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1 Introduction

Consider a panel of N units, with two non stationary variables, (say, Y and X)
observed over T time periods. In each unit of the panel the two variables are known
to be linked by a linear long-run equilibrium (cointegrating) relationship, so that
the data generating process (DGP) is the following:

yit = θi +βixit +uy
it (1)

xit = xit−1 +ux
it (2)

where i = 1, . . . ,N, t = 1, . . . ,T, and ux
it and uy

it are stationary noises. The estima-
tion of (1) when the covariance matrix of the noises is not diagonal, so that the
units are dependent, is still a largely unsettled problem. Empirical applications,
ignoring efficiency gains, are typically based on single-equation methods (see
e.g., Kim et al. (2005), Herzer (2008), Westerlund 2008). This is not surprising,
since system estimation with non-stationary variables is fraught with difficulties.
Full information maximum likelihood (FIML) methods Groen and Kleibergen
(2003) are feasible only when the number of time observations is much larger
than the cross-section observations, thus precluding many of the non-stationary
panels available in economics and finance. Seemingly unrelated regression (SUR)
methods, namely Mark et al. (2005) dynamic SUR (DSUR) and Moon (1999)
fully modified SUR (FM-SUR), which are respectively the sytem extensions of
dynamic OLS (DOLS) and fully modified ordinary least squares (FM-OLS) are
feasible with smaller T/N ratios. However, both require estimation the long-run
covariance matrix of the system, a considerably more difficult task (Mark et al.
(2005) describe it as ”thorny”) than obtaining the contemporaneuos covariance
matrix needed for the baseline SUR. Moon and Perron (2005) claim that SUR
estimators are nevertheless superior to single-equation ones in a non-stationary
set-up also. However, their simulation study considered a system of very small
cross-section size (at most four units with one right-hand side variable, or two units
with two variables) and large time dimension (T = 100, 300), thus very different
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from the typical non-stationary panel1. This prompts two main questions. First,
with empirically relevant sample sizes how large are the efficiency gains (if any)
actually delivered by SUR estimators relative to single-equation methods? Should
these gains be small, then the widespread use of single-equation estimators would
be largely legitimate. Our first goal is thus to compare the estimation performances
of single-equation (FM-OLS and DOLS) and SUR system estimators (FM-SUR
and DSUR) in panels with small to moderate cross-section dimension and moderate
time dimension, characterised by short-run dependence across units. The results
will lead to conclusions, hence, advice to practitioners, considerably different from
Moon and Perron’s.
The second question requires taking a completely different perspective. Efficiency
improvements, such as those granted by SUR, are desired in order to have more
accurate interval estimation and more reliable tests. Can we reach these targets
applying some alternative inference procedure, such has the bootstrap, to standard
single-equation estimators? The good simulation results reported for bootstrap
inference on FM-OLS (Psaradakis (2001), Fachin (2004)) and unit root and cointe-
gration tests (see inter alia, Park (2003), and, for panel extensions, Chang (2004),
Fachin (2007), Fuertes 2008) suggest this point is worth investigating.
We shall now first outline the set-up of the Monte Carlo experiment (Section 2) and
discuss the results of the comparison between single-equation and SUR estimators
(Section 3). In Section 4 we first recall the procedures for bootstrap inference
on FM-OLS and then report their performances. Some conclusions are drawn in
Section 5.

2 Monte Carlo Experiment: Design

The key point here is that the aim of our simulation design cannot be that of obtain-
ing fully general results, as there is a potentially infinite number of dependence
structures among the units and variables of a panel. Rather, as mentioned above,
we first of all wish to check if the results obtained by Moon and Perron (2005),

1 For instance, Coakley et al. (2006) describe as typical for macroeconomic panels sample sizes of
20 or 30 cross-section units with from 30 to 100 time observations, corresponding e.g., to about three
decades of observations at annual or quarterly frequency for the OECD countries

www.economics-ejournal.org 3



conomics: The Open-Access, Open-Assessment E-Journal

hold for the sample sizes typical of non-stationary panels. In designing our experi-
ment we will thus follow closely Moon and Perron (2005). The DGP is a simple
generalisation of (1)-(2) to the case of K = 2 explanatory variables:

yit = θi +β1ix1it +β2ix2it +uy
it , i = 1, . . . ,N, t = 1, . . . ,T, (3)

xkit = xkit−1 +ux
kit , k = 1,2, i = 1, . . . ,N, t = 1, . . . ,T. (4)

where ux
kit ,u

y
it are I(0) noises, so that both the x′s and y are I(1). In the non-

stationary panels literature it is quite common (see, e.g., Pesaran 2006) to introduce
some realism in the simulation design through parameters heterogenous across
units. Here we will follow this practice, generating the regression coefficients
respectively as θi ∼U(2,4) and as βki ∼U(1,3), where k = 1,2. The same set of
coefficients has been used for all Monte Carlo replications. It should be remarked
that, provided the error variances are suitably controlled to keep the signal-noise
ratio constant, the use of heterogenous parameters instead of the homogenous
ones used by Moon and Perron (2005) has no consequences on the performances
of estimators which allow for heterogeneity2. Things are obviously different for
pooled estimators, which are misspecified under heterogeneity. Since this class of
estimators will not be examined in our experiment the point is irrelevant.
The errors of equations (3) and (4) are drawn from a Multivariate Normal distribu-
tion with non-diagonal covariance matrix, so that there is short-run dependence
across equations and units (the case of long-run dependence is ruled out, as FM-
SUR, which require the inversion of the long-run covariance matrix would then
not be feasible). More precisely, letting ux

t = [ux′
1tu

x′
2t . . .u

x′
Nt ]
′, where ux′

it = [ux
1itu

x
2it ]
′

and uy
t = [uy

1tu
y
2t . . .u

y
Nt ]
′, we have[

uy
t

ux
t

]
(N+2N)×1

∼ iidN

([
0
0

]
,

[
R ∆

∆′ Φ

]
(N+2N)×(N+2N)

)
, (5)

where R is a full N×N matrix governing the dependence across units in the uy′
it s, ∆

is a N×2N matrix governing the dependence between the ux and uy noises, and

2 The results of the simulazion with homogenous parameters, not included here for sake of brevity,
is obviously available on request.
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finally Φ is a 2N× 2N matrix governing the dependence in the ux′s within and
across units.

Since Moon and Perron report the performances of both FM-OLS and FM-
SUR estimators to be negatively affected by the degree of endogeneity of the X’s
we decided to control this dimension of the experiment accurately, imposing an
homogeneous endogeneity parameter δ and running two sets of experiments with
δ = 0.2 and δ = 0.4. In both cases the ∆ matrix has a block form ensuring that
there is constant correlation between the noise of any X and that of the relevant Y
equation, and no correlation across units:

∆N×2N =


δ δ 0 0 . . . 0 0
0 0 δ δ . . . 0 0
...

...
...

. . .
...

0 0 0 0 . . . δ δ

 . (6)

We instead allow some heterogeneity across units in the dependence parameters,
the elements of the Φ matrix. Without loss of generality, we assume x1it and x2it

to be incorrelated. Letting φ
(i j)
lk = cov(ux

li,u
x
k j) denote the covariance between the

noise of the variable Xl in the ith unit and that of the variable Xk in the jth unit, we
have:

Φ2N×2N =



1 0 φ
(12)
11 φ

(12)
12 . . . φ

(1N)
11 φ

(1N)
12

0 1 φ
(12)
21 φ

(12)
22 . . . φ

(1N)
21 φ

(1N)
22

φ
(21)
11 φ

(21)
12 1 0 . . . φ

(2N)
11 φ

(2N)
12

φ
(21)
21 φ

(21)
22 0 1 . . . φ

(2N)
21 φ

(2N)
22

...
...

...
...

. . .
...

...
φ

(N1)
11 φ

(N1)
12 φ

(N2)
11 φ

(N2)
12 . . . 1 0

φ
(N1)
21 φ

(N1)
22 φ

(N2)
21 φ

(N2)
22 . . . 0 1


(7)

with φ
(i j)
lk ∼U(0.3,0.4). The off-diagonal elements of R, ρi j, are also generated

as U(0.3,0.4), while ρii = 1 ∀i. Again, the parameters thus generated have been
kept fixed across the Monte Carlo repetitions.
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The time and cross-section sample sizes have been chosen trying to strike a
balance between empirical relevance (as mentioned above, most macroeconomic
panels have N around 20 or 30 and T often much smaller than 100) and the
requirements of the SUR estimator, which is feasible only with rather large T/N
ratios. We thus fixed N = 5,10 and T = 50,100. Finally, we set the number of
Monte Carlo simulations (M) to 1000.

3 Simulation Results: Comparison of Single-Equation and SUR Es-
timators

In Tables 1 and 2 we report some summary statistics describing the results obtained
estimating (3) by single equation (FM-OLS and DOLS) and system (FM-SUR
and DSUR) methods. To define the expressions for these estimators we need
some notation. Following Moon (1999), for the simple bivariate case (1)-(2) first
of all define ωt = (uy

t ,ux
t )
′ and assume that 1√

T ∑
[Tr]
t=1 ωt → B(r) . The long-run

covariance matrix of B(r) is Ω = ∑
∞
h=−∞ E(ω0ω ′h), and the one-sided long-run

covariance matrix Ξ = ∑
∞
h=0 E(ω0ω ′h), both partitioned in the usual way as

Ω =
(

Ωyy Ω
′
yx

Ωyx Ωxx

)
, Ξ =

(
Ξyy Ξ

′
yx

Ξyx Ξxx

)
where all blocks have dimension N×N. Further, let Xt = diag(x1t , . . . ,xNt),Yt =
(y1t , . . . ,yNt)′, Ωyy.x = (Ωyy−ΩyxΩ−1

xx Ωxy) . Denoting by an hat a consistent esti-
mate, then:

ŷ+
t = yt − Ω̂yxΩ̂

−1
xx ∆xt , Ỹ +

t = (ỹ+
1t , . . . , ỹ

+
Nt)
′

ỹ+
it = yit − Ω̂

ii
yx(Ω̂

ii
xx)
−1

∆xit , i = 1, . . . ,N.

Also,
ξ̂ = (ξ̂ ′1, . . . , ξ̂

′
n)
′ , ξ̂i = Ξ̂

ii
xy− Ω̂

ii
yx(Ω̂

ii
xx)
−1

Ξ̂
ii
xx

π̂i = Ξ̂
i.
xx((Ω̂

ii
yxΩ̂

ii
xx)
−1
i. )′ ,

and, finally,
ψ̂i = (Ξ̂i.

xy(Ω̂
−1
yy.x)i.)′− (ξ̂ i.

xx(Ω̂
−1
yy.xΩ̂yxΩ̂

−1
xx )i.)′
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with ψ̂ = (ψ̂
′
1, . . . , ψ̂

′
N)′ . The estimators are then defined as follows:

β̂ FM−OLS =

(
T

∑
t=1

X tX t
′

)−1( T

∑
t=1

X tỸ +
t −T ξ̂i

)

β̂ DOLS =

(
T−p

∑
t=p+1

XtX
′
t

)−1( T−p

∑
t=p+1

X tỸ +
t

)

β̂ FM−SUR =

(
T

∑
t=1

X tΩ̂
−1
yy.xX

′
t

)−1( T

∑
t=1

X tΩ̂
−1
yy.xŶ

+
t −T ψ̂

)

β̂ DSUR =

(
T−p

∑
t=p+1

X−1
t Ω̂

−1
yy X

′
t

)−1( T−p

∑
t=p+1

XtΩ̂
−1
yy Yt

)

where β̂ = (β̂
′
1, . . . , β̂

′
N), and β̂i = (θi,βi). Small sample point estimation perfor-

mance of the estimators is usually evaluted by simulation on the basis of the mean
over the M simulations of the relative bias, M−1

∑
M
m=1(β̂m−β )β−1 . In a DGP

such as (3)-(4), with N units and K explanatory variables, we evaluate overall point
estimation performance by the average over units and parameters of the absolute
value (so to avoid compensating errors in opposite directions) of the bias of the
estimates of each parameter:

bias = (KN)−1
K

∑
k=1

N

∑
i=1
|M−1

M

∑
m=1

(β̂kim−βki)β−1
ki | (8)

Dispersion is analogously measured by the mean over the N units and K parame-

ters of the relative Monte Carlo standard error,
(√

M−1 ∑
M
m=1(β̂kim− β̂ ki)2

)
β
−1
ki :

s.e. = (KN)−1
K

∑
k=1

N

∑
i=1

[(√
M−1

M

∑
m=1

(β̂kim− β̂ ki)2

)
β
−1
ki

]
(9)

In our experiment we will also evaluate testing performances. Given the extremely
different size performances of the single-equation and system estimators, we

www.economics-ejournal.org 7



conomics: The Open-Access, Open-Assessment E-Journal

will concentrate on Type I errors. We thus tested the hypothesis H0 : βki = β
(0)
ki ,

k = 1, . . . ,K, i = 1, . . . ,N, where β
(0)
ki is the value of the slope parameter used in

the Monte Carlo DGP.
The first remark in order is that the all estimators are indeed more biased in DGP’s
with an higher degree of endogeneity.
The second, very important, remark is that the SUR procedure turned out to be
practically unfeasible for T = 50 and N = 10. The covariance matrix, although not
exactly singular, was always so ill-conditioned that the estimators turned out highly
numerically unstable even using a generalised Moore–Penrose inversion routine3.
Hence, we do not report results for this (T,N) combination. Since these samples
sizes are rather common in applied work on non-stationary panels (with indeed the
time sample often actually smaller than this one) this is an important finding.

Let us now go into some detail, considering point estimation first. All estimators
are essentially unbiased even with the smaller time sample. However, from the
first two columns of Table 1 we can appreciate that FM-OLS delivers a slightly
better performance than DOLS, while the ranking of the two SUR estimators is not
obvious (considering also that DSUR, contrary to FM-SUR, could be computed
also for the T = 50, N = 10 combination). SUR estimators tend to be somehow
more biased than the OLS ones. For instance, when T = 50, N = 5 and δ = 0.2
(first raw of Tables 1 and 2) the average relative bias is essentially the same for
FM-OLS, DOLS and FM-SUR (respectively, 0.32%, 0.32% and 0.33%) and higher
for DSUR (0.45%); when T = 100, N = 10 and δ = 0.4 (last raw of Tables 1 and
2) the bias of FM-SUR is larger than that of FM-OLS (0.51% against 0.16%),
and DSUR (0.41%) which is even less biased than its single-equation counterpart
(0.46%).

3 It should be remarked that the problem here, estimating the long-run covariance matrix, is
considerably more difficult than the standard SUR problem examined by Foschi et al. (2003)
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Table 1: Single-Equation Estimation
Performance of Fully Modified and Dynamic OLS Estimators

bias s.e. α̂

δ T N FM D FM D FM D
0.2 50 5 0.32 0.32 3.37 3.59 13.23 12.71

10 0.24 0.59 4.54 4.62 14.19 19.61
100 5 0.10 0.15 1.87 1.94 9.18 11.31

10 0.10 0.23 1.89 1.98 9.51 14.52
0.4 50 5 0.65 0.67 3.36 3.64 13.42 13.33

10 0.47 1.21 4.48 4.35 14.11 19.88
100 5 0.19 0.32 1.86 1.96 9.49 11.65

10 0.16 0.46 1.87 1.98 9.42 15.25
FM: Fully Modified OLS; D: Dynamic OLS;

bias: see (8); values ×100;
s.e.: see (9); values ×100;
α̂: rejection rates (×100) of tests of nominal size 5%, H0 true;

The Monte Carlo variance is approximately the same for FM and dynamic estima-
tors, with both SUR estimators always less precise than the OLS ones. As to be
expected, the variance falls with T and increases with N for given time sample.

Overall, FM-OLS dominates DOLS in terms of both bias and dispersion,
while FM-SUR and DSUR seems to be largely equivalent in the cases when the
former could be computed. System estimators are somehow more biased and less
efficient than single-equation ones, but the differences are small (and not always
in this direction). However, if we turn to hypothesis testing (last two columns of
Table 1 and 2) we discover that the performance of FM-OLS and DOLS, although
disappointing, is vastly superior to that of both FM-SUR and DSUR, with the
former simply disastrous. While the Type I errors of FM-OLS fall between 9%
and 14%, those of FM-SUR are about twice as large, falling between 19% (the two
cases with T = 100, N = 5) and over 40% (all the other T,N combinations). The
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DSUR estimator seems to be more robust, with Type I errors sometimes close to
those of DOLS and generally much smaller than those of FM-SUR (for instance,
when T = 100, N = 10, δ = 0.4, last raw of Table 2, 12.96% for DSUR and 43.87%
for FM-SUR).

Table 2: System Estimation
Performance of Fully Modified and Dynamic SUR Estimators

bias s.e. α̂

δ T N FM D FM D FM D
0.2 50 5 0.33 0.45 4.03 4.54 45.78 16.35

10 - 0.56 - 5.87 - 23.93
100 5 0.14 0.16 1.94 2.16 18.69 10.57

10 0.24 0.20 2.15 2.21 41.67 12.38
0.4 50 5 0.49 0.57 4.08 4.46 47.46 54.95

10 - 1.14 - 5.90 - 24.63
100 5 0.31 0.32 1.95 2.16 19.80 23.30

10 0.51 0.41 2.17 2.22 43.87 12.96
-: not available (numerical overflow); all values ×100;
symbols and abbreviations: see Table 1

The reason for the extremely poor performance of FM-SUR is not obvious from
the average bias and Monte Carlo variability reported in Table 2. To shed some
light on the problem we need to examine in detail the estimation performances
for each unit. In Table 3 we report bias and variability statistics for each unit of
the combination T = 50, N = 5, δ = 0.4; those for other parameter combinations
(N = 10,T = 100,δ = 0.4) are similar, and thus not reported (as customary, they
are available on request). The most important finding is that the standard asymptotic
formulas for the variance of the FM-SUR estimator always grossly underestimate
its actual variability: for instance, the Monte Carlo standard error (×100, but
not normalised on the coefficient value, differently from (9) used above) of the
estimates of β1 is about 0.13 in units 3, 4 and 5, but the asymptotic formulas yield
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in all three cases estimates less than 0.05; the average across units and coefficients
of the Monte Carlo standard errors is about 0.08, that of the asymptotic ones less
than 0.03. Since asymptotic inference is based upon these grossly underestimated
variances its poor performance is not surprising. On the other hand, the asymptotic
estimates of the standard errors of the DSUR estimator (on average, 0.065) are
much closer to the Monte Carlo standard errors (on average, 0.088). This explains
why the performance of asymptotic hypothesis testing on DSUR, though generally
rather poor, is relatively better than that on FM-SUR.

Table 3: FM-SUR and DSUR Estimators - Bias and Variability for Individual Units
FM−SUR DSUR

Unit parameter bias MC s.e. σ̂ bias MC s.e. σ̂

1 β1 0.010 0.052 0.022 0.011 0.057 0.044
β2 0.013 0.081 0.030 0.011 0.072 0.053

2 β1 0.004 0.032 0.014 0.010 0.050 0.038
β2 0.014 0.068 0.027 0.016 0.067 0.050

3 β1 0.003 0.134 0.043 0.013 0.114 0.084
β2 0.009 0.065 0.023 0.003 0.061 0.045

4 β1 0.046 0.132 0.045 0.022 0.111 0.083
β2 0.003 0.046 0.017 0.009 0.059 0.044

5 β1 0.021 0.140 0.046 0.078 0.231 0.167
β2 0.019 0.052 0.021 0.004 0.055 0.043

mean 0.014 0.080 0.029 0.018 0.088 0.065
DGP: T = 50,δ = 0.4;
bias = M−1

∑
M
m (β̂kim−βki),k = 1,2, i = 1, . . . ,5.

MC s.e. = 100×
√

M−1 ∑
M
m (β̂kim− β̂ ki)2;

σ̂ : average estimated asymptotic standard error ×100;
other symbols and details: see Table 1.
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Summing up, with small to moderate T/N ratios system estimators (i) may be
even unfeasible, (ii) when feasible, are generally more biased and less efficient than
single-equation estimators, and, finally, (iii) are associated with strongly oversized
asymptotic tests.

The best option seems to be FM-OLS, which deliver the best results in terms
of bias, efficiency and Type I errors of asymptotic tests. The latter, however, are
significantly higher than nominal significance levels, which implies that Gaussian
confidence intervals will be deceivingly short and have coverage smaller than
nominal. Can we do any better? To this end, in the next section we will recall some
standard bootstrap procedures for inference on FM-OLS and present the results of
a small simulation experiment.

4 Bootstrap Inference in Cointegrating Regressions

Although of rather recent introduction, bootstrap inference in regressions with I(1)
variables is now well established (see e.g., Herwartz and Neumann (2005), Chang
and Song 2006). Since the details are beyond the scope of this paper we will now
simply sketch the basic concepts in order to establish notation.

For ease of exposition, consider the simple case of equations (1)-(2). Bootstrap
inference involves two key steps: first, constructing the pseudo-data sets; second,
defining the test statistics or confidence intervals to be used. Let us examine them
in turn.

Denoting by uy∗
it the bootstrap noise, which we will discuss below, in the case

of hypothesis testing the systematic part of the bootstrap DGP is given by the null
hypothesis to be tested (say, H0: βi = β

(0)
i ):

y∗it = θ̂i +β
(0)
i xit +uy∗

it (10)

while for interval estimation we use the unconstrained parameter estimates:

y∗it = θ̂i + β̂ixit +uy∗
it (11)

The key point to take into account when generating the bootstrap noise uy∗
it is the

presence of dependence both in the time series and in the cross-section dimensions.
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The former aspect has been the subject of the vast debate, whose details are again
beyond the scope of this paper; for a review, see Politis (2003). Essentially, we
can either follow a model-based (parametric) approach or a non-parametric one.
In the former case in a first step the data are filtered through AR models, so to
obtain white-noise residuals to be resampled. In the latter approach blocks of
observations of length proportional to the memory of the series and random starting
point are drawn with replacement from the dependent series. Here, as in Di Iorio
and Fachin (2007) we will follow the latter approach: a block bootstrap algorithm,
the Stationary Bootstrap by Politis and Romano (1994), will be applied to the
unconstrained residuals delivered by FM-OLS estimation of (3). In principle a
critical point of block bootstrap methods is the choice of block length. In our
simulations we kept the block length always fixed at T/10, a value which give
good results in the simulations by Paparoditis and Politis (2003), where the issue is
widely discussed. In either case, to preserve the cross-unit dependence structure
we simply need to resample the entire T ×N matrix of residuals. In other terms,
the resampling algorithm swaps (blocks of) rows but keeps the columns fixed in
their positions, so that in the bootstrap data set the dependence structure across the
columns of the original data set is reproduce exactly as it is.

As usual, the bootstrap estimate of the p-value of two-tailed tests
will be p∗i = prop(|t∗ib|> ti), with ti the usual t-statistic ti = s−1

βi
(β̂i−β

(0)
i ),

t∗ib = s∗−1
βi

(β̂ ∗ib− β̂i), β̂ ∗ib the FM-OLS estimate of βi computed on the bth pseudo-
data set (b = 1, . . . ,B), sβi and s∗

βi
the estimated standard errors of the estimators

of the actual and bootstrap samples, respectively. One simple way to compute
confidence intervals is to take the desired quantiles of the distribution of the β̂ ∗′ib s.
An α-level confidence interval for βi may then simply be given by

[Qα/2(β̂
∗
i ),Q1−α/2(β̂

∗
i )] (12)

where β̂ ∗i =
[
β̂ ∗i1 . . . β̂ ∗iB

]
. In principle basing the interval on a pivotal quantity

should deliver better results. Psaradakis (2001) thus suggests the percentile-t
interval

[β̂i−Q1−α/2(t∗b)sβi , β̂i−Qα/2(t∗b)sβi ] (13)
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where the Gaussian quantiles used in asymptotic inference are replaced by those
of the bootstrap distribution (empirical estimate of the unknown small sample
distribution of the studentized statistic). The superiority of the second type of
interval depends entirely upon the quality of the estimates of the standard errors
(see e.g., Kilian 1999). Hence, in our study we shall compute both type of intervals.

Let us now turn to the simulation results. We saw above that in our set-up
Gaussian inference on FM-OLS results in confidence intervals with large size
bias and coverage smaller than nominal; from Table 4 we can appreciate that
both problems are partially solved applying rather standard bootstrap methods.
Although both bootstrap confidence intervals have coverage smaller than nominal
(between 89% and 92% for the simple interval and between 90% and 94% for
the studentised interval, instead of the desired 95%) and the test is undersized
(Type I errors between 1% and 4% for a 5% test), both indicators are measures are
markedly better than those of Gaussian inference (Type I errors between 9% and
14%, and, as a consequence, confidence intervals with coverage between 86% and
91%; see Table 1). The question if we can further improve on these performances
(for instance, by fine-tuning the block size; see Politis and White 2004) is beyond
the scope of this paper. Here the point is simply that applying well-established
bootstrap methods to FM-OLS we can improve over standard Gaussian inference
in terms of coverage and Type I errors, whereas moving to SUR system estimation
all results worsen.

Table 4: Bootstrap Inference on FM-OLS
δ = 0.2 δ = 0.4

T 50 100 50 100
N 5 10 5 10 5 10 5 10

simple 89.7 89.5 89.7 88.6 90.1 89.8 90.4 89.3
t 90.7 90.0 90.7 92.0 90.8 89.9 91.2 92.1
α̂ 7.9 8.1 7.9 9.3 8.1 8.0 8.5 9.0

simple: simple percentile 5% confidence interval, see (12);
t: studentised 5% confidence interval, see (13);
α̂: Type I error, nominal significance level 5%;
Bootstrap settings: 1000 redrawings; block size T/10.
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5 Conclusions

The Monte Carlo analysis conducted in this paper compares single equation
(FM-OLS and DOLS) and system (FM-SUR and DSUR) estimators of long-run
relationships in panels under more realistic time series and cross-section dimen-
sions than previous studies. The Monte Carlo results unambiguously suggest
that single-equation FM-OLS alongside a block-bootstrap method provides more
accurate estimation and inference. These conclusions, in stark contrast to Moon
and Perron (2005), should not come as a surprise. As remarked by Mark et al.
(2005), the properties of SUR estimators depend critically upon the quality of
the estimate of the covariance matrix. This task may be easy in panels with
a very small cross-section relative to the time-series dimension, such as those
examined by Moon and Perron (2005), but is typically difficult in even slightly
larger cross-section panels, such as those considered in our study.
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