 
define the respective memberships. This imposes additional strictures on rising 
tides and trickle down theories in the way they impact the separate groups. Anti-
poverty policies can then focus on the changing the nature of the processes 
governing the poorest groups and ideas from the convergence literature become 
relevant in understanding the relative poverty process. In these circumstances the 
way poverty is measured also needs to be reviewed since poverty is now about the 
changing membership of a class and the way the stochastic process describing that 
class proceeds through time. 

Before examining what such models imply for the progress of wellbeing one 
needs to be clear as to what sort of poverty or inequality it is that is in question.  
There has been considerable debate about the nature of poverty measurement as to 
whether it should be an absolute or a relative measure. The issue entertained the 
minds of the founders of the discipline. Adam Smith (1776) can be interpreted to 
have had a relative view of poverty viz: “….. By necessaries I understand, not only 
the commodities which are indispensably necessary for the support of life, but 
whatever the custom of the country renders it indecent for creditable people, even 
the lowest order, to be without.” Similarly Ferguson (1767) states “The necessary 
of life is a vague and relative term: it is one thing in the opinion of the savage; 
another in that of the polished citizen: it has a reference to the fancy and to the 
habits of living”. Marshall (1890) on the other hand had a very clear idea of 
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income poverty as an absolute concept, his comment on poverty in the 
introduction to The Principles being  “…for with £150 the family has, with £30 it 
has not, the material conditions of a complete life.”. More recently Townsend 
(1985) (the major advocate of the relative measure in recent times) and Sen (1983) 
(who favours a basic needs formulation) have lead the debate regarding the two 
approaches, both claim consistency with the intent of Smith’s thoughts largely via 
different interpretations of the words decent, creditable etc. 

Interestingly enough no such debate seems to have taken place regarding 
relative versus absolute inequality, though invariably relative inequality measures 
(Coefficient of Variation, Gini and Shutz coefficients for example) seem to have 
been favored and recently the concept of polarization which is related to, but 
distinctly different from, relative inequality has gained favour (see Duclos, 
Esteban and Ray (2004) for details).  Some absolute inequality measures (variance 
levels and quantile differences for example) have currency and absolute measures 
of polarization are also a possibility. 

Here the theoretical implications of stochastic processes for absolute and 
relative wellbeing measures will be outlined and the results employed in looking at 
the stochastic processes underlying the per capita GDP of African nations and 
considering what they imply for the progress of poverty and inequality on that 
continent. After a consideration of the implications of some aspects of relatively 
simple stochastic processes for the progress of poverty and inequality in Section 2 
mixtures are considered in Section 3. These ideas are considered in the light of 
data on per capita GDP for African nations over the period 1985 to 2005 in 
Section 4 and conclusions are drawn in Section 5. 

2 Gibrat’s Law, Kalecki’s Law, The Pareto Distribution and 
Notions of Absolute and Relative Poverty and Inequality 

Two early front runner’s for describing the size distribution of income or 
consumption were the Pareto distribution and the Log-normal distribution,3 
subsequently it has been learned that they are linked via stochastic process theory. 

_________________________ 
3 Conventional wisdom was that Pareto fit well in the tails whereas the log-normal fit well in the 
middle (Harrison 1981; Johnson et al. 1994). 
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Pareto (1897) felt that his distribution was a law which governed the size 
distribution of incomes, Gibrat (1930)(1931), working with firm sizes, used 
statistical central limit theorem type arguments to demonstrate that a sequence of 
successive independent proportionate “close to one” shocks to an initial level of a 
variable would yield an income the log of which was normally distributed 
regardless of the distribution governing the shocks.4 Gabaix (1999), working with 
city size distributions, highlighted the link in showing that if a process such as that 
proposed by Gibrat was subjected to a reflective lower boundary, bouncing back 
the variable should it hit the boundary from above, the resulting distribution would 
be Pareto.5 Obviously a social security net of some kind, such as a legislated low 
income cut-off below which no one was permitted to fall, would constitute such a 
boundary6 for an income process. Both of these notions regarding the shape of 
income size distributions draw on theories of stochastic processes which, if 
empirically verified, will also tell us much about the progress of poverty and or 
inequality however defined. 

Starting off with Gibrat’s law of proportionate effects in a discrete time 
paradigm suppose that xt, the income of the representative agent at period t, 
follows the law of proportionate effects with δ t its income growth rate in period t, 
T the elapsed time period of earnings with x0 the initial income. Thus: 

1

1 1 0
1

(1 ) ; (1 ) [1]
T

t t t T i
i

x x and x xδ δ
−

− −
=

= + = +∏
 

Assuming the δ’s to be independent identically distributed random variables 
with a small (relative to one) mean μ and finite variance σ2 it may be shown that 
for an agents life of T years with starting income x0 the log income size 
distribution of such agents would be linked systematically from period to period in 
terms of means and variances in the form:7 
_________________________ 
4 Kalecki (1945) showed that Gibrat’s result could be obtained from a stationary process as well. 
5 This has been established before, Harrison (1985) and Champernowne (1953) demonstrate a 
somewhat similar result. Reed (2001) provides an alternative link between the Log-normal and 
Pareto and provides rationales from stochastic process theory for more complex size distributions. 
6 The Millenium goals and $1 and $2 poverty frontiers may be construed as such potential frontiers. 
7 The same result can be achieved in the continuous time paradigm by assuming a Geometric 
Brownian Motion for the x process of the form: 
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Ln(xt)~N((ln(x0)+T(μ+0.5σ2)),Tσ2)       [2] 

These types of models are consumption process literature except that the 
properties of the error processes they engender are usually ignored in cross-
sectional comparisons, in particular the variance of the process is heteroskedastic 
increasing in a cumulative fashion through time implying increasing absolute 
inequality. Note that [2] could also be the consequence of a process of the form: 

ln(xt) = ln(xt–1) + ψ + e t  

which had started at t=0 and had run for T periods where et was an i.i.d. N(0,σ2) 
and where ψ =μ+0.5σ2. Indeed the i.i.d. assumption regarding the δ’s is much 
stronger than needed, under conditions of 3rd moment boundedness, log normality 
can be established for sequences of non-independent, heteroskedastic and 
heterogeneous δ (see Gnedenko 1962) where the variance of the process still 
grows as O(T). The power of the law, like all central limit theorems, is that a log 
normal distribution prevails in the limit almost regardless of the underlying 
distribution of the δ’s (or e’s). 

Clearly for a needs based (absolute) poverty line (say x*) and growth 
exceeding –0.5σ2 the poverty rate would be 0 in the limit (i.e. limT–>∞ 
Φ([(ln(x*/x0)–T(μ+0.5σ2))/(σ√T)] where Φ(z) is the cumulative density of the 
standard normal distribution) and for growth less than –0.5σ2 the poverty rate 
would be 1. For a relative poverty line, for example 0.6 of median income (note 
median income will be exp(ln(x0)+T(μ+0.5σ2)) and the poverty cut-off will be .6 
of that value), the poverty rate would be Φ([ln(0.6)/(σ√T)]) which obviously 
increases with time reaching .5 at infinity. The income quantiles in such an income 
process will not have common trends and, provided growth is sufficiently small,8 
such a society exhibits increasing inequality by most measures that are not location 
normalized (hereafter referred to as absolute inequality). For aficionados of the 
_________________________ 

dx xdt xdwµ σ= +  
Where μ is the mean drift σ is a variance factor and dw is the white noise increment of a Weiner 
process. 
8 Many inequality measures are location normalized measures of dispersion they are in effect relative 
inequality measures, (for example the Coefficient of Variation and Gini) if the location is increasing 
slow enough and the dispersion is increasing fast enough inequality by any measure will be 
increasing 
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Gini what really matters is the growth rate, Lambert (1993) shows that for the Log 
Normal Distribution with mean and variance θ, γ respectively and with a 
distribution Function F(z | θ, γ ) the Gini coefficient may be written in the present 
context as: 

2F(exp(ln(x0)+T(μ+0.5σ2)) | exp(ln(x0)+T(μ+0.5σ2)),Tσ2 )–1 

This will tend to zero as T => ∞ when μ < –0.5σ2 and will tend to 1 otherwise, 
note particularly for zero growth Gini will tend to 1. Note this is purely a function 
of the Gini being a relative inequality index that is normalized on the mean (it may 
be interpreted as the average distance between individual incomes normalized by 
the mean income). If the average distance between individuals were normalized by 
one of the income quantiles the results would be quite different with a greater 
propensity to increasing inequality when normalized by a low income quantile and 
a smaller propensity when normalized by a high income quantile. 

The Polarization index proposed by Esteban and Ray (1994) may be seen as 
closely related to the discrete version of the Gini Index since, given π i is the 
probability of being in the i’th cell, it is of the form: 

1

1 1
| |

n n

i j i j
i j

P K x x α
α π π+

= =

= −∑∑  

A continuous version of this index is given in Duclos Esteban and Ray (2004) 
as: 

( ) | | ( ) ( )P K f x y x dF x dF yα
α = −∫  

where in each case α > 0 is the index of polarization aversion (when α = 0 we 
have the Gini index) and K is a scale factor. In the Gini version K is the inverse of 
mean income giving it its relative flavour thus the effects on this index wil be 
much the same as for the Gini coefficient.  

With respect to relative poverty measures should a “civil society” protect its 
poor in maintaining its “relative status”, for example by defining a poverty cutt-off 
such that the poorest 20% of society were considered the poor, then the cutt-off 
would exhibit a lower growth rate than mean income. One may thus engage 
propositions such as those mooted in Friedman (2005) by considering the 
dynamics of the poverty cut-off relative to the mean income. 



 

www.economics-ejournal.org  8 

To somewhat muddy the waters Kalecki (1945) generated a log-normal size 
distribution from a stationary process of the form: 

lnxt -lnxt-1=λ(f(wt) - lnxt-1)+et       [3] 
With 0 < λ < 1 this corresponds to a partial adjustment model to some 

equilibrium f(wt), (which in the context of incomes would be a “fundamentals” 
notion of long run log incomes). These models are close to the cross-sectional 
growth (or Barro) regressions familiar in the growth and convergence literature 
(see Durlauf et al. (2005) for details) This is essentially a reversion to mean type of 
process where the mean itself could be a description of the average income level at 
time t (which incidentally may well be trending through time) but here the 
variance of the process (and concomitantly absolute inequality) stays constant over 
time. For et ~ N(0,σ2) in the long run ln(xt)~N(f(wt), σ2 /λ2). There are several 
observations to be made. 

Firstly the pure integrated process story associated with Gibrat’s law is not 
even a necessary condition for log-normality of the income size distribution, such 
distributions can be obtained from quite different, more generally integrated or 
non-integrated processes. Secondly stationary processes are in some sense 
memory-less in that the impacts of the initial value of incomes f(w0) and the 
associated shock e0 disappear after a sufficient lapse of time. On the other hand 
integrated processes never forget, the marginal impact of the initial size and 
subsequent shocks remain the same throughout time. Thirdly if f(wt) were itself an 
integrated process (if the w’s were integrated of order one and f(w) was 
homogenous of degree one for example) [3] would correspond to an error 
correction model and incomes would still present as an integrated process in its 
own right with x and the function of the w’s being co-integrated with a co-
integration factor of 1. This is the key to distinguishing between “Kalecki’s law” 
and Gibrat’s law, the cross-sectional distribution of the former only evolves over 
time in terms of its mean f(wt), its variance (written as σ2 /λ2) is time independent, 
whereas the cross distribution of the latter evolves in terms of both its mean and its 
variance overtime. The distinction has major implications for the progress of 
poverty and inequality. 

Clearly for a needs based (absolute) poverty line (say x*) the poverty rate will 
depend upon the time profile of f(wT) in the limit (i.e. limT–>∞ Φ([(x*–f(wT)))/ 
(σ/λ)]) for positive growth it will be 0 and for negative growth it will be 1. For a 
relative poverty line, 0.6 of median income for example (note median income will 
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be exp(f(wT)) and the poverty cut-off will be .6 of that value), the poverty rate 
would be Φ([ln(0.6)/(σ/λ)]) which obviously remains constant over time. 
Inequality measures that are not mean income normalized will remain constant 
over time location normalized inequality measures will diminish with positive 
growth and diminish with negative growth since the Gini coefficient may be 
written as: 

2F(exp(ln(x0)+Tμ),σ2 /λ2)–1 

which will be 0 for negative growth, 1 for positive growth and constant for zero 
growth.  

3 Where Does Pareto’s Law Fit In? 

Suppose the income process is governed by [1] but now, should xt fall below x* 
which is a lower reflective boundary (such as an enforced poverty frontier for 
example a mandated social security benefit payment), then the process is modified 
to [1] plus: 

xt = x*  if (1+δ t–1)xt–1 <   x*    [1a] 

Gibrat’s Law will no longer hold, in fact after a sufficient period of time the 
size distribution of x would be Pareto (F(x) = 1–(x*/x)θ) with a shape coefficient 
θ=1. In the literature on city size distributions this distribution is known as Zipf’s 
Law and in that literature Gabaix (1999) showed that Zipf’s law (Zipf (1949)) 
follows from a Gibrat consistent stochastic process (essentially a random walk) 
that is subject to a lower reflective boundary. In fact this phenomena, that a 
random walk with drift that is subject to a lower reflective boundary generates a 
Pareto distributed variable, has been known in the statistical process literature for 
some time (see for example Harrison 1985).9 In the present context this has many 
implications, the Pareto distribution has a very different shape from the log normal 
and it would be constant through time, all relative poverty measures, absolute 

_________________________ 
9 Champernowne (1953) discovered as much in the context of income size distributions. 
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poverty measures and inequality measures10 would be constants over time so that 
Pareto based predictions provide very powerful tests of the effectiveness of a 
mandated social security safety net.  

These stochastic theories also have something to say about societal mobility. 
From a somewhat different perspective than is usual, mobility in a society may be 
construed as its agents opportunity for changing rank. Suppose that opportunity is 
reflected in the chance that two agents change places and consider two 
independently sampled agents xit = xit–1 + eit and xjt = xjt–1 + ejt, so that E(eit–ejt) 
= 0 and V(eit–ejt) = 2σ2. For the Gibrat model the probability that agents switch 
their relative ranks in period t is given by: 

P(xit > xjt | xit–1 <  xjt–1)  =  P(eit–ejt > xjt-1 –  xit–1)  

By noting that the Gini coefficient is one half the relative mean difference 
between agents and that, for the log normal distribution, this may be written as 
twice the integral of a standard normal curve over the interval [0, (√(V(x)/2))], the 
average distance between two agents = 4E(x)(Φ(√(V(x)/2))–Φ(0)) and this 
probability may be written as: 

=  P((eit–ejt)/(σ/√2) > 4exp(ln(x0)+T(μ+0.5σ2))(Φ(T0.5σ/√2)–Φ(0))/(σ/√2)) 

=  P(Z > 4exp(ln(x0)+T(μ+0.5σ2))(Φ(T0.5σ/√2)–Φ(0))/(σ/√2)) 

The point is this probability diminishes over time (the intuition being that 
under constant population size the agents are growing further and further apart on 
average) so that mobility diminishes over time. For Kalecki’s law note that the 
independently sampled agents processes may be written as xit = f(wt) + (1–λ)x it–1 
+ eit and xjt = f(wt) + (1–λ)x jt–1 + ejt, so that E(eit–ejt) = 0 and V(eit–ejt) = 2σ2, 
with the inequality being written as: 

P(xit > xjt | xit–1 <  xjt–1)  =  P((eit–ejt)/(1–λ) > x jt–1 –  xit–1)  

In this case using the Gini relationship to the population mean and the mean 
difference this probability may be written as: 

P((1–λ)(e it–ejt)/(σ/√2)  > (1–λ)4exp(f(wt))(Φ(σ/(λ√2))–Φ(0))/(σ/√2)) 

_________________________ 
10 The Gini for a Pareto distribution is 1/(2θ–1) which is 1 when the shape coefficient is one because 
in this case the Pareto distribution has no moments or an infinite mean. 



 

www.economics-ejournal.org  11 

=  P(Z > (1–λ)4exp(f(wt)) (Φ(σ/((λ√2))–Φ(0))/(σ/√2)) 

so that as long as the fundamentals process f(wt) is constant then so will mobility 
be in that society. A similar result may be established for Pareto’s law. Table 1 
summarizes all these results. 

 
Table 1. Summary of Results 

Wellbeing Type Type of Stochastic Process 

Gibrat’s Law Kalecki’s Law Pareto’s Law 

Absolute Poverty Increasing or 
decreasing dependent 
upon growth rate 

Increasing or decreasing 
dependent upon growth 
rate 

Constant if the reflective 
boundary is at the 
poverty cut-off. 

Relative Poverty Increasing with time Constant Constant if the reflective 
boundary is at the 
poverty cut-off. 

Non-Normalized 
Inequality 

Increasing Constant Constant 

Location 
Normalized 
Inequality and 
Polarization 

Decreasing with +ve 
growth rate 

Decreasing Constant 

Mobility Diminishing Constant (if the 
fundamentals are 
constant) 

Constant (if the 
fundamentals are 
constant) 

4 Mixture Distributions and Trickle Down Theories 
(Anderson 1964)) 

The popularity of the “Rising Tide Raises All Boats” argument for the alleviation 
of poverty through growth has already been alluded to. For basic needs based 
definitions of the poverty cut-off this is no doubt true though it is not true if 
relative poverty is the measurement criterion. A slightly more sophisticated 
development of this argument is the “Trickle Down” effect (Anderson 1964). The 
idea is that it is necessary for economic growth to initially benefit the higher 
income groups (because they make the marginal product of labour enhancing 
investments that increased the incomes of the poor) but it transits downward to the 
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lower income groups over time. However this idea is predicated on the notion of 
economically different groups in society (with different investment behaviours for 
example) and it is not unreasonable to presume that different stochastic processes 
govern their respective behaviours.11 In effect one is “modeling” different groups, 
one of which would be the poor group, which will perhaps calls for a different 
approach to measuring poverty and inequality. The poor are identified by the 
extent to which their income processes are noticeably different from the income 
processes of other groups in society rather than because their income is less than 
some pre-specified boundary. It follows that some identifiably “rich” individuals 
may have, at least temporarily, incomes that are lower than some of the members 
in the poor group.  

To explore the implications of this structure imagine the societal income 
process to be that of a mixture of K normal distributions corresponding to the K 
income classes so that: 

2 2
0(ln( )) ((ln( ) ( 0.5 )), ) 1,..,k kT k k k kf x N x T T k Kµ σ σ= + + =  

The classes are distinguished by their initial conditions in the sense that 
ln(xk0)>ln(xj0) for all j < k where j, k = 1,..,K and the proportion of the population 
in each class is given by wk. Note that: 

0
( ( ) ( )) 0 0 .

x

i jf z f z dz x and i j− ≤ ∀ > >∫  

The class k=1 may be thought of as “the Permanently or Chronically Poor” so 
that CP, the Chronic Poverty rate is w1. In this form there will be chronically poor 
agents whose incomes will be, at least temporarily, higher than some non-poor 
agents since the poor and non-poor distributions will overlap. The extent to which 
the Permanently Poor distribution overlaps the distribution of the other classes 
those members of those classes may be considered the transitorily poor, so that the 
Transitorily Poor rate TP may be written as: 

_________________________ 
11 Sen’s functionings and capabilities approach (see Grusky and Kanbur (2006) for an extensive 
discussion) can also be construed as arguing for different processes describing rich and poor group 
behaviours distinguished by their different sets of circumstances. 
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10
2

( )
K

k k k
k

TP w f x dx
∞

=

=∑ ∫  

For momentary convenience assume μk = μ and σk = σ for all k (i.e. the various 
classes are distinguished by their initial conditions alone). So here the poor are 
class k=1 and the rich are class k=K. Assume now that at period T1 society moves 
to a new higher growth rate μ* > μ, if all classes move together the income groups 
would have size distributions of the form: 

2 2
0 1 1ln( ) ((ln( ) ( *) ( * 0.5 )), ) 1,.., ,kT kx N x T T T k K and T Tµ µ µ σ σ+ − + + = >  

All classes retain their mean differences over time, the extent to which class A 
first order dominates class B remains constant and there is no change in the degree 
of polarization between the classes. However if in the first period only the highest 
income group (K) moves, j periods later only the next highest group (K–1) moves, 
j periods later only the next highest group (K–2) moves etc… Then the new 
societal income process will be the same mixture of K normal distributions 
corresponding to the K income classes but with: 

2 2
0 1

1

ln( ) ((ln( ) ( )( *) ( * 0.5 )), )
1,.., ,

kT kx N x T jK jk T T
for k K and T T K

µ µ µ σ σ+ + − − + +

= > +



 

There are several observations to make. The distribution of average log 
incomes of the classes will be more widely spread initially and these initial 
differences will only be dissipated asymptotically (If the growth rates differ 
between the classes with the differences increasing with income class the 
differences will not dissipate asymptotically). In the short term the income size 
distribution of high income groups will more strongly first order dominate that of 
lower income groups increasing the polarization or lack of identification between 
poor and rich groups and the effect will be larger the longer is the lag in the trickle 
down effect (j). In effect there will be greater absolute inequality in the short run. 
When poverty lines are defined relative to an income quantile this will increase the 
probabilities of both transient and chronic poverty for the lower income classes. 
All of this is predicated on all income groups differing only in their initial 
incomes, should there be heterogeneity in growth rates and variances as well as 
starting incomes then anything is possible. 
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It should be said that in this model structure so-called poverty cutoffs are 
superfluous since the poverty group is better defined as those agents governed by 
the process that is dominated by all other processes. Issues concerning measuring 
the plight of the poor would centre upon w1, the mixture coefficient for the poor 
group, and measuring the differences between the poor group sub-distribution and 
the other distributions in the mixture. Inequality can also be measured in terms of 
these concepts or it can be measured in terms of the general variability 
characteristics (variance or coefficient of variation for example) of the overall 
mixture distribution. Similarly issues concerned with addressing the plight of the 
poor may then be seen in terms of influencing the weights attached to each class as 
well as changing the nature of the process that governs the poor group outcomes. 

For expositional convenience suppose there are 2 groups in society governed 
by processes which dictate their poor or non-poor status as in diagram 1, these two 
processes result in a poor wellbeing distribution fp(x) of the measurable 
characteristics x (for expositional convenience the analysis will be performed in 
terms of a univariate distribution but is should be stressed that the analysis can be 
readily performed in a multivariate environment), and a rich wellbeing distribution 
fr(x), the proportions of agents under these distributions are wp and 1–wp 

respectively so that the size distribution of incomes in this society is: 

( ) ( ) (1 ) ( ) [4]p p p rf x w f x w f x= + −  
For understanding the plight of the poor the components of interest are wp 

(which is essentially the proportion of people governed by the poor process which 
can be viewed as the real poverty rate) and the nature of the distribution of 
incomes among the poor, fp(x) (its mean gives us the average incomes of the poor, 
its variance gives us a measure of inequality amongst the poor and will permit 
generation of indices akin to FGT2 and FGT3 indices (Foster Greer Thorbeke 
1984).  

Suppose identification of the poor was pursued by employing an arbitrarily 
determined poverty cutoff c, then: 

( )

( )

c

rmp r

pmr p
c

P f x dx proportion of the rich miss identified as poor

P f x dx proportion of the poor miss identified as rich

−∞

∞

= −∫

= −∫
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and the calculated poverty rate would be wp(1–Ppmr)+(1–wp)Prmp ≠ wp (unless the 
proportion of the misidentified that are rich identified as poor is equal to the real 
poverty rate i.e. wp = Prmp /(Ppmr+Prmp)). 

To the extent that the distributions overlap, for the sake of argument just in the 
region [a,b], so that both distributions have support in that interval, then there is 
potential for agents to not be point identified as either poor or rich. Essentially the 
interval contains those people who got a bad draw from the rich distribution and 
those people who got a good draw from the poor distribution. The overlap of the 
two weighted distributions, a measure of the extent of polarization of the two 
groups (Anderson et al. 2009), is given by  ∫min((wpfp(x),(1–wp)),fr(x))dx and here 
corresponds to a measure of the potential for the lack of point identification. 
Suppose we could estimate the mixture distribution and by so doing identify wp, 
fp(  ), fr( ), a and b then we could identify some of the rich and some of the poor. 
We could assert that all agents with x below “a” would be point identified as poor, 
all with x above “b” would be point identified as rich. All agents with x in the 
interval [a,b] we would not know for sure, however more could be said in the 
sense that in this segment agents are partially identified, if the sub distributions 
could be estimated it would be possible to attach to each agent a probability that 
they were in one of the particular groups, very much in the spirit of the partial 
identification literature (see for example Manski 2002). 

An allocation rule. 
Consider the interval x+dx, the probability that someone from this interval is 

poor is given by θp(x,dx) where: 

( ) ( ) ( ) ( )( )p p p p p r( , ) w f z  / w  f z 1 w f z
x dx x dx

p
x x

x dx dz dzθ
+ +

= + −∫ ∫
 

Note that: 

( ) ( ) ( )
( ) ( ) ( )( )

p p
dx 0 p p

p p p r

w f x
lim x,dx   x  [5]

w  f x 1 w f x
θ θ→ = =

+ −
 

This corresponds to the probability that a person with x is poor so that (1–
wp)fr(x) / (wpfp(x)+ (1–wp)fr(x)) corresponds to the probability that a person with 
x is rich. Given estimates of wp, fp(x) and fr(x), these probabilities can be 
estimated. 
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Diagram 1. Poor, Rich and Mixture (60% poverty rate) 

 

Note also that, given a poverty line c, analogues to the FGT indices for the 
“poor” who are below the poverty line can be generated, thus:  

1( ) ( ) , ( ) ( )

1 (1 ( )) ( )
1

p p p

p r

x f x dx w x x f x dx and
w

x x f x dx
w

θ θ µ

θ µ

∞ ∞

−∞ −∞

∞

−∞

= =∫ ∫

− =∫
−

 

are respectively the poverty rate, the mean income of the poor and the mean 
income of the non-poor which may respectively be estimated by:  











1 1 1

1 1

1 1( ) / , ( ) / (1 ( )) /
( ) / 1 ( ) /

n n n

i i i i in n
i i i

i i
i i

x n x x n and x x n
x n x n

θ θ θ
θ θ= = =

= =

−∑ ∑ ∑
−∑ ∑

 

Furthermore  
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2 2

2 2

1 ( ) ( ) ( )

1 ( ) (1 ( )) ( )
1

p p p

r p r

x x f x dx and
w

x x f x dx
w

µ θ σ

µ θ σ

∞
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−∞

− =∫
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correspond to the poor and non-poor income variances respectively which may be 
respectively estimated by: 



 



 

2 2

1 1

1 1

1 1( ) ( ) / ( ) (1 ( )) /
( ) / 1 ( ) /

n n

p pi i i in n
i i

i i
i i

x x n and x x n
x n x n

µ θ µ θ
θ θ= =

= =

− − −∑ ∑
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Finally the j’th order Foster Greer Thorbeke index for the poor and its 
estimator is given by:  

 

0

1

( ) ( ) ( ) ( ) /

( )( ( )( ) / , 1,..

c
j

p

n ji
i p

î

c xFGT j x f x dx w and
c

c xI x c x nw j
c

θ

θ
=

−
= ∫

−
< =∑

 

5 The Experience of Africa 1985–2005 

To illustrate these issues data on per capita GDP for 47 African countries12 
together with their populations were drawn from the World Bank African 
Development Indicators CD-ROM for the years 1985, 1990, 1995, 2000, 2005 
were used. An issue immediately arises as to whether the raw data or population 
weighted data should be employed. At the statistical level the parameters of 
interest will be estimated as though the data were an independent random sample 

_________________________ 
12 The countries in the sample were: Algeria, Angola, Benin, Botswana, Burkina Faso, Burundi, 
Cameroon, Cape Verde, Central African Republic, Chad, Comoros, Congo, Dem. Rep., Congo, Rep., 
Cote d'Ivoire, Egypt, Arab Rep., Equatorial Guinea, Ethiopia, Gabon, Gambia, The, Ghana, Guinea, 
Guinea-Bissau, Kenya, Lesotho, Liberia, Madagascar, Malawi, Mali, Mauritania, Mauritius, 
Morocco, Mozambique, Namibia, Niger, Nigeria, Rwanda, Senegal,  Seychelles, Sierra Leone, South 
Africa, Sudan, Swaziland, Togo, Tunisia, Uganda, Zambia, Zimbabwe. 
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and the properties of those estimators predicated upon that assumption. If the 
population of interest is that of Africa then this is not so and sample weighting is 
necessary to adjust for the under sampling of highly populated countries and over 
sampling of sparsely populated countries. A similar argument prevails at the 
economic theoretic level if some sort of representative agent model is presumed 
and the wellbeing of all Africans is of interest. For the purposes of comparison, 
and to highlight the substantive differences the distinction makes both will be 
reported here. 

Table 2 reports summary statistics (means and variances) for the sample years 
and clearly indicates the implicit over sampling of higher income nations in the 
unweighted estimates. Notice the unweighted estimates record a growth of 14% 
over the period whereas the weighted results report less than 8% growth, a 
substantial difference. 

Diagrams 2 and 3 present the beginning of period and end of period size 
distributions13 of ln(GDP per capita) again in unweighted and weighted form. The 
shifts in location and spread discerned in Table 1 can readily be perceived in these 
diagrams. 

Pearson Goodness of Fit Tests (Pearson (1900) of the hypothesis that these 
distributions are Log Normal Or Pareto, performed for both weighted and 
unweighted samples, are reported in Table 3. At the 1% critical value there is a 
preponderance of evidence favouring the Log Normal formulation (it only gets 
rejected twice in the un-weighted sample and once in the weighted sample and 
pretty marginally so at that) whereas the Pareto gets solidly rejected in every 
 

Table 2. ln(GDP per capita)    

 Unweighted Weighted 
Year Means Variances Means Variances 
1985 
1990 
1995 
2000 
2005 

6.1820771              
6.1784034    
6.1113916          
6.2174786          
6.3223021         

0.92778351  
0.98733961  
1.1495402  
1.2386242  
1.3481553 

6.0692785             
6.0827742              
6.0053685              
6.0488727        
6.1461927         

0.90744347  
0.88023763  
0.95556079  
1.0276219  
1.0300315 

_________________________ 
13 These are essentially Epetchanikov kernel estimates of the respective size distributions. 
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Diagram 2. Africa GDP per capita distributions 1985–2005 

 

Diagram 3. Africa GDP per capita distributions 1985–2005 (population weighted) 
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instance. This is slightly surprising since, to the eye, Diagrams 1 and 2 suggest 
mixtures of 2 normals (one large poor group and a much smaller rich group), but 
the evidence does not appear strong enough in the data to really reject pure 
normality. Indeed the joint test of normality over the 5 observation periods does 
not reject normality at the 1% level for the weighted sample. Interestingly enough 
the populations are clearly log-normally distributed so that it may be inferred that 
gdp’s are themselves log-normally distributed since the difference or sum of two 
normally distributed variables is also normally distributed.   
 

Table 3. Tests of Norma land Pareto Distributional Specifications  

Ln GNP per capita 
Unweighted Normal χ2(4), [P(Upper Tail)] Pareto χ2(4), [P(Upper Tail)] 
1985 
1990 
1995 
2000 
2005 
All years χ2(20) 

12.320748      [0.015118869]             599.37137   [2.1196982e–128]  
18.172132      [0.0011420720]           648.71719   [4.4178901e–139]  
7.2879022      [0.12143386]               254.88561   [5.7677072e–054]  
10.035066      [0.039841126]             413.23135   [3.8477939e–088]  
19.439149      [0.00064419880]         418.01949   [3.5518925e–089] 
67.254997      [5.0783604e–007]        2334.2250   [0.00000000]  

Weighted Normal χ2(4), [P(Upper Tail)] Pareto χ2(4), [P(Upper Tail)] 
1985 
1990 
1995 
2000 
2005 
All years χ2(20) 

5.4247526      [0.24642339]               850.67992   [8.0715931e–183]  
10.882507      [0.027916699]             890.92447   [1.5416785e–191]  
3.7072456      [0.44707297]               389.07173   [6.3881404e–083]  
2.8078575      [0.59047714]               869.74574   [5.9768551e–187]  
13.992590      [0.0073187433]           935.78289   [2.9403608e–201] 
36.814952      [0.012314284]             3936.2047   [0.00000000] 

Ln Population 
Unweighted Normal χ2(4), [P(Upper Tail)] Pareto χ2(4), [P(Upper Tail)] 
1985 
1990 
1995 
2000 
2005 

2.6979621       0.60957127                 194.39270   6.0291654e–041  
3.4815355       0.48069145                 193.84403   7.9101293e–041  
2.5274974       0.63971883                 308.86671   1.3243132e–065  
2.9924681       0.55908664                 250.28037   5.6645137e–053  
3.7924813       0.43481828                 245.77727   5.2865977e–052 
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Given the joint normality of the 5 observation periods is accepted, the 
restrictions implied by [2] can be examined. Under the heroic assumption that the 
5 year periods are independent the Likelihood for the sample may be written as: 

 
2 2

0
2

( ln ( )( 0.5 ))
4

2( )
20 1

1

2 ( )

ijx x j
n

j

j i
L e

j

θ µ σ
θ σ

π θ σ

− − + +
−

+

= =
=

+
∏∏ ,  

and the null and alternative hypotheses may be written as: 

Ho: f(xT+i)~N((ln(xo)+(θ+i)μ+0.5σ2),(θ+i)σ2) versus H1: f(xT+i)~N(μ i,σi
2) 

for i=0, 1, …,4 

Here ln(x0) and θ are parameters thus implying 6 restrictions on the alternative. 
Table 4 reports the estimates of ln(x0), θ, μ and σ2 for the weighted and un-
weighted samples, together with the test of the restrictions. In both cases the 
restrictions are not rejected implying that, conditional on the underlying normality 
of the distributions, Gibrat’s law is an adequate description of the data.  

To examine what these different approaches imply for poverty measurement 
headcount measures of both the absolute and relative type are considered in Table 
5, the former based upon the popular dollar and 2 dollar a day cutt-offs (which for 
our sample become 5.8749307 and 6.5680779 respectively) and the latter based 
upon the also popular 50% and 60% of the median cutoffs.  As expected in general 
absolute poverty measures decline with economic growth and relative poverty 
measures decline. 

Table 4. Estimates and Tests of Restrictions 

 Unweighted Sample Weighted Sample 
Ln(xo) 
θ (# of five year intervals) 
μ 
σ2 
Χ2(6) 
P(>χ2(6)) 

5.7827258 
9.9694699 
–0.012055759 
0.094224026 
0.19646781      
0.99985320 

4.0511799 
103.01656 
0.014659728 
0.0091376682  
0.78654360     
0.99242963 
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Table 5. Poverty Estimates 

Year Year by year normality Under Gibrats Law 

Absolute (1 and 2 dollar a day cut-off) Unweighted poverty rate estimates 

1985 
1990 
1995 
2000 
2005 

      0.37491020       0.65569496  
      0.38002613       0.65253180  
      0.41272336       0.66492689  
      0.37912189       0.62362764  
      0.35000783       0.58381961 

      0.39532698       0.67353927  
      0.38684395       0.65329716  
      0.37893064       0.63472718  
      0.37150161       0.61758498  
      0.36449051       0.60167400   

Absolute (1 and 2 dollar a day cut-off) Weighted poverty rate estimates 

1985 
1990 
1995 
2000 
2005 

      0.41916948       0.69972853  
      0.41233910       0.69751462  
      0.44692413       0.71757254  
      0.43188059       0.69573737  
      0.39462744       0.66118137  

      0.43567992       0.70969353  
      0.42823308       0.70198016  
      0.42088097       0.69425410  
      0.41362387       0.68651911  
      0.40646200       0.67877884  

Relative (50% and 60% median cut-off) Unweighted Estimates 

1985 
1990 
1995 
2000 
2005 

      0.23588005       0.29794024  
      0.24272087       0.30359444  
      0.25898028       0.31687954  
      0.26670464       0.32312080  
      0.27526233       0.32998688 

      0.23725235       0.29907775  
      0.24768529       0.30767299  
      0.25697797       0.31525458  
      0.26532206       0.32200680  
      0.27286739       0.32807031  

Relative (50% and 60% median cut-off) Weighted Estimates 

1985 
1990 
1995 
2000 
2005 

      0.23341745       0.29589478  
      0.23001494       0.29305958  
      0.23913688       0.30063716  
      0.24706083       0.30716108  
      0.24731361       0.30736834 

      0.23748342       0.29926912  
      0.23854875       0.30015083  
      0.23960137       0.30102105  
      0.24064154       0.30188005  
      0.24166951       0.30272805  

 
As for mobility the transitions can be evaluated for each of the five year 

intervals via the distance of the joint density matrix from that of a diagonal. The 
statistic 

∑ ij min(pij,diag(pi.)). 

provides an index of immobility, where pij, is the probability of a country being in 
category i in period t and in category j in period t+1, diag(pi.), a square matrix 
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with the vector of probabilities of being in category i in period t on the on diagonal 
corresponds to complete immobility (Anderson, Ge and Leo (2010) establish that 
this is asymptotically normal). Splitting this sample into 5 equal sized categories 
the four 5 year transitions generate statistics (standard errors) 0.87234 (0.04868) 
for the first three transitions and 0.82979 (0.05482) for the fourth. This 
corresponds to very high immobility consistent with Gibrats law though it was 
expected to be increasing rather than staying constant. 

6 The African Distribution as a Mixture of Normals 

As observed earlier the diagrams are very suggestive of a mixture of normals one 
largish poor group and one smaller rich group and it is of interest to see the 
consequences of modelling the processes under this structure. First it is appropriate 
to examine the degree of mobility within the distribution over time. Table 6 reports 
the 20 year transition probability matrix and indicates that in essence there appears 
to be very little mobility over the period between 5 rank groups (the five rank cells 
were 1–10 11–19 20–28 29–37 38–47). Essentially 5 countries moved up from cell 
1 to cell 2 and 4 moved down from cell 2 to cell 1, 1 moved up from cell 2 to cell 
3, two moved up from cell 3 to cell 4 and one moved down from cell 4 to cell 3. 
The only change of more than one cell was Liberia who dropped from cell 4 to cell 
1 over the period and one other original cell 4 Member moved up to cell 5 and one 
cell 5 member moved down to cell 4. In sum there appears to be some deal of 
mobility at the lowest end of the spectrum but very little elsewhere, certainly it is 
reasonable to assume that memberships of the large poor and small rich groups 
apparent in Diagrams 1 and 2 (and hence the mixture coefficients) appear to be 
relatively constant.  

Techniques for estimating mixtures of normals are available (see for example 
Johnson et al. 1994) but tend to be complex and depend upon fairly large numbers 
of observations. Here, since there are a limited number of observations, an ad hoc 
method is used for simplicity and convenience, but it turns out to be quite 
successful in terms of replicating the empirical distribution. Given the evidence is 
that the membership of the groups is very stable over the period, countries are 
allocated into rich and poor groups as follows. Inspection of the 2005 distribution 
in Diagram 1 suggests that the modal values of the respective poor and rich groups 
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Table 6. 20 year Transition Probability Matrix 

1985 Cell                                               2005 Cell 
1–10 11–19 20–28 29–37 38–47 

1–10  
11–19  
20–28 
29–37  
38–47 

0.10638298 0.10638298 0.00000000 0.00000000 0.00000000  
0.085106383 0.085106383 0.021276596 0.00000000 0.00000000  
0.00000000 0.00000000 0.14893617 0.042553191 0.00000000  
0.021276596 0.00000000 0.021276596 0.12765957 0.021276596  
0.00000000 0.00000000 0.00000000 0.021276596 0.19148936 

  

Immobility Index      0.65957447      Standard Error  0.069118460  

are approximately 6 and 7. Observations below 6 can be almost all be attributed to 
the poor group and similarly observations above 7 can be similarly attributed to 
the rich group and were allocated accordingly. Given the symmetry of the 
underlying log-normals around their modes, the relative size of the below six and 
above 7 observations can be used to establish the poor and rich group weights wr 
(20/47) and wp (27/47). Observations between 6 and 7 were allocated randomly 
according to these weights to rich and poor groups. After an initial fit one below 
median poor country was switched with an above median rich country14 
improving the fit and establishing the following two rich and poor subgroups 
dispositions. 

Table 7. Disposition of Poor and Rich Countries  

Poor Group Rich Group 
Benin, Burkina Faso, Burundi, Cape Verde, 
Central African Republic, Chad, 
Democratic republic of the Congo, Cote 
d'Ivoire, Ethiopia, The Gambia, Ghana, 
Guinea-Bissau, Kenya, Liberia, 
Madagascar, Malawi, Mali, Mauritania, 
Mozambique, Niger, Rwanda, Sierra Leone, 
Sudan, Togo, Uganda, Zambia, Zimbabwe. 

Algeria, Angola, Botswana, Cameroon, 
Comoros, Republic of the Congo, Egypt, 
Equatorial Guinea, Guinea, Lesotho, 
Mauritius, Morocco, Namibia, Nigeria, 
Senegal, Seychelles, South Africa, 
Swaziland, Tunisia. 

_________________________ 
14 Relative to a normal distribution the initial poor country distribution appeared attenuated in the 
upper tail and the rich country distribution appeared attenuated in the lower tail.  
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Having partitioned the sample in this fashion estimation of the mixture 

distribution is quite simple in both un-weighted and population weighted modes. 
Tables 8 and 9 and Diagrams 4 and 5 report the results. In both cases the fits are 
extremely good and correspond to a more than adequate description of the data. 
The poor group has enjoyed zero economic growth and the rich group has enjoyed 
a steady one per cent annual growth rate over the period. Differences between the 
un-weighted and weighted cases emerge when GDP per capita levels and variances 
are concerned. In the un-weighted case income levels are generally higher and 
variances are lower but increasing over time whereas in the weighted case incomes 
are lower and variances are higher but diminishing over time. The restrictions 
implied by Gibrat’s law for the separate poor and rich groups in both weighted and 
unweighted samples are rejected in all cases (frequently resulting in nonsense 
estimates such as negative variances and negative time parameters) though basic 
log normality is not rejected in any case suggesting that Kalecki’s Law is the best 
description of the data for the individual groups. Poor and rich groups appear to be 
moving apart, Table 10 reports a trapezoidal measure of bi-polarization (Anderson 
2010; Anderson, Leo and Linton 2012) for both weighted and unweighted samples 
illustrating the point and Table 11 reports differences over time. All of which may 
be interpreted as the poor becoming relatively poorer. 

Table 8. A Mixture of 2 Log Normals (Poor group and Rich group) 

 Poor          Rich 
Mean        Mean 

Poor          Rich 
Variance   Variance 

χ2(4)      [P(Upper Tail)] 

1985 
1990 
1995 
2000 
2005 

5.5869      6.9856  
5.5425      7.0369  
5.4325      7.0278  
5.5006      7.1852  
5.5680      7.3406 

0.2691       0.6950  
0.2350       0.7183  
0.3461       0.7705  
0.3258       0.8370  
0.3219       0.9234 

3.6312             0.4582  
5.9701             0.2014  
0.2800             0.9911  
0.4526             0.9780  
1.9169             0.7510 
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Table 9. Sample Weighted Mixtures 

 Poor          Rich 
Mean        Mean 

Poor          Rich 
Variance   Variance     

Χ2(4)       [P(Upper 
Tail)] 

1985 
1990 
1995 
2000 
2005 

5.4115       6.7584  
5.4146       6.7975 
5.3109       6.7532   
5.3423       6.8289  
5.4340       6.9527 

0.6262       1.6988 
0.5422       1.4666 
0.5743       1.4099 
0.5671       1.2868 
0.4943       1.1327 

3.0473      0.5499  
1.6053      0.8078  
4.3005      0.3669  
8.2530      0.0827  
5.9860      0.2002 

 

Diagram 4. Africa GDP per capita distributions 1985–2005 
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Diagram 5. Africa GDP per capita distributions 1985–2005 (population weighted) 

 
 

Table 10. Bi-Polarization Index = 0.5(fp(xpmode)+ fr(xrmode)) (xrmode–xpmode) 

Year Unweighted Sample Weighted Sample 
1985  
1990  
1995  
2000  
2005 

 0.87249993    (0.027374440) 
 0.96662956    (0.028177909) 
 0.90342925    (0.028177909) 
 0.95600414    (0.030424419)   
 0.99116013    (0.032321510) 

0.54564641    (0.046480295) 
0.60239981    (0.042441864) 
0.62192838    (0.041522365) 
0.65517946    (0.039377304) 
0.71551955    (0.036396440) 

 
In this circumstance the issue of population weighting makes a big difference, 

with no population weighting the poor group are becoming absolutely poorer and 
exhibiting diminishing within group association. The source of polarization is the 
increased alienation or distance between the two groups. With population 
weighting they are not becoming absolutely poorer but are exhibiting increased 
within group association, there is a small amount of between group alienation but a  
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Table 11. Polarization Tests* 

Unweighted Sample 
Comparison 
Years 

Difference (“t”test) {P(T<t)} 

1990–1985 
1995–1985 
1995–1990 
2000–1985 
2000–1990 
2000–1995 
2005–1985 
2005–1990 
2005–1995 
2005–2000 

 0.094129622 (1.6144785) {0.94678816}  
 0.030929320 (0.53083245) {0.70223256}  
–0.063200302 (–1.0761795) {0.14092349}  
 0.083504205 (1.4159301) {0.92160202}  
–0.010625417 (–0.1787883) {0.42905197}  
 0.052574885 (0.88520127) {0.81197595}  
 0.11866019 (1.9819244) {0.97625615}  
 0.024530571 (0.40667537) {0.65787679}  
 0.087730873 (1.4553093) {0.92720818}  
 0.035155988 (0.57662100) {0.71790225} 

Weighted Sample 
Comparison 
Years 

Difference  (“t”test) {P(T<t)} 

1990–1985 
1995–1985 
1995–1990 
2000–1985 
2000–1990 
2000–1995 
2005–1985 
2005–1990 
2005–1995 
2005–2000 

0.056753398 (0.79846297) {0.78769906}  
0.076281972 (1.0823101) {0.86044263}  
0.019528574 (0.28349312) {0.61160057}  
0.10953305 (1.5752869) {0.94240488}  
0.052779657 (0.77714642) {0.78146381}  
0.033251083 (0.49415344) {0.68940109}  
0.16987315 (2.4790814) {0.99341394}  
0.11311975 (1.6913645) {0.95461639}  
0.093591173 (1.4127973) {0.92114233}  
0.060340090 (0.92496252) {0.82250730} 

* Tests are based on the trapezoid measure being asymptotically normally distributed with a variance 
≈ (f(x1m)+f(x2m))2(f(x1m)/[f’’(x1m)]2+f(x2m)/[f’’(x2m)]2)||K’||22 where xmj j = 1,2 are the modes of the 
respective distributions, where f() is the normal and K is the Gaussian kernel (Anderson, Linton and 
Wang (2012)). 
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substantial increase in within group association. The only significant changes in 
polarization in both comparison types were increases in polarization over time. In 
both cases the poor and rich groups are following distinct stochastic processes and 
there is no sense in which “the rising tide is raising all boats” or improvements in 
the well-being of the rich African countries are trickling down to the poor 
countries. For the sample to hand with population weighted data we have poverty 
rates of:  

 
 1985 1990 1995 2000 2005 
 0.51162747 0.51682920 0.51850631 0.52472944 0.53106760 
 

This indicates a poverty group over the period that is not only declining 
relatively in its income status but is growing relatively in its size. 

7 Conclusions 

It is not at all clear that boats and tides aphorisms and trickle down theories apply 
either in theory or practice when the well-being indicator is well described by 
some sort of stochastic process, especially when the process is one that is 
frequently observed in practice. It really depends on the nature of poverty or 
inequality being considered as well as the precise nature of the stochastic 
process(es) involved. Stochastic processes that are non-stationary engender 
distributions whose dispersion (absolute inequality) increases over time, whether 
or not relative inequality increases depends upon the nature of the growth process. 
Similar statements can be made about poverty, but here the nature of the growth 
process affects both absolute and relative poverty. What is clear is that it is not 
unequivocally the case that rising tides raise all boats or that wellbeing 
unequivocally trickles down even in the simplest of circumstances. This is even 
more so the case when the progress of the poor and the non-poor are described by 
different stochastic processes.   

In the case of Africa when GNP per capita is modelled over the recent two 
decades as a singular stochastic process the prediction of Gibrat’s law appears to 
hold true regardless of whether the analysis is performed under a population 
weighting scheme or a non-weighted scheme in the sense that the distribution is 
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log normal. Under this description absolute poverty is diminishing and relative 
poverty is increasing and absolute inequality is increasing and relative inequality is 
diminishing. Kernel estimates of the density indicated some evidence of 
bimodality suggesting a mixture of at least two distributions. When log GNP per 
capita is described by a mixture of two normals (which was not rejected by the 
data), one describing the poor country process and the other describing the rich 
country process, it is apparent that the two groups are polarizing, with the poor 
group in this sense becoming relatively poorer. In this circumstance the issue of 
population weighting made a big difference, with no population weighting the 
poor group are becoming absolutely poorer and exhibiting diminishing within 
group association, with population weighting they are not becoming absolutely 
poorer but are exhibiting increased within group association. 
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