The Single Currency's Effects on Eurozone Sectoral Trade: Winners and Losers?

Sergio de Nardis, Roberta De Santis and Claudio Vicarelli Institute for Studies and Economic Analyses, (ISAE) Rome

Abstract

In this paper we study the effect of the single currency across industries for euro area members. This analysis may help to shed light on the main factors influencing the euro effect on trade flows. We intend to verify whether these factors are specific to individual sectors and/or countries or common to the entire euro area. We use a dynamic specification of an augmented gravity equation. Following the most recent econometric literature, we apply the "System GMM" dynamic panel data estimator of Blundell and Bond to avoid inconsistency and biases in the estimates, and introduce controls for heterogeneity.

Aggregate sector results average out country-level behaviours that, on their turn, are affected by different (unobserved) responses of firms, endowed with diverse production costs, to the enhancing and dampening impacts due to the euro. Due to this reason, the cancelling out at aggregate level of heterogenous behaviours induces an aggregation bias. So it is not surprising that when moving from sector to sector/country analysis the picture becomes much more variegated, with the emergence of a whole range of winners and losers among industries in the different nation.

Our empirical results are in line with theoretical framework we assumed as reference that considers the possibility of both stimulative and dampening effects coming from trade integration and points out the fact that sector exports impacts are the aggregation results of firm-level heterogenous behaviours.

JEL: F14, F15, F4, F33, C33

Keywords: International trade; currency unions; gravity models; dynamic panel data; Blundell-Bond estimates

Correspondence: Roberta De Santis, Institute for Studies and Economic Analyses, Piazza dell' Indipendenza n.4, 00184 Rome, Italy, <u>r.desantis@isae.it</u>

We are very grateful to the associate editor and the referees for all the constructive suggestions and comments.

www.economics-ejournal.org/economics/journalarticles

1 Introduction

Empirical analysis on the first few years of existence of the euro has generally reported a modest, although statistically significant, effect. This evidence does not completely fit with the assumption that important reductions in transaction costs would ensue from the replacement of many currencies with one single money. The limited impact may depend, inter alia, on the fact that the euro came at the very end of a long-term path of European integration, adding (maybe) little to a process that has had its main drivers in several former economic policy decisions (e.g. the common market, the EMS, the Single Market). Yet other factors, working below the surface of aggregate behavior and affecting the pervasiveness of the influence of the single currency across products and industries, may have contributed to shape the modest pro-trade impact.

Analysis of sectoral variation of the euro effect may hence help shed some light on factors conditioning the single currency influence on trade flows. Despite its relevance, this issue has received scant attention to date. In this paper, we address this rather uninvestigated area, studying the trade-consequences of the single currency across industries of Euro area members. In line with a consolidated tradition in the analysis of the euro's trade impact, the aim of the study is mainly empirical: we intend to verify whether the euro effect is much differentiated across industries and economies, or whether some common features are detectable for the entire Euro area. Although our work is essentially empirical, nevertheless we need to refer to some theory as a guide for intepretation. We do it assuming as reference a framework that considers the possibility of both stimulative and dampening effects coming from trade integration and points out the fact that sector exports impacts are the aggregation results of firm-level heterogenous behaviours. Given this structure in the background, empirical findings at sector/country level may hint at the mechanisms driving trade put in place by the single currency inception.¹

The paper is organized as follows. The second and the third sections conduct a critical survey of the most recent empirical literature and describe the theoretical framework. The fourth and the fifth sections provide a description of the empirical strategy and of the dataset. The sixth and the seventh sections present the estimation results at sector and country level. Conclusions follow.

2 Recent Empirical Literature on the Euro's Sectoral Trade Effects

Analysis on the euro effect on trade has been generally performed at aggregate level.² Empirical studies that estimate the euro effect at sector level are still very scarce. However, in both approaches (aggregated and sectoral) the main empirical findings highlight a positive and statistically significant effects of euro adoption on bilateral

¹ It is worth to underline that this paper limits its analysis at the success of the euro adoption in terms of trade volumes only and does not analyze the potentially pro-competitive impact on prices and increased consumer welfare. Furthermore the empirical analysis is run for the manufacturing sectors given the not availability of homogeneous disaggregated data on service sector.

 $^{^{2}}$ See for example de Nardis and Vicarelli (2003) and Micco et al. (2003).

trade in EMU countries. All the empirical studies use panel data methodology, instead of pooled cross sectional data, to emphasize the time dimension in the estimation of trade flow determinants in gravity models.³

In this section we focus on the studies using sectoral data. Existing studies on sectoral euro effect usually use static models: to best of our knowledge, only one work uses dynamic models⁴ (Table 1).

_	Authors	Empirical Strategy	Main findings-sample period
	Flam and Nordstrom (2003)	Fixed effect panel data estimator, 1 digit ISIC rev.3 sectors. Gravity model Dep variable: bilateral exports, 1 digit ISIC rev.3 sectors Exchange rate as regressor in the gravity equation. 14 EU countries (excluding Greece)	Sample period 1995–2002. Intra area euro effect aggregate 15%, increase of trade with non members of 7%; euro effect not widespread across sectors, ranging between 7–50%.
Static models	Baldwin et al. (2005)	Fixed effect panel data. Gravity model Dep variable: bilateral imports, ISIC 2 and 3 digit 18 OECD countries	Sample period 1988–2003. Intra area euro effect aggregate 70– 112%, euro effect not widespread across sectors, ranging between 40– 177%.
	Flam and Nordstrom (2006)	Fixed effect panel data estimator Gravity model Dep variable: bilateral exports. 6 digit level HS product categories 20 OECD countries	Sample period 1999–2005. euro increased intra area trade by 26% and trade between the eurozone and outsiders by 12% in 2002–2005 compared to 1995–1998. The effects are concentrated in semi- finished and finished products, in- dustries with highly processed pro- ducts
Dynamic models	Fernandes (2006)	A dynamic panel data System GMM estimator , Gravity model. for 25 two digit ISIC rev.3 sectors Dep variable: bilateral exports. 23 OECD countries.	Sample period 1988–2003 Intra area euro effect aggregate 2.8%, euro effect not widespread across sectors, ranging between 7– 23%.

Table 1: Euro's Effect on Trade, Sectoral Data

³ The gravity model has been used extensively in the empirical and theoretical literature to explain bilateral trade (Anderson 1979, Deardorff 1998 and Helpman and Krugman 1985, Evenett and Keller 2002 and Baldwin 2006).

⁴ Theory and a large body of empirical work support the hypothesis that trade is a dynamic process and that estimating static equations may produce upward biased estimates (see de Nardis at al. 2008). The rationale for considering dynamics in trade is the existence of sunk costs borne by exporters to set up distribution and service networks in the partner country. This sticky behaviour seems all the more important in the EMU case, where trade relationships between countries are affected not only by past investments in export-oriented infrastructure, but also by the accumulation of invisible assets such as political, cultural and geographical factors characterizing the area and influencing the commercial transactions taking place within it.

All such studies (in spite of different time spans, countries samples and empirical strategies) report that the euro effect is not widespread among sectors and among country/sectors. Baldwin et al. (2005) show a correlation between the size of the "Rose Effect"⁵ (the adoption of a common currency) and the presence of what they call ICIR sectors (Imperfect Competition and Increasing Return Sectors). Ranking the sectors analyzed in a decreasing order, at the bottom of the list (lower "Rose Effect") they find agriculture, as well mining and quarrying; at the top, (higher "Rose Effect") various types of machinery and highly differentiated consumer goods (such as food products, beverages and tobacco). This result suggests that these sector characteristics may be related to the size of the effects on trade due to the adoption of a common currency. The rationale behind this heterogeneous euro effect among sectors is explained by Baldwin (2006) in light of two elements of the "new-new trade theory": the fixed costs of entering a new market and differences in firms' marginal production costs.

In line with these findings, also Flam and Nordstrom underline that sectors without a "Rose effect" tend to be those marked by fairly homogeneous products. The results set out in their 2003 paper, which are obtained from quite aggregate dataset (1 digit ISIC rev.3 sectors), are confirmed also at a highly disaggregated level (6 digit level HS product categories: Flam and Nordstrom 2006). In this latter work, the authors estimate currency union effects at different stages of processing and for different industries, finding evidence of a positive effect for semi-finished and finished products and for industries characterised by highly processed products, which are those that require relatively high fixed costs for distribution and marketing.

3 Theoretical Framework

Sectoral exports are aggregation of foreign sales of heterogenous firms; as such, they reflect the average outcome of a range of different individual behaviours. To gain insights on sector-export responses to the euro introduction it is, hence, useful to refer to a theoretical framework that makes such an aggregation explicit. Among the models of international trade with heterogenous firms, the one by Melitz and Ottaviano (2005) offers ample scope for hypoteses testing. It is similar to the model by Melitz (2003), adopted by Baldwin and Di Nino (2006) to study the euro effect, but with non-CES consumers' preferences and a linear demand function. In this setting, exports of a firm locatad in county o and selling to a destination market d, indicated by $\exp_{o,d}$, are given by

$$\exp_{o,d} = \frac{L_d}{4\gamma} \Big[\left(c_d \right)^2 - \left(\tau_{o,d} c \right)^2 \Big], \tag{1}$$

where L_d is the dimension of the destination market; $\gamma > 0$ is a parameter indexing degree of horizontal differentiation between varieties, assumed equal across markets; $\tau_{o,d} \ge 1$ is per unit transport cost incurred by the firm in transferring goods from o to d; c is the firm's marginal cost drawn from a random distribution G(c), having

 $^{^{5}}$ The "Rose Effect" refers to the large body of empirical literature about the effect of currency unions on trade started with Rose (2000). For a survey see Rose and Stanley (2005).

positive support on $[0, c_m]$; $c_d(< c_m)$ is the cutoff marginal cost the firm faces when selling in country d; this cost threshold is equal to the maximum price feasible in the destination market, P_{max} , at which product demand sets to zero. The maximum price is an indicator of toughness of competition in market d: since it is rising with the average price of competing varieties, P_d^* , and decreasing with the number of competitors, N_d^* , that is⁶

$$c_d = P_{\max} = F(P_d^*; N_d^*), \text{ with } F_{P_d^*} > 0; F_{N_d^*} < 0.$$
 (2)

Aggregating individual export sales over the set of exporters selling varieties from o to d, with marginal cost $c \le c_d$, one gets the bilateral sectoral export flow from country o to destination market d

$$EXP_{o,d} = N_o \int_0^{\left(\overline{a}_d/\tau_{o,d}\right)} \exp_{o,d} dG(c);$$
(3)

with N_o = number of entrant exporters (from o to d).

Assuming a Pareto parametrization for the marginal cost distribution, $G(c) = (c/c_m)^k$ with $k \ge 0$ as shape parameter, former expression is solved as follows

$$EXP_{o,d} = \varphi N_o L_d \left(c_d \right)^{k+2} \left(c_m \right)^{-k} \left(\tau_{o,d} \right)^{-k}; \quad \text{with} \quad \varphi = \frac{1}{2\gamma(k+2)}, \tag{4}$$

where sectoral exports from o to d are the outcome of aggregation over a subset of heterogenous firms (those whose marginal cost is lower than the cutoff level); interestingly, expression for bilateral sectoral exports assume a gravity-like form as sales form o to d depend positively on the size of destination country, L_d , and on the number of origin-country exporters, N_o , and negatively on the transport costs/trade barriers index, $\tau_{o,d}$.⁷

Assuming symmetric trade costs ($\tau_{o,d} = \tau_{d,o} = \tau$), in free entry equilibrium (with expected profits driven to zero) the cutoff marginal cost in the destination market is

$$c_d = \left(K\frac{\gamma F_{entry}}{L_d}\frac{1}{1+\tau^{-k}}\right)^{\frac{1}{k+2}}, \text{ with } F_{entry} = \text{fixed entry cost and } K = k^2 + 3k + 2.$$
(5)

Former expressions highlight that a fall in trade costs $\tau_{o,d}$, e.g. determined by the adoption of a common currency between the two countries, stimulates sectoral bilateral trade (equation (4)). Yet, more integration means also tougher competition in destination markets (c_d reduces as τ drops in equation (5)), leading to an increase in the number of competing varieties. This exerts dampening effects on bilateral sectoral export volumes. Competition becomes even fiercer when trade integration is accompanied by a decline of entry costs in destination markets (c_d reduces as F_{entry} falls

⁶ $P_{\text{max}} = (\alpha \gamma + \eta P_d)/(\gamma + \eta N_d)$, where α and η are parameters measuring substitution degree between differentiated varieties and the homogenous good.

⁷ In terms of gravity variables, the product between the size of the destination country and the number of entrant exporters from the origin country proxies the "mass" affecting bilateral trade.

in (5)). If reduction of cost cutoff c_d is large enough, firm selection consequent to lower tansaction and fixed entry costs may even entail the exiting of some less efficient exporters. Toughness of competition may be however mitigated by the degree of horizontal product differentiation, measured by γ , which varies sector by sector. Heterogenous firms, endowed with diverse marginal costs, are differently exposed to these opposite effects; predominance in the population of firms of the supportive or of the dampening influences hence affects the aggregate export outcome at sector level.

Given this framework, some general indications can be derived about what one should expect to draw from empirical analysis. They can be described as follows:

- (i) When considering aggregate sectoral exports, pro-trade effect should emerge only in the sectors where benefiting euro-area firms prevail on unaffected producers. At aggregate sector level, there is no reason to expect significant negative competitive effects, since compensation is at work: if there are losers among the euro-area producers, there are simmetrically winners in the same area.
- (ii) When considering country-sector exports, pro-trade impacts should emerge only in the country/sectors where benefiting firms prevail on unaffected or negatively affected producers. At a country level, the dampening effects, due to tougher competition, would emerge in the countries/sectors where negatively affected firms prevail on the benefited and unaffected ones; hence at country-sector level winners and losers may be detected.
- (iii) Given the role of horizontal differentiation in mitigating degree of competition, positive pro-trade effects of the euro should prevail in sectors where there is imperfect competition and goods are more differentiated.

4 Empirical Strategy and Equation

In our empirical strategy, we refer to the theoretical underpinnings highlighted in former section in estimating a gravity equation for sectoral bilateral trade volumes. Moreover in accordance with the recent findings in the literature, we introduce dynamics into a panel data model. This raises well known econometric problems: if trade is a static process, the fixed-effect estimator is consistent for a finite time dimension T and a infinite number of country-pairs N; but if trade is a dynamic process, the transformation needed to eliminate the country-pair fixed effects produces a correlation between the lagged dependent variable and the transformed error term that renders the least square estimator biased and not consistent. To avoid the inconsistency problem, Arellano and Bond (1991) suggested transforming the model into first differences and run it using the Hansen two-step GMM estimator.⁸

However, the first-differenced GMM estimator performs poorly in terms of precision if it is applied to short panels (along the T dimension) including highly persistent time series. Lagged levels of time series with near unit root properties are in

⁸ They show that the two key properties of the first differencing transformation – eliminating the timeinvariant individual effects while not introducing disturbances for periods earlier than period t-1 into the transformed error term – can be obtained using any alternative transformation (i.e. forward orthogonal deviations).

fact weak instruments for subsequent first-differences.⁹ Since bilateral exports between industrialized countries are expected to be persistent, due to sunk exports costs, one may expect this to affect the estimates.¹⁰

Arellano and Bover (1995), describe how, if the original equations in levels are added to the system of first-differenced equations, additional moment conditions may increase efficiency ("System GMM" estimator). This estimator has been refined by Blundell and Bond (1998).

The System GMM estimator has several advantages with respect to Arellano and Bond's estimator. First differencing the equation removes fixed effects but also the time invariant regressors in the specification. If these regressors are of interest, the resulting loss of information may be a serious inconvenience. Owing to the relatively short time-span data available and the relevance of "persistence" effects in bilateral trade relationships, the "System GMM" estimator seemed to be the right choice for our purposes. The application of this methodology in a gravity context is quite new:¹¹ as far as we know , only one study has applied it to investigate the euro effect on trade.¹² We introduced into the dynamic gravity equation three sets of variables: i) gravity variables, ii) controls for heterogeneity, iii) controls for other factors affecting bilateral trade.

- (i) *Standard gravity variables.* Bilateral distance, as a proxy of transport (and fixedentry) costs, and the sum of importer and exporter's value added as proxies of the "mass".
- (ii) Controls for heterogeneity and bias. Following Baltagi, Egger and Pfaffermayr (2003) we introduce fixed effects for importing and exporting countries and time. Differently from these authors, we did not control for country-pair effects (i.e. the interaction effect between they exporting and importing country picking up unobserved characteristics of country-pairs) because this kind of variable would have included the impact of the euro effect that we wanted to control by a specific dummy. As suggested by Rose and van Wincoop (2001), controlling for exporter and importer effects enabled us to proxy the multilateral "trade resistance index"¹³

- ¹¹ See De Benedictis and Vicarelli (2005); De Benedictis, De Santis and Vicarelli (2005).
- ¹² See Fernandes (2006).

¹³ Anderson and van Wincoop (2003) developed a theoretical gravity equation by using a CES utility function. Their basic gravity model is subject to:

$$x_{ij} = \frac{y_i y_j}{y^W} (\frac{t_{ij}}{P_i P_j})^{1-\sigma} \qquad P_j^{1-\sigma} = \sum_i P_i^{\sigma-1} \theta_i t_{ij}^{1-\sigma} \forall j$$

 $^{^{9}}$ More in general, a IV approach is a way to solve the endogeneity problem. See Anderson and Van Wincoop (2003).

¹⁰ For an exhaustive survey of GMM estimators, see Roodman(2006).

where y_W is the world income, $\theta_i = y_i/y_W$ country i's world income share, and trade cost t_{ij} is a function of border effect b_{ij} and distance d_{ij} ; $b_{ij}=1$ if there are no border barriers between country i and j; otherwise it equals one plus the tariff equivalent of the border barriers between two countries. The model states that trade between country i and j is determined by the share of the multiplier of both countries' incomes to the world income, as well as trade cost adjusted for the price indexes in both countries. The price index in country j is a function of the price indexes, income shares, and the trade costs of all countries. Price indexes are needed to build a multilateral resistance index. Several methods have been implemented in the empirical literature to proxy these trade resistance terms. The one most widely used seems to be the inclusion of country specific dummies This method has the advantage of capturing unobserved price

(see Anderson and van Wincoop (2003)), obtaining a specification of a gravity equation that can be interpreted as a reduced form of a model of trade with micro foundations.

(iii) *Controls for other factors affecting bilateral trade in EMU*. In the specific case of EMU, there are political, institutional and monetary factors that may have affected bilateral trade flows. After 1992, thanks to the European Monetary System and the convergence process leading to the adoption of the single currency, volatility of the exchange rate among European countries diminished. We controlled for this by introducing a measure of volatility into our equation. It seemed important to distinguish this aspect from a "Currency Union" effect that should capture a structural change (i.e. ERM crisis in 1992–1993) in the markets expectations, due to the fact that a common currency is an irrevocably fixed commitment on exchange rate regime. The introduction of the euro has been the last step of this integration process; we controlled for "EU membership"¹⁴ in order to "isolate" this effect on exports by introducing a specific dummy. Indeed, we control for exchange rate movements introducing an index of (bilateral) real exchange rate.

The equation was as follows:

$$Ln \ Expsect_{ijt} = b1 \ ln(\ Expsect_{ijt-n}) + b2 \ ln(\ SumVAsect_{ijt}) + b3 \ lnDist_{ij} + b4 \ vol_{ijt} + b5 \ ReR_{ijt} + b6 \ dueuro_{ijt} + b7 \ duEU_{ijt} + b8 \ \alpha_i + b9 \ \beta_j + b10 \ \tau$$
(6)

where:

ln =	the natural logarithm, i is the exporting country, j is the importing country and t is the year, n is a lag structure for the dependent variable;
$Expsect_{ijt} =$	exports in volume from country i to country j for 25 sectors ISIC two
	digit rev. 3;
$SumVAsect_{ijt} =$	the sum of value added at constant term for 25 sectors ISIC two digit
	rev. 3 of the exporting and importing countries, a proxy of the "mass"
	in gravity models;
$Dist_{ij} =$	bilateral distance between capital cities, expressed in kilometers;
$dueuro_{ijt} =$	Dummy euro: assumes value 1 for bilateral trade among Eurozone
	countries from 1999, 0 otherwise, in the case of Greece the dummy
	assumes value 1 starting from 2001;
$duEU_{ijt} =$	Dummy European Union membership: assumes value 1 for bilateral
	trade among European Union countries, taking into account the
	enlargement process of EU (Austria, Finland and Sweden entered in
	1995), 0 otherwise; ¹⁵

effects to produce consistent estimates of parameters. Feenstra (2004) shows that the inclusion of these dummies generates largely the same results as those obtained by Anderson and Van Wincoop (2003). Our empirical strategy took up these suggestions; however, we are aware that this choice excludes the partially time-varying character of the Multilateral Trade Resistance Index and that it can determine some bias (see for example Marques and Spies 2006 and for a survey on this topic see Baldwin 2006).

¹⁴ From the late 1950s to the mid-1990s, the European trade integration process were mainly related to the abolition of internal tariffs with a view to the completion and widening of the Single European Market.

¹⁵ We consider EU membership instead of other "institutional" variables (i.e. Single Market 1993) because EU membership implies the obligation of a Member State to transpose into national law directives (for example to implement the Single Market) issued by the EU Commission.

$vol_{ijt} =$	is the nominal exchange rate volatility;
$ReR_{ijt} =$	is the bilateral real exchange rate. We adopt the following specification:
-	<i>ReR=ePi/Pj</i> where e is the nominal bilateral exchange rate and Pi and Pj
	are respectively the production price indexes in the exporting and
	importing countries.
$\alpha_i =$	exporting country dummy: assumes value 1 if export flows are from
	exporter country <i>i</i> to each one of the importing country <i>j</i> , 0 otherwise;
$\beta_j =$	importing country dummy: assumes value 1 if export flows are from
•	each one of the exporter countries i to the importing country j , 0
	otherwise;
au =	annual dummies: assumes value 1 for time t, 0 otherwise.

We expected bilateral export flows to be positively influenced by:

- (i) The lagged endogenous variable. Countries trading heavily with each other were expected to continue to trade, thus reflecting the effects of entrance and exit barriers due to sunk costs;
- (ii) The "mass". In gravity models trade flows are positively influenced by the "mass" proxied by the sum of GDP or value added;
- (iii) The introduction of euro. This dummy proxied the "pure trade effects" and was expected to have had a positive impact on Eurozone trade flows, in line with recent literature;
- (iv) The "EU membership" effect. Countries joining EU should have benefited from European trade integration process.

We expected bilateral export flows to be negatively influenced by:

- (i) Distance. According to the standard gravity model, bilateral distance is a proxy for transport costs and cultural proximity between two countries;
- (ii) Exchange rate volatility. Reducing exchange rate volatility should promote bilateral trade reducing risks and uncertainty.
- (iii) Real exchange rate. A relative increase in the exporting country prices might negatively affect the export flows.

5 Data Description

The pool of the economies that we considered in the estimates consisted of 23 developed countries: 13 EU members (Ireland and Luxembourg were not included in the pool due to the lack of homogeneous data)¹⁶, and 10 OECD countries: Korea, Czech Republic, Australia, Canada, Japan, New Zealand, Norway, Mexico, Switzerland and United States. The sample period was 1988–2004 according to data availability.

¹⁶ In this paper we deflate nominal bilateral export by value added implicit deflators taken from OECD STAN BTD, a more accurate measure than US CPI commonly used in empirical literature. However, this data bank does not provide value added implicit deflators for Ireland. Data for Belgium and Luxembourg are aggregated.

Variable	Source	Sample
Bilateral exports in current terms	OECD STAN-BTD	1988–2004
Value added	STAN industry	1988-2004
Bilateral nominal exchange rate	IMF-IFS	1988-2004
CPI, PPI	IMF-IFS, OECD-MEI	1988-2004
Distance	http://www.cepii.fr	1988-2004
Free Trade Agreement	European Commission and WTO	1988-2004
Bilateral real exchange rate	IMF-IFS	1988–2004

Table 2: Data Source

We considered 13 exporting European countries and 23 importing industrialized countries (13 EU + 10 OECD).¹⁷ Bilateral exports data in dollars terms, current prices, were taken from OECD STAN-BTD, and value added from the STAN-Industry data base; both variables were deflated by value added implicit deflators.

We tested five different measures of exchange rate volatility; the variable we used was measured by the standard deviation of the first difference of monthly natural logarithms of the bilateral nominal exchange rate at the current year t. Data were taken by monthly average exchange rates from IMF-IFS.

6 A Sectoral Analysis in a Dynamic Setting

Owing to the large number of regressions made, we report the estimate results of equation (6) for each of the 25 ISIC 2 digit sectors in the appendix. Both the specification of the model and the econometric strategy proved to fit well.

Estimates were robust to the standard tests. AR(1) and AR(2) tests showed the consistency of the GMM estimator and the inconsistency of the OLS. Hence, by introducing dynamics, the proper estimation method was the former one. The Hansen test of over-identifying restrictions showed that the hypothesis that all moment restrictions would be satisfied for the dynamic specification was not rejected.¹⁸

In general, gravity standard variables showed high statistical significance and the expected sign: there was a positive correlation with the mass and a negative one with distance. We also found a high statistical significance of the 1 period lagged dependent

¹⁷ We organised our pool of countries in two different groups: 13 EU exporting countries and 23 importing countries (13 EU+10 OECD countries). Exporting countries are only EU members: Eurozone countries plus the three EU countries that are not in the EMU (UK, Sweden and Denmark). By this way, we can calculate the euro effect on intra-trade only with respect these latter, being the reference countries we are interested in. To be precise, we calculate how much trade flows among Eurozone countries are different from i) average flows between Denmark, Sweden and UK ii) trade between these three countries and Eurozone countries iii) trade between Eurozone countries and all the importing countries in the sample; iv) trade between Eurozone countries.

¹⁸ Arellano and Bond (1991) propose a test of the hypothesis of no second-order serial correlation in the disturbances of the first differenced equation. This is a necessary condition for the valid instrumentation. A test for the hypothesis of no first order–order serial correlation is also reported: the rejection of the null hypothesis (i.e. the presence of first-order serial correlation) indicates the inconsistency of the OLS estimator.

variable coefficient; the magnitude of the "persistence effect" seemed in line with the results in the literature. A decrease in exchange rate volatility and in the bilateral real exchange rate promoted bilateral trade; the "EU membership" effect had a positive impact on trade flows among EU15 countries.

In this section and in the next we focus on the impact of the euro on sectoral exports, looking at the sign and magnitude of the Euro dummy coefficient. The euro trade effect was estimated for each sector considering the EU members as a group of exporting countries. In this case, the coefficient of the dummy euro quantified the (average) sectoral effect of euro adoption with respect to EU partners that did not joint the common currency.

The estimates results (Table 3) highlight that the euro effect is not uniformly distributed among sectors. Only in 10 industrial sectors out of 25 is there a positive and significant impact of the euro on exports flows (at least at 10% significance level). However, as expected on the grounds of the theoretical framework, no sector is charaterised by a statistically significant negative influence: this would reflect the fact that (unobserved) firm-level positive and negative effects tend to cancel out when aggregating across nations.

As for the magnitude of the coefficient, dynamic specification of the gravity equation allows to capture the short-run effect exerted on sectoral trade by adoption of the euro. The short run effect is indeed small and heterogeneous among sectors.

One may reasonably assume that, in general, it takes several years for a currency union to have a significant trade enhancing effect. Yet, there is no clear indication in the existing literature about the lapse of time necessary for a single currency to exert its steady state effects. According to some authors (Bun and Klaassen, 2002b), in seven years only half of the whole long run effect is apparent (incidentally, in our sample the euro has been in existence for six years). But the period necessary to detect the "regime" effect may be even longer: according to some estimates (Glick and Rose, 2002), it can take more than thirty years to discern the full long run impact on trade of a reversed process, that is, the dissolution of a monetary union between a pair of countries.

Leaving aside the issue of the length of time required to approach the long run, we can nonetheless use the parameter of the lagged dependent variable to compute the change in sectoral trade implied by the short run impact of the euro obtained in our results, letting time grow larger and larger.¹⁹ We can correctly compare the long term coefficient obtained by this way with existing sectoral results in empirical literature, computed using static model. Our estimate results, shown in last column of Table 3, are still small by the standards proposed in the literature on euro's effect on sectoral trade.

Assuming as reference an industry classification à la Pavitt, a positive effect was detected in four sectors characterised by scale economies (transport, radio tv and communication equipment, pulp-paper and printing, metal products), one sector characterised by high technology (electrical and optical instruments), one specialised supply sector (transport equipment).

¹⁹ We obtained estimates of long-run effects simply by applying the following transformation: long run $\overline{B2} = B2/(1-B1)$, where B2 is the parameter of the EURO dummy and B1 is the vector of coefficients of the lagged dependent variable. The test of the significance of the Ho B2 = 0 are in the Appendix.

ISIC 2	digits	Industry description	Dummy euro Short term coefficient	t	Dummy euro Long term coefficient ^a
01_05		Agriculture, hunting, forestry and fishing	-0.02	0.37	•
10_14		Mining and quarrying	-0.15	1.72	
15_16		Food products beverages and tobacco	0.04	1.61	
17_19		Textiles, textile products, leather and footwear	-0.05	1.49	
	20	Wood and wood and cork products	0.02	0.27	
21_22		Pulp, paper, paper products, printing and publishing	0.07	2.09	0.11
23_25		Chemical, rubber, plastics and fuel products	0.03	0.94	
	23	Coke, refined petroleum products and nuclear fuel	0.05	0.31	
	24	Chemical and chemical products	0.01	0.55	
	25	Rubber and plastic products	-0.01	-0.47	
	26	Other non metallic mineral products	-0.02	0.64	
27_28		Basic metals and fabricated metal products	0.10	4.07	0.16
	27	Basic metals	0.13	3.29	0.19
	28	Fabricated metal products except machinery and equipment	0.01	0.14	
29_33		Machinery and equipment	0.06	2.65	0.09
	29	Machinery and equipment nec	0.05	2.02	0.08
30_33		Electrical and optical equipment	0.07	1.95	0.09
	30	Office accounting and computing machinery	0.07	0.81	
	31	Electrical machinery and apparatus nec	-0.14	0.34	
	32	Radio tv and communication equipment	0.13	2.02	0.20
	33	Medical precision and optical instruments	0.09	2.70	0.13
34_35		Transport equipment	0.13	2.27	0.24
	34	Motor vehicles	0.09	2.03	0.13
	35	Other transport equipment	-0.01	0.11	
36_37		Manufacturing nec	-0.04	1.10	

Table 3: Sectoral Estimates Results

Sectors in bold are those with a euro effect positive and significant for the entire set of EU countries.

^aWe performed an F test for the statistical significance of the long run coefficient (see in the Appendix).

In general, even if a two-digit classification is still very aggregate, it is possible to point out that most of the sectors exhibiting a positive euro effect are those characterised by increasing returns to scale, imperfect competition and product differentiation.

These results seem to reflect the empirical findings reported in section 2 and are in line with the theoretical *a-priori* discussed in section 3 predicting prevalence of positive effects in imperfectly competitive sectors in which varieties are more differentiated (due to a soothing of an otherwise tougher competition). Comparing with previous sectoral studies, our estimates of the euro effect are, on one hand, lower , probably because of the dynamic specification of our model correcting for some bias, and on the other hand, more homogeneous across sectors. According to our long run effect estimates, the intra-EMU pro-trade impact of the euro ranged between 8.3% (machinery and equipment

nec) and 27.1% (transport equipment²⁰). In Flam and Nordstrom (2006) and in Baldwin et al (2005), for instance, the magnitude of the Euro effect varied respectively between 16% for wood products and 62% for transport equipment and between 40% to $177\%^{21}$. With respect to our short run coefficients, our results seem lower than those of Fernandes (2006); this is probably affected by differences in the pool of countries considered and a slightly different time span.²²

7 A Country/Sector Analysis

Aggregate results conceal the fact that in EMU countries there were, at the date of the euro introduction, both "more" and "less" productive firms. These firms were differently affected by the single-currency effect, depending on how far away were their marginal production costs from the cutoff cost (made more stringent by the euro inception). Predominance of either kind of firms determined the sector/country euro effect. Due to this reason, when we move from sector to sector/country analysis, a whole picture of winners and loosers emerges. Table 4 reports the same industrial sectors as Table 3 in order to compare them with the evidence found at sector/country level.²³ We have re-ordered these sectors according to whether statistically significant impacts were detected at aggregate level or not. The last two columns of the table show countries for which a statistically significant euro effect has been found in those sectors.

What stands out from the table is the confirmation of an aggregation bias due to the fact that aggregate results average out quite different sector-country outcomes, affected, in their turn, by firm-behaviour heterogeneity. The sectors where a postive significant influence was detected at aggregate level (those where product differentiation matters) subtend winners and loosers at country level. According to this evidence, while winners in these sectors are quite widespread across EMU countries, losers are rather concentrated in a few nations, being located predominantly in France and Finland. Yet this not the end of the story about winners and losers, since both these categories of exporters may be found also in the sectors for which no significant impact was singled out at aggregate level. Actually, the picture in these sectors is even more variegated.

²⁰ Since, for instance, the long run coefficient of the dummy euro in the transport equipment sector is 0.24, the variation of exports induced by euro adoption (Dueuro = 1) with respect to the case of non-adoption (Dueuro = 0), is given, other things being equal, by $[(\exp 0.24*1/\exp 0.24*0)-1]*100=27.1\%$.

²¹ Flam and Nordtrom (2006), introduce two different dummies: a dummy for exports within the eurozone in 1999–2001 and a dummy for exports in 2002–2005. We report results of this second dummy (see Table A6 in Flam and Nordstrom 2006). To be noted is that these authors consider a wider group of exporting countries (20 OECD countries), while we consider 13 EU countries only. Furthermore, we would point out that, in our estimates, different sectors show a positive and statistical significance euro effect with respect to those in Flam and Nordstrom. In particular, we find no statistically significant effects in chemicals, rubber and plastics.

 $^{^{22}}$ In Fernandes (2006) there are no differences between importing and exporting countries, while we consider two different group of importing and exporting countries (see note 14). Indeed, we include more countries in the estimates: Finland and Belgium both in the exporting and importing country group, Canada, Korea, Mexico, Czech Republic in the importing country group. Finally we add one year to the time span.

 $^{^{23}}$ Table A1 in the Appendix presents the coefficients of the euro dummy for each country/sector.

ISIC 2 digits	Industry description	Dummy euro positive and significant	Dummy euro negative and significant
21_22	Pulp, paper, paper products, printing and publishing	The Netherlands	
27_28	Basic metals and fabricated metals products	Greece and Portugal,	
27	Basic metals	Austria, the Netherlands, Spain	France, Finland
29_33	Machinery and equipment		Finland
29	Machinery and equipment nec	Belgium	
30_33	Electrical and optical equipment	Germany, Belgium, the Netherlands, Spain	France, Finland
32	Radio tv and comunnication equipment	Austria, Germany, Spain	France
33	Medical precision and optical instruments	Greeece, Spain	
34_35	Transport equipment	Spain	
34	Motor vehicles	Italy, France, Greece, Spain	Finland
01_05	Agriculture, hunting, forestry and fishing	France, Spain	Finland, Germany, The Netherlands
10_14	Mining and quarrying		Spain
15_16	Food products beverages and tobacco	Germany, The Netherlands	
17_19	Textiles, textile products, leather and footwear		Finland, Italy
20	Wood and wood and cork products	The Netherlands	
23_25	Chemicals, rubber, plastics and fuel products	Spain, Portugal	France, Germany
23	Coke, refined petroleum products and nuclear fuel	Austria	
24	Chemical and chemical products	Belgium, Spain	
25	Rubber and plastic products		Belgium, France
26	Other non metallic mineral products		
30	Office accounting and computing machinery	Austria, Germany	France
31	Electrical machinery and apparatus nec	Greece	Finland
35	Other transport equipment	Italy	
36_37	Manufacturing nec		Italy

<i>Table 4</i> : The Country/Sector Euro Effect ^a
--

^aSectors in bold are those with a euro effect positive and significant at aggregate level; the other sectors are those with no significant effect at aggregate level.

Lower part of Table 4 indicates that positive intra-EMU trade effects of the single currency were identifyable at a country level in a much wider range of sectors, including those where varieties are less differentiated (e.g. agriculture). However, these positive influences were opposed to the negative ones in other nations, so that also in the unaffected sectors at aggregate level, there are country-level winners and losers. Contrary to the former case, loosers are widespread across nations, ranging from Germany (agriculture, chemicals) to France (Rubber and plastics, computing machinery), Italy (textile, other manufacturing), Netherlands (agriculture), Spain (mining), Belgium (runner and plastics) and Finland (agriculture, textile, electrical machinery).

Considering all the sectors (both those positively affected and those unaffected by the euro introduction at aggregate level), in a few of them (textile, rubber and plastics, machinery and equipment, manufacturing nec) are detectable only country-level negative impacts.

When we reshuffle sector/country results presented in Table 4 on the basis of a classification "à *la* Pavitt", the general picture turns more in line with the findings obtained at aggregate level (Table 5): the pro trade effects for the majority of the

SITC 2 ligits	Industry description	Dummy euro positive and significant	Dummy euro negative and significant
	Tra	aditional sectors	
01_05	Agriculture, hunting, forestry and fishing	France, Spain	Finland, Germany, The Netherlands
10_14	Mining and quarrying		Spain
15_16	Food products beverages and tobacco	Germany, The Netherlands	
17_19	Textiles, textile products, leather and footwear		Finland, Italy
25	Rubber and plastic products		Belgium, France
27	Basic metals	Austria, the Netherlands, Spain	France, Finland
6_37	Manufacturing nec		Italy
	Scale	e intensive sectors	
20	Wood and wood and cork products	The Netherlands	
21_22	Pulp, paper, paper products, printing and publishing	The Netherlands	
23	Coke, refined petroleum products and nuclear fuel	Austria	
26	Other non metallic mineral products		
7_28	Basic metals and fabricated metals products	Greece and Portugal,	
31	Electrical machinery and apparatus nec	Greeece	Finland
32	Radio tv and comunnication equipment	Austria, Germany, Spain	France
4_35	Transport equipment	Spain	
34	Motor vehicles	Italy, France, Greece, Spain	Finland
	Spec	cialised suppliers	
9_33	Machinery and equipment		Finland
29	Machinery and equipment nec	Belgium	
35	Other transport equipment	Italy	
	S	Science Based	
23_25	Chemical, rubber, plastics and fuel products	Spain, Portugal	France, Germany
24	Chemicals and chemical products	Belgium, Spain	
30_33	Electrical and optical equipment	Germany, Belgium, the Netherlands, Spain	France, Finland
30	Office accounting and computing machinery	Austria, Germany	France
33	Medical precision and optical instruments	Greece, Spain	

Table 5:	The Country	/Sector Euro	Effect in a	Classification	"à la Pavitt" ^a

* Sectors in bold are those with a euro effect positive and significant for the entire set of EU countries.

countries, though diffused across industries, are mainly concentrated in sectors where horizontal product differentiation matters (scale intensive, specialized suppliers and science based sectors).

Finally, leaving aside sector specificity, these results may provide a general view on the country distribution of winners and losers (Table 6). It comes out that small and medium-sized economies were those that benefited the most from the euro introduction: in Spain, Netherlands, Austria, Greece, Belgium and Portugal the number of sectors where the single currency impacted positively exceeds the number of sectors where negative effects were identified. Quite as an exception, Germany fits into this group. On the opposite side, this evidence indicates that Italy and, particularly, France and Finland were the less benefited, in terms of balance between winning and losing sectors. A common feature shared by all countries is constituted by the large majority of sectors where the euro had no statistically significant influence.

	und 100 mpe	iet	
	Positive effects	Negative effects	No effect
Spain	8	1	16
The Netherlands	5	1	19
Austria	4	0	21
Greece	4	0	21
Germany	4	2	19
Belgium	3	1	21
Portugal	2	0	23
Italy	2	2	21
France	2	6	17
Finland	0	7	18

Table 6: Country/Sector Euro Effect: Number of Sectors with Positive, Negative and No Impact

8 Conclusions

Empirical literature has reported a modest pro trade effect deriving from the euro introduction in 1999. Analysis has been usually conducted at the aggregate level, with respect to both trade flows (total exports and/or imports flows) and country aggregates (Eurozone as a whole).

To gain better understanding of the main factors influencing the single currency effect on trade flows, it is of some help to use a sectoral analysis. We did it adopting as reference a theoretical framework that, on one side, makes explicit the fact that sector exports are the aggregation outcome of foreign sales of heterogenous firms and, on the other side, highlight the possibility that the single currency may have both enhancing (thanks to lower trade costs) and dampening (due to tighter competition) influences on the exports of a nation. We performed the empirical analysis in a dynamic setting to take account of the persistence phenomena that characterize bilateral trade relations between industrialized countries. Aggregate-sector estimates show that the euro effect was not uniformly distributed among sectors: only in 11 industrial sectors out of 25 there was a positive and significant impact of the euro on export flows. Particularly, most of these sectors are those characterized by imperfect competition, increasing returns to scale and horizontal product differentiation.

These results seem consistent with other findings in the empirical literature and with the prediction of the theory, pointing to a mitigation effect of variety differentiation on toughness of competition. What differs with respect to earlier sectoral studies is the magnitude of the positive euro effect, which is lower and less widespread among industries. We believe that our dynamic specification fitted this phenomenon better.

Yet, aggregate sector results average out country-level behaviours that, on their turn, are affected by different (unobserved) responses of firms, endowed with diverse production costs, to the enhancing and dampening impacts of the euro. Due to this reason, the cancelling out at aggregate level of heterogenous behaviours induces an aggregation bias. So it is not surprising that when moving from sector to sector/country analysis the picture becomes much more variegated, with the emergence of a whole range of winners and lossers among industries in the different nations. However

identification of benefited/hampered sectors is mainly an empirical matter, depending on the predominance in each industry and in each nation of either expanding or contracting exporting firms. Despite the increase of heterogeneity, some salient points could nonetheless be singled out from country-level analysis: 1) the majority of sectors displayed no significant effect of the euro introduction at country level (confirming the aggregate result); 2) although the single-currency pro-trade impact was pretty much diffused across all sectors of member countries, it resulted mainly concentrated in industries where product differentiation matters (in line with the aggregate outcome); 3) small and medium-sized countries plus the European core-economy, Germany, were those where the number of sectors whose exports benefited from the euro was larger than the number of sectors that registered a dampening effect; 4) in couple of large economies and in a smaller one (Italy, France and Finland) the benefits of the trade impact of the euro on sector exports, at this level of analysis, were quite limited or even absent.

Appendix 1

Table A1: Estimates Sector/Country

	Industry description	Aus	stria	Bel	lgio	Finla	andia	Fra	ncia	Geri	nania	Gr	ecia
		Coeff.	t										
01_05	Agriculture, hunting, forestry and fishing	0.13	0.99	-0.08	0.66	-0.38	-2.91	0.16	1.79	-0.17	-1.87	0.09	0.68
10_14	Mining and quarrying	-0.09	0.48	-0.05	0.21	0.01	0.07			-0.13	0.72	-0.09	0.80
15_16	Food products beverages and tobacco	0.07	0.72	0.06	0.94	-0.17	1.91	-0.04	0.96	0.12	2.25	-0.04	0.49
17_19	Textiles, textile products, leather and footwear	-0.04	0.78	0.08	0.25	-0.14	2.14	-0.10	1.56	-0.00	0.04	0.13	1.61
20	Wood and wood and cork products	0.02	0.10	0.04	0.06	0.02	0.12	-0.16	1.07	0.02	0.12	-0.27	0.71
21_22	Pulp, paper, paper products, printing and publishing	0.11	1.28	0.00	0.37	-0.000	0.05	-0.07	1.14	0.08	1.51	0.08	0.70
23_25	Chemicals, rubber, plastics and fuel products	-0.04	0.79	0.20	1.39	-0.08	0.86	-0.11	-1.80	-0.15	-1.90	-0.11	1.02
23	Coke, refined petroleum products and nuclear fuel	0.95	3.79	0.22	1.27	-0.2	0.39	-0.23	1.12	-0.23	0.87	-1.25	1.46
24	Chemical and chemical products	-0.01	0.13	0.11	2.06	-0.07	1.22	-0.05	-1.75	-0.22	0.68	-0.08	0.64
25	Rubber and plastic products	-0.02	0.56	-0.10	-2.18	0.07	1.19	-0.12	-2.75	-0.07	1.47	0.15	1.16
26	Other non metallic mineral products	-0.02	0.23	0.05	1.00	0.12	1.33	-0.05	0.82	-0.05	0.87	-0.24	1.69
27_28	Basic metals and fabricated metals products	0.02	0.31	-0.04	0.74	-0.03	0.33	0.00	0.05	-0.05	0.88	0.27	2.48
27	Basic metals	0.01	1.54			0.07	0.79	0.04	0.78	-0.04	-0.76	0.21	1.99
28	Fabricated metal products except machinery and equipment	0.02	0.38			-0.03	-0.41	-0.02	-0.36	-0.01	0.13	0.09	0.69
29_33	Machinery and equipment	0.08	1.98			-0.07	-1.75	-0.09	2.61	0.03	0.59	0.10	0.96
29	Machinery and equipment nec	0.06	1.21	0.25	3.34	-0.11	-1.86	-0.04	1.05	-0.07	-1.52	0.15	0.96
30_33	Electrical and optical equipment	0.06	1.32	0.18	3.30	-0.14	-3.46	-0.13	-3.16	0.06	1.77	-0.12	-1.28
30	Office accounting and computing machinery	0.50	4.02			-0.19	-1.05	-0.33	-3.00	0.33	2.96	-0.13	-0.44
31	Electrical machinery and apparatus nec	0.05	0.96			-0.31	-4.56	-0.02	0.34	0.00	0.06	0.27	1.85
32	Radio tv and comunnication equipment	0.26	2.23			0.22	1.51	-0.33	3.0	0.22	2.28	-0.37	-1.21
33	Medical precision and optical instruments	0.02	0.32			-0.03	-0.78	0.03	0.64	0.00	0.01	0.37	2.56
34_35	Transport equipment	0.06	0.69			-0.16	-1.47	0.14	1.50	0.04	0.37	0.30	1.43
34	Motor vehicles	-0.02	-0.22			-0.25	-2.69	0.18	2.43	-0.01	-0.14	0.49	3.16
35	Other transport equipment	0.14	0.80			-0.41	-1.11	0.09	0.43	0.01	0.05	-0.43	-1.00
36_37	Manufacturing nec	0.06	0.78			-0.04	-0.40	-0.11	-1.31	0.07	0.99	-0.09	-0.74

Table A1 continued

	Industry description	Ita	ılia	Ola	nda	Porte	ogallo	Spa	gna
		Coeff.	t	Coeff.	t	Coeff.	t	Coeff.	t
01_05	Agriculture, hunting, forestry and fishing	0.06	0.77	-0.21	2.63	0.05	0.39	0.30	2.71
10_14	Mining and quarrying	-0.23	1.37	0.10	0.50			-0.33	2.29
15_16	Food products beverages and tobacco	0.00	0.02	0.10	2.41	0.10	1.26	0.05	1.51
17_19	Textiles, textile products, leather and footwear	-0.15	2.72	0.07	1.59	0.04	0.4	-0.02	0.32
20	Wood and wood and cork products			0.27	2.27			-0.05	0.32
21_22	Pulp, paper, paper products, printing and publishing			0.09	1.68			0.06	0.46
23_25	Chemicals, rubber, plastics and fuel products	0.06	1.01	0.01	0.20	0.17	2.01	0.17	2.68
23	Coke, refined petroleum products and nuclear fuel	-0.12	0.34	0.27	1.33			0.27	1.15
24	Chemical and chemical products	0.08	1.57	0.03	1.10			0.10	1.78
25	Rubber and plastic products	0.02	1.03	0.03	0.66			0.05	1.00
26	Other non metallic mineral products	-0.06	1.10	0.04	0.78	-0.00	0.04	0.02	0.23
27_28	Basic metals and fabricated metals products	0.08	1.61	0.03	0.67	0.28	2.68	0.08	1.51
27	Basic metals	0.10	1.75	0.08	1.75			0.08	1.16
28	Fabricated metal products except machinery and equipment	0.05	1.0	-0.09	-1.63			0.60	0.71
29_33	Machinery and equipment	0.02	0.40	0.13	3.3	0.03	0.38	0.14	3.02
29	Machinery and equipment nec	0.00	0.03	-0.00	0.19			0.06	0.84
30_33	Electrical and optical equipment	-0.02	0.43	0.13	3.90	-0.02	-0.25	0.14	2.72
30	Office accounting and computing machinery	-0.11	-0.67	-	-	-	-	0.03	1.35
31	Electrical machinery and apparatus nec	-	-	-	-	-	-	0.11	1.37
32	Radio tv and comunnication equipment	_	_	-	_	-	-	0.43	3.4
33	Medical precision and optical instruments	0.01	0.15	-	-	-	-	0.17	1.80
34_35	Transport equipment	0.22	2.32	-0.03	-0.38	-	-	0.25	1.65
34	Motor vehicles	0.08	1.94	-	-	-	-	0.15	1.89
35	Other transport equipment	0.21	1.93	-	-	-	-	0.28	1.40
36_37	Manufacturing nec	-0.12	2.06	_	_	_	_	0.05	0.67

Appendix 2

Sectoral estimates

Sector 01_05						
Group variable Time variable Number of inst F(56, 285) Prob > F	: time truments = 261 = 5501.53			Number	of obs = of groups = group: min = avg = max =	3659 285 1 12.84 15
lexpK01_05	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
lexpK01_05 L1. dueurol IReR dueu vol1 ldist SumVA01_05 Alpha _i Beta _j Tau	.5563564 0186244 0427621 .253976 2533348 7025445 1293157 yes yes yes	.0445842 .0502452 .0223715 .0900563 .1885855 .0890976 .2049538	12.48 -0.37 -1.91 2.82 -1.34 -7.89 -0.63	0.000 0.711 0.057 0.005 0.180 0.000 0.529	.4686004 1175233 0867965 .0767162 624532 8779173 5327309	.6441124 .0802744 .0012722 .4312359 .1178623 5271717 .2740996
	test for AR(1 test for AR(2 overid. rest) in first	differenc	es: z =	-1.86 Pr > z	z = 0.063
Sector 10_14						
Group variable Time variable Number of inst F(52, 219) Prob > F	: time cruments = 194				of obs = of groups = group: min = avg = max =	2780 219 1 12.69 15
Group variable Time variable Number of inst F(52, 219)	: time cruments = 194 = 1914.61 = 0.000	Robust Std. Err.	 t	Number	of groups = group: min = avg =	219 1 12.69 15
Group variable Time variable Number of inst F(52, 219) Prob > F lexpK10_14 lexpK10_14 L1. dueuro1 lReR dueu vol1 ldist SumVA10_14	: time cruments = 194 = 1914.61 = 0.000	Std. Err. .0554133 .0896263 .0396591 .1008088	9.12 -1.72 0.21 -2.25	Number Obs per P> t 0.000 0.088 0.833 0.025	of groups = group: min = avg = max = [95% Conf. .396038 3304031 0697981 4257005	219 1 12.69 15 Interval]
Group variable Time variable Number of inst F(52, 219) Prob > F 	: time ruments = 194 = 1914.61 = 0.000 Coef. .5052496 1537626 .0083641 2270209 0222257 -1.074637 .0253639 yes yes yes yes test for AR(1 test for AR(2	<pre>Std. Err0554133 .0896263 .0396591 .1008088 .1767489 .1632935 .1048421) in first) in first</pre>	9.12 -1.72 0.21 -2.25 -0.13 -6.58 0.24 difference	Number Obs per P> t 0.000 0.088 0.833 0.025 0.900 0.000 0.809 ::es: z = :es: z =	of groups = group: min = avg = max = [95% Conf. .396038 3304031 0697981 4257005 3705722 -1.396465 1812648 1812648	219 1 12.69 15 Interval] .6144612 .0228779 .0865264 0283414 .3261208 7528095 .2319925 2319925 z = 0.000 z = 0.086
Group variable Time variable Number of inst F(52, 219) Prob > F 	: time cruments = 194 = 1914.61 = 0.000 Coef. .5052496 1537626 .0083641 2270209 0222257 -1.074637 .0253639 yes yes yes yes test for AR(1 test for AR(2	<pre>Std. Err0554133 .0896263 .0396591 .1008088 .1767489 .1632935 .1048421) in first) in first</pre>	9.12 -1.72 0.21 -2.25 -0.13 -6.58 0.24 difference	Number Obs per P> t 0.000 0.088 0.833 0.025 0.900 0.000 0.809 ces: z = ces: z = ces: z =	of groups = group: min = avg = max = [95% Conf. .396038 3304031 0697981 4257005 3705722 -1.396465 1812648 1812648	219 1 12.69 15 Interval] .6144612 .0228779 .0865264 0283414 .3261208 7528095 .2319925 2319925 z = 0.000 z = 0.086
Group variable Time variable Number of inst F(52, 219) Prob > F 	<pre>: time cruments = 194 = 1914.61 = 0.000 Coef. .5052496 1537626 .0083641 2270209 0222257 -1.074637 .0253639 yes yes yes yes yes test for AR(1 test for AR(2 test for AR(1) test for AR(2) test for AR(2) test</pre>	Std. Err. .0554133 .0896263 .0396591 .1008088 .1767489 .1632935 .1048421) in first) in first rictions: c	9.12 -1.72 0.21 -2.25 -0.13 -6.58 0.24 difference difference hi2(142)	Number Obs per P> t 0.000 0.088 0.833 0.025 0.900 0.000 0.809 ces: z = ces: z = ces: z =	of groups = group: min = avg = max = [95% Conf. .396038 3304031 0697981 4257005 3705722 -1.396465 1812648 1812648	219 1 12.69 15 Interval] .6144612 .0228779 .0865264 0283414 .3261208 7528095 .2319925 2319925 z = 0.000 z = 0.086

Group variable	e: cod			Number o	of obs	=		3424
Time variable				Number o				28
Number of inst	truments = 2	61		Obs per				!
F(56, 286)	= 33531.28					avg =		11.97
Prob > F	= 0.000	1				max =		15
 ì	 I	Robust						
lexpK15_16	Coef.		t	P> t	[95%	Conf.	Inte	erval
lexpK15 16	+ I							
L1.	.6628005	.0466757	14.20	0.000	.570	9291	. 75	546718
dueuro1					009			917354
lReR	0184017			0.069		2194		014161
dueu	.1107465	.0436397	2.54	0.012	.024	8508	.19	966422
voll	043243	.0903665	-0.48	0.633	221	1107	.13	34624
ldist	4479891	.0694051	-6.45	0.000	584	5987	31	L13795
SumVA15_16	.0592027	.0832093	0.71	0.477	104	5775	.2	222983
Alphai	yes							
Betaj	yes							
Tau	yes							
Arellano-Bond Arellano-Bond								
Hansen test of	E overid. re	strictions:	chi2(205)	= 249.99	9 Prob) > chi	.2 =	0.01
Long term coef	fficient tes	+						
Hp0 _b[dueuro			= 0					
		10112110_10])	0					
F	F(1, 286) =	2.95						
	Prob > F =	0.000	7					
	Prob > F =	0.086	7					
	Prob > F =	0.086	/					
	Prob > F =	0.086	7					
	Prob > F =	0.086	7					
	Prop > F =	0.086	7					
Sector 17_19	Prop > F =	0.000	/					
				Number c	of obs			3008
Group variable	e: cod		/	Number c Number c				
Sector 17_19 Group variable Time variable Number of inst	e: cod : time		/	Number o	of grou	ips =		261
Group variable Time variable Number of inst	e: cod : time cruments = 2				of grou	min =	:	261 1
Group variable Time variable Number of inst F(55, 261)	e: cod : time cruments = 2 = 39528.35			Number o	of grou	ips =	:	3008 261 11.52 15
Group variable Time variable	e: cod : time cruments = 2 = 39528.35	60		Number o	of grou	min = avg =	:	261 1 11.52
Group variable Fime variable Number of inst F(55, 261) Prob > F	e: cod : time cruments = 2 = 39528.35 = 0.000	60 Robust	/ +	Number o Obs per	of grou group:	min = avg = max =	: : : 	261 1 11.52 15
Group variable Fime variable Number of inst F(55, 261)	e: cod : time cruments = 2 = 39528.35 = 0.000	60 Robust	/ t	Number o Obs per	of grou	min = avg = max =	: : : 	261 1 11.52 15
Group variable Fime variable Number of inst F(55, 261) Prob > F lexpK17_19	e: cod : time cruments = 2 = 39528.35 = 0.000	60 Robust	/ t	Number o Obs per	of grou group:	min = avg = max =	: : : 	261 11.52 19
Group variable Fime variable Number of inst F(55, 261) Prob > F lexpK17_19 lexpK17_19	e: cod : time cruments = 2 = 39528.35 = 0.000 = 0.000	60 Robust Std. Err.	t	Number o Obs per P> t	of group: group: [95%	ps = min = avg = max = Conf.	Inte	26 11.5 1!
Group variable Fime variable Number of inst F(55, 261) Prob > F lexpK17_19 lexpK17_19 L1.	e: cod : time cruments = 2 = 39528.35 = 0.000 	60 Robust Std. Err.	t 15.93	Number o Obs per P> t 0.000	of grou group: [95% 6	min = avg = max = Conf.	Inte	26: 11.5: 1! erval
Group variable Fime variable Number of inst F(55, 261) Prob > F lexpK17_19 lexpK17_19 L1. dueurol	e: cod : time cruments = 2 = 39528.35 = 0.000 Coef. 0466712	60 Robust Std. Err. .045656 .0286994	t 15.93 -1.63	Number of Obs per P> t 0.000 0.105	of group: group: [95% 	min = avg = max = Conf. 3757 1831	Inte	26: 11.5: 1! erval 17372: 09840'
Group variable Fime variable Number of inst F(55, 261) Prob > F lexpK17_19 lexpK17_19 L1. dueuro1 lReR	e: cod : time cruments = 2 = 39528.35 = 0.000 Coef. .7274711 0466712 0162103	Robust Std. Err. .045656 .0286994 .0144563	t 15.93 -1.63 -1.12	Number of Obs per P> t 0.000 0.105 0.263	of group: group: [95% .6 103 044	min = avg = max = Conf. 3757 1831 6761	Inte .81 .00	26: 11.5: 1! erval 17372: 09840 12255
Group variable Fime variable Number of inst F(55, 261) Prob > F lexpK17_19 lexpK17_19 L1. dueuro1 lReR dueu	e: cod : time cruments = 2 = 39528.35 = 0.000 Coef. 0466712 0162103 .0010154	Robust Std. Err. .045656 .0286994 .0144563 .0301975	t 15.93 -1.63 -1.12 0.03	Number of Obs per P> t 0.000 0.105 0.263 0.973	of group: group: [95% 	ps = min = avg = max = 3757 1831 .6761 4464	Inte .81 .00 .01	26: 11.52 11.52 200 200 200 200 200 200 200 200 200 2
Group variable Time variable Number of inst F(55, 261) Prob > F lexpK17_19 L1. dueuro1 lReR dueu vol1	e: cod : time truments = 2 = 39528.35 = 0.000 Coef. 0466712 0162103 .0010154 0843574	Robust Std. Err. .045656 .0286994 .0144563 .0301975 .0744554	t 15.93 -1.63 -1.12 0.03 -1.13	Number of Obs per P> t 0.000 0.105 0.263 0.973 0.258	of group: group: [95% .6 103 044 058 230	ps = min = avg = max = Conf. 3757 1831 6761 4464 9672	Inte .81 .00 .01 .06	26: 11.52 11.52 21.52 21.52 21.52 20.840 12255 50477 52252
Group variable Time variable Number of inst F(55, 261) Prob > F lexpK17_19 lexpK17_19 L1. dueuro1 lReR dueu vol1 ldist	<pre>>: cod : time cruments = 2 = 39528.35 = 0.000 </pre>	60 Robust Std. Err. .045656 .0286994 .0144563 .0301975 .0744554 .0665332	t 15.93 -1.63 -1.12 0.03 -1.13 -5.34	Number of Obs per P> t 0.000 0.105 0.263 0.973 0.258 0.000	of group: group: [95% .6 103 044 058 230 486	ps = min = avg = max = Conf. 3757 1831 6761 4464 9672 6049	Inte .81 .00 .01 .06 .06	265 11.52 19 173722 09840 122555 504772 522522 245846
Group variable Fime variable Number of inst F(55, 261) Prob > F lexpK17_19 lexpK17_19 L1. dueuro1 lReR dueu vol1 ldist SumVA17_19	e: cod : time cruments = 2 = 39528.35 = 0.000 Coef. 0466712 0162103 .0010154 0843574 3555947 .229142	60 Robust Std. Err. .045656 .0286994 .0144563 .0301975 .0744554 .0665332	t 15.93 -1.63 -1.12 0.03 -1.13 -5.34	Number of Obs per P> t 0.000 0.105 0.263 0.973 0.258 0.000	of group: group: [95% .6 103 044 058 230 486	ps = min = avg = max = Conf. 3757 1831 6761 4464 9672 6049	Inte .81 .00 .01 .06 .06	265 11.52 19 173722 09840 122555 504772 522522 245846
Group variable Time variable Number of inst F(55, 261) Prob > F lexpK17_19 lexpK17_19 L1. dueuro1 lReR dueu vol1 ldist SumVA17_19 Alpha _i	<pre>>: cod : time cruments = 2 = 39528.35 = 0.000 </pre>	60 Robust Std. Err. .045656 .0286994 .0144563 .0301975 .0744554 .0665332	t 15.93 -1.63 -1.12 0.03 -1.13 -5.34	Number of Obs per P> t 0.000 0.105 0.263 0.973 0.258 0.000	of group: group: [95% .6 103 044 058 230 486	ps = min = avg = max = Conf. 3757 1831 6761 4464 9672 6049	Inte .81 .00 .01 .06 .06	261 11.52 19 173722 098407 122555 504772 522524 245846
Group variable Time variable Number of inst F(55, 261) Prob > F lexpK17_19 lexpK17_19 L1. dueuro1 lReR dueu vol1 ldist SumVA17_19 Alpha _i Beta _j	e: cod : time cruments = 2 = 39528.35 = 0.000 	60 Robust Std. Err. .045656 .0286994 .0144563 .0301975 .0744554 .0665332	t 15.93 -1.63 -1.12 0.03 -1.13 -5.34	Number of Obs per P> t 0.000 0.105 0.263 0.973 0.258 0.000	of group: group: [95% .6 103 044 058 230 486	ps = min = avg = max = Conf. 3757 1831 6761 4464 9672 6049	Inte .81 .00 .01 .06 .06	261 11.52 15 2rval] 173722 098407 122555 504772
Group variable Fime variable Number of inst F(55, 261) Prob > F lexpK17_19 lexpK17_19 L1. dueuro1 lReR dueu vol1 ldist SumVA17_19 Alpha _i	<pre>>: cod : time cruments = 2 = 39528.35 = 0.000 </pre>	60 Robust Std. Err. .045656 .0286994 .0144563 .0301975 .0744554 .0665332	t 15.93 -1.63 -1.12 0.03 -1.13 -5.34	Number of Obs per P> t 0.000 0.105 0.263 0.973 0.258 0.000	of group: group: [95% .6 103 044 058 230 486	ps = min = avg = max = Conf. 3757 1831 6761 4464 9672 6049	Inte .81 .00 .01 .06 .06	265 11.52 19 173722 09840 122555 504772 522522 245846
Group variable Time variable Number of inst F(55, 261) Prob > F lexpK17_19 lexpK17_19 L1. dueurol lReR dueu vol1 ldist SumVA17_19 Alpha _i Beta _j Tau	e: cod : time cruments = 2 = 39528.35 = 0.000 Coef. . 7274711 0466712 0162103 .0010154 0843574 3555947 .229142 yes yes yes	Robust Std. Err. .045656 .0286994 .0144563 .0301975 .0744554 .0665332 .0774292	t 15.93 -1.63 -1.12 0.03 -1.13 -5.34 2.96	Number of Obs per P> t 0.000 0.105 0.263 0.973 0.258 0.000 0.003	of group: group: [95% .6 103 044 058 230 486 .076	ps = min = avg = max = Conf. 3757 1831 6761 4464 9672 6049 6765	Inte .81 .00 .01 .06 .06 .22 .38	261 11.52 21.52 22.52 2098407 122555 504772 522524 245846 316075
Group variable Time variable Number of inst F(55, 261) Prob > F lexpK17_19 lexpK17_19 L1. dueurol lReR dueu vol1 ldist SumVA17_19 Alphai Betaj Tau Arellano-Bond	e: cod : time truments = 2 = 39528.35 = 0.000 Coef. .7274711 0466712 0162103 .0010154 0843574 3555947 .229142 yes yes yes yes	Robust Std. Err. .045656 .0286994 .0144563 .0301975 .0744554 .0665332 .0774292	t 15.93 -1.63 -1.12 0.03 -1.13 -5.34 2.96 differenc	Number of Obs per P> t 0.000 0.105 0.263 0.973 0.258 0.000 0.003	of group: group: [95% 	ps = min = avg = max = 3757 1831 6761 4464 9672 6049 6765 Pr >	Inte .81 .00 .01 .06 .06 22 .38	261 11.52 21.73722 098407 122555 504772 522524 245846 316075
Group variable Fime variable Number of inst F(55, 261) Prob > F lexpK17_19 L1. dueurol lReR dueu vol1 ldist SumVA17_19 Alphai Betaj Tau Arellano-Bond Arellano-Bond	<pre>>: cod : time cruments = 2 = 39528.35 = 0.000 </pre>	60 Robust Std. Err. .045656 .0286994 .0144563 .0301975 .0744554 .0665332 .0774292	t 15.93 -1.63 -1.12 0.03 -1.13 -5.34 2.96 difference difference	Number of Obs per P> t 0.000 0.105 0.263 0.973 0.258 0.000 0.003	of group: group: [95% 103 044 058 230 486 .076 076	ps = min = avg = max = 3757 1831 6761 4464 9672 6049 6765 Pr > Pr >	Inte .81 .00 .01 .00 .01 .00 .00 .00 .00 .00 .0	263 11.52 19 20 20 173722 20 20 20 20 20 20 20 20 20
Group variable Time variable Number of inst F(55, 261) Prob > F lexpK17_19 lexpK17_19 L1. dueuro1 lReR dueu vol1 ldist SumVA17_19 Alphai Betaj Tau Arellano-Bond Hansen test of	e: cod : time cruments = 2 = 39528.35 = 0.000 	60 Robust Std. Err. .045656 .0286994 .0144563 .0301975 .0744554 .0665332 .0774292	t 15.93 -1.63 -1.12 0.03 -1.13 -5.34 2.96 difference difference	Number of Obs per P> t 0.000 0.105 0.263 0.973 0.258 0.000 0.003	of group: group: [95% 103 044 058 230 486 .076 076	ps = min = avg = max = 3757 1831 6761 4464 9672 6049 6765 Pr > Pr >	Inte .81 .00 .01 .00 .01 .00 .00 .00 .00 .00 .0	261 11.52 19 27 27 27 27 27 27 27 27 27 27 27 27 27
Group variable Fime variable Number of inst F(55, 261) Prob > F lexpK17_19 lexpK17_19 lexpK17_19 L1. dueuro1 lReR dueu vol1 ldist SumVA17_19 Alphai Betaj Tau Arellano-Bond Arellano-Bond Hansen test of Long term coef	e: cod : time cruments = 2 = 39528.35 = 0.000 Coef. .7274711 0466712 .0162103 .0010154 0843574 .3555947 .229142 yes yes yes yes test for AR test for AR test for AR test for AR test for AR	60 Robust Std. Err. .045656 .0286994 .0144563 .0301975 .0744554 .0665332 .0774292	t 15.93 -1.63 -1.12 0.03 -1.13 -5.34 2.96 differend differend chi2(205)	Number of Obs per P> t 0.000 0.105 0.263 0.973 0.258 0.000 0.003	of group: group: [95% 103 044 058 230 486 .076 076	ps = min = avg = max = 3757 1831 6761 4464 9672 6049 6765 Pr > Pr >	Inte .81 .00 .01 .00 .01 .00 .00 .00 .00 .00 .0	263 11.52 19 20 20 173722 20 20 20 20 20 20 20 20 20
Group variable Fime variable Number of inst F(55, 261) Prob > F lexpK17_19 lexpK17_19 L1. dueuro1 lReR dueu vol1 ldist SumVA17_19 Alphai Betaj Tau Arellano-Bond Hansen test of	e: cod : time cruments = 2 = 39528.35 = 0.000 Coef. .7274711 0466712 .0162103 .0010154 0843574 .3555947 .229142 yes yes yes yes test for AR test for AR test for AR test for AR test for AR	60 Robust Std. Err. .045656 .0286994 .0144563 .0301975 .0744554 .0665332 .0774292	t 15.93 -1.63 -1.12 0.03 -1.13 -5.34 2.96 differend differend chi2(205)	Number of Obs per P> t 0.000 0.105 0.263 0.973 0.258 0.000 0.003	of group: group: [95% 103 044 058 230 486 .076 076	ps = min = avg = max = 3757 1831 6761 4464 9672 6049 6765 Pr > Pr >	Inte .81 .00 .01 .00 .01 .00 .00 .00 .00 .00 .0	26: 11.5: 11.5: 21.7372: 29.840 12.255: 50.477: 50.2522 24.584; 31.607! 0.000 0.69

Sector 20						
Group variable Time variable Number of ins F(47, 142) Prob > F	: time truments = 144				of obs of groups group: min avg max	= 1 = 9.70
lexpK20	 Coef.	Robust Std. Err.		P> t	[95% Con	f. Interval]
	+					
lexpK20						
L1.	.452	.0809919	5.58	0.000	.2918943	.6121056
dueurol	.0205199	.0758299	0.27	0.787	1293816	
lReR	0869558	.0345622	-2.52	0.013	1552787	
dueu	1948627	.1321902	-1.47	0.143	4561777	
voll	4357962	.3300796	-1.32	0.189	-1.088301	
ldist	6908465	.1652221	-4.18	0.000	-1.017459	
SumVA20	.6419977	.3097951	2.07	0.040	.0295913	1.254404
Alphai	yes					
Beta _j Tau	yes					
Iau	yes					
Arellano-Bond Arellano-Bond	test for AR(1 test for AR(2					> z = 0.000 > z = 0.105
Hansen test of	f overid. rest	rictions: c	hi2(97)	= 111.92	2 Prob > cl	hi2 = 0.143
Sector 21_22 Group variable				Number o		= 1432
Time variable					of groups	
	truments = 145)		Obs per	group: min	
F(48, 144) Prob > F	= 26.61 = 0.000				avg max	
		Robust				
1	Case f		-			£ Tabaaaa 11

lexpK21_22	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
lexpK21_22 L1. dueurol lReR dueu vol1 ldist SumVA21_22 Alpha _i Beta _j Tau	. 6486452 . 0723922 - 0208856 - 0509999 - 2225252 - 3425284 . 1400326 yes yes yes	.0503153 .0346969 .0145414 .0537639 .1296355 .0682136 .0563249	12.89 2.09 -1.44 -0.95 -1.72 -5.02 2.49	$\begin{array}{c} 0.000\\ 0.039\\ 0.153\\ 0.344\\ 0.088\\ 0.000\\ 0.014 \end{array}$.5491933 .0038113 0496278 1572682 4787595 4773577 .0287022	.7480972 .1409731 .0078565 .0552684 .033709 2076992 .251363

Arellano-Bond test for AR(1) in first differences: z = -4.27 Pr > z = 0.000Arellano-Bond test for AR(2) in first differences: z = -1.18 Pr > z = 0.237Hansen test of overid. restrictions: chi2(97) = 116.11 Prob > chi2 = 0.090

Long term coefficient test

HP0 _b[dueuro1]/(1-_b[1.lexpK21_22]) = 0

F(1, 144) = 4.40 Prob > F = 0.0376

e : time struments = 261	L		Number	of groups =	3009 263 1 11.44 15
 Coef.	Robust Std. Err.		P> t	[95% Conf.	Interval]
. 5550064 .0314894 0038479 0564633 0522849 522988 .0003604 yes yes yes	.0483166 .0333814 .0114522 .0439188 .1016521 .074686 .0563928	11.49 0.94 -0.34 -1.29 -0.51 -7.00 0.01	0.000 0.346 0.737 0.200 0.607 0.000 0.995	.4598698 0342394 0263976 1429404 2524403 6700467 1106784	.6501429 .0972182 .0187018 .0300138 .1478706 3759294 .1113992
test for AR(2	2) in first	differenc	ces: z =	1.87 Pr > 2	z = 0.062
: : time	,		Number	of obs = of groups =	
= 0.000			Obs per	group: min = avg = max =	1879 185 1 10.16 15
	Robust Std. Err.		Obs per P> t	avg =	185 1 10.16 15
	= 24292.51 = 0.000 Coef. .5550064 .0314894 0038479 0564633 0522849 522988 .0003604 yes yes yes A test for AR(1 A test for AR(2	<pre>e : time struments = 261 = 24292.51 = 0.000 Coef. Std. Err. .5550064 .0483166 .0314894 .033814 0038479 .0114522 0564633 .0439188 0522849 .1016521 522988 .074686 .0003604 .0563928 yes yes yes yes yes yes test for AR(1) in first itest for AR(2) in first itest for AR(2) in first of overid. restrictions: c .e: cod e : time</pre>	<pre>e : time struments = 261 = 24292.51 = 0.000 Robust Coef. Std. Err. t .5550064 .0483166 11.49 .0314894 .033814 0.94 0038479 .0114522 -0.34 0564633 .0439188 -1.29 0522849 .1016521 -0.51 522988 .074686 -7.00 .0003604 .0563928 0.01 yes yes yes yes yes of overid. restrictions: chi2(205) .e: cod e : time</pre>	<pre>A : time Number Struments = 261</pre>	<pre>k : time Number of groups = Obs per group: min = 24292.51</pre>

Arellano-Bond test for AR(2) in first differences: z = 0.28 Pr > z = 0.781

Hansen test of overid. restrictions: chi2(97) = 119.88 Prob > chi2 = 0.058
(Robust, but can be weakened by many instruments.)

Sector 24						
Group variable Time variable Number of inst F(50, 179) Prob > F	: time truments = 176			Number	of obs of groups group: min avg max	= 1 = 10.13
lexpK24	Coef.	Robust Std. Err.	t	P> t	[95% Conf	. Interval]
lexpK24 L1. dueurol lReR dueu vol1 ldist SumVA24 Alpha _i Beta _j Tau	.8222065 .0136017 0096682 0430795 0829933 1585253 .0371159 yes yes yes	.0580066 .0245932 .0079704 .034977 .0714679 .0747124 .029261	14.17 0.55 -1.21 -1.23 -1.16 -2.12 1.27	0.000 0.581 0.227 0.220 0.247 0.035 0.206	.7077417 0349282 0253962 1120999 2240213 3059556 0206249	.9366712 .0621317 .0060598 .0259408 .0580347 011095 .0948568
Arellano-Bond	test for AR(1 test for AR(2 f overid. rest) in first	differenc	es: z =	0.94 Pr >	z = 0.000 z = 0.349 i2 = 0.053
Sector 25						
Group variable Time variable Number of inst F(54, 231) Prob > F	: time truments = 214				of obs of groups group: min avg max	= 1 = 10.16
lexpK25	 Coef.	Robust Std. Err.		P> t	[95% Conf	. Interval]
lexpK25 L1. dueurol lReR dueu vol1 ldist SumVA25 Alpha _i Beta _j Tau	0111434 0245976 .0245976 .0279768 1280158 3263448 .142192 yes yes yes yes	.0595396 .0235161 .012225 .0339889 .0899431 .0765496 .0580754	12.47-0.47-2.010.82-1.42-4.262.45	0.000 0.636 0.045 0.411 0.156 0.000 0.015	.6249858 0574768 0486843 038991 3052294 4771695 .0277668	.0491978 1755202
	test for AR(1 test for AR(2) in first	differenc	es: z =	-0.53 Pr >	z = 0.599

Sector 26						
Group variable Time variable Number of inst F(56, 263) Prob > F	: time truments = 261	L		Number o	of obs = of groups = group: min = avg = max =	1 11.61
lexpK26	 Coef.	Robust Std. Err.		P> t	[95% Conf.	Interval]
lexpK26 L1. dueurol lReR dueu voll ldist SumVA26 duexpaut Alpha _i Beta _j Tau Arellano-Bond Arellano-Bond Hansen test or	<pre>028112210824782651155507195 .2836396 6.169317 yes yes yes test for AR(1 test for AR(2</pre>	.0961127 .0868433 .0599251 1.317743 1) in first 2) in first	differenc differenc	0.521 0.053 0.027 0.006 0.000 0.000 0.000	-0.23 Pr >	3361983 .4016337 8.763986 z = 0.000 z = 0.817
Sector 27_28 Group variable Time variable Number of ins F(56, 274) Prob > F 	: time truments = 261 = 31947.56			Number o	of obs = of groups = group: min = avg = max =	274 1 11.20
1		Robust				

lexpK27_28	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
lexpK27_28						
 L1.	.6156951	.0346482	17.77	0.000	.5474845	.6839057
dueuro1	.1006812	.0261019	3.86	0.000	.0492954	.152067
lReR	0303704	.0121382	-2.50	0.013	0542665	0064744
dueu	0474396	.0322355	-1.47	0.142	1109004	.0160212
voll	1294368	.0749084	-1.73	0.085	276906	.0180323
ldist	480879	.0623193	-7.72	0.000	6035644	3581935
SumVA27_28	.2355991	.0974429	2.42	0.016	.0437671	.427431
Alphai	yes					
Betaj	yes					
Tau	yes					

Arellano-Bond test for	AR(1) in first difference	es: z = -5.52 Pr > z = 0.000
Arellano-Bond test for	AR(2) in first difference	zes: z = -0.41 Pr > $z = 0.681$
The see that of monid		= 231.04 Prob > chi2 = 0.102
Hallsen test of overid.	restrictions: chiz(205)	= 231.04 Prod > CIII2 = 0.102

Long term coefficient test HO=0 _b[dueuro1]/(1-_b[1.lexpK27_28]) = 0

> F(1, 274) = 16.21 Prob > F = 0.0001

Group variable	e: cod			Number (
Time variable					of groups =	
Number of ins F(52, 209)	truments = 182			Obs per	group: min =	
P(52, 209) Prob > F	= 0.000				avg = max =	
		Robust				
lexpK27	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval
lexpK27	+ 					
L1.	.68368	.0510577	13.39	0.000	.583026	.784334
dueurol	.125477	.0380887	3.29	0.001	.0503897	.200564
lReR	0236101	.0194131	-1.22	0.225	0618806	.014660
dueu		.044245	-1.66		1607794	.013668
voll ldist		.1438297 .085183	-0.82 -4.93		4018535 5881598	.165232
SumVA27	.0375431		0.29		2176859	.292772
Alphai	yes					
Betaj	yes					
Tau	yes					
Arellano-Bond	test for AR(1) in first	differenc	es: z =	-4.18 Pr >	z = 0.00
Arellano-Bond	test for AR(2) in first	differenc		0.70 Pr >	z = 0.48
Jangen tegt o	f overid. rest	rictions: c	 hi2(130)			2 = 0.05
iansen test o.	L OVCIIU. ICSC	ricerons. e	1112(190)	- 150.0		2 - 0.05
ong term coe	fficient test					
Joing Cerim Coe.						
-	urol]/(1b[l.	lexpK27) =	0			
-		_	0			
•	urol]/(1b[1. F(1, 209) = Prob > F =	_				
-	F(1, 209) =	14.17				
-	F(1, 209) =	14.17				
-	F(1, 209) =	14.17				
HO=0 _b[duen	F(1, 209) =	14.17				
HO=0 _b[duen	F(1, 209) = Prob > F =	14.17				
HO=0 _b[duen Sector 28 Group variable	F(1, 209) = Prob > F = e: cod	14.17		Number		
HO=0 _b[duen Sector 28 Group variable	<pre>F(1, 209) = Prob > F = e: cod : time</pre>	14.17 0.0002		Number (of groups =	18
HO=0 _b[duen Sector 28 Group variable Jumber of inst	<pre>F(1, 209) = Prob > F = e: cod : time truments = 181</pre>	14.17 0.0002		Number (of groups = group: min =	18
HO=0 _b[duen Sector 28 Group variable Number of inst F(51, 188)	<pre>F(1, 209) = Prob > F = e: cod : time truments = 181 = 22.50</pre>	14.17 0.0002		Number (of groups = group: min = avg =	18
HO=0 _b[duen Sector 28 Group variable Time variable Tumber of inst F(51, 188)	<pre>F(1, 209) = Prob > F = e: cod : time truments = 181 = 22.50</pre>	14.17 0.0002		Number (of groups = group: min =	18
Gector 28 Group variable Number of inst F(51, 188) Prob > F	<pre>F(1, 209) = Prob > F = e: cod : time truments = 181 = 22.50 = 0.000</pre>	14.17 0.0002		Number (Obs per	of groups = group: min = avg = max =	18 9.6 1
HO=0 _b[duen Sector 28 Group variable Number of inst F(51, 188)	<pre>F(1, 209) = Prob > F = e: cod : time truments = 181 = 22.50</pre>	14.17 0.0002		Number (of groups = group: min = avg =	18 9.6
Gector 28 Group variable Number of inst F(51, 188) Prob > F	<pre>F(1, 209) = Prob > F = e: cod : time truments = 181 = 22.50 = 0.000</pre>	14.17 0.0002		Number (Obs per	of groups = group: min = avg = max =	18 9.6 1
HO=0 _b[duen Sector 28 Group variable Number of inst F(51, 188) Prob > F lexpK28	<pre>F(1, 209) = Prob > F = e: cod : time truments = 181 = 22.50 = 0.000</pre>	14.17 0.0002		Number (Obs per	of groups = group: min = avg = max =	18 9.6 1 Interval
Gector 28 Group variable Time variable Number of inst F(51, 188) Prob > F lexpK28 lexpK28 L1. dueurol	<pre>F(1, 209) = Prob > F = e: cod : time truments = 181 = 22.50 = 0.000 Coef.</pre>	14.17 0.0002		Number 0 Obs per P> t 0.000 0.891	of groups = group: min = avg = max = [95% Conf. .5748299 0594521	18 9.6 1 Interval .736911
Gector 28 Group variable Jumber of inst F(51, 188) Prob > F lexpK28 Ll. dueurol IRER	<pre>F(1, 209) = Prob > F = e: cod : time truments = 181 = 22.50 = 0.000</pre>	14.17 0.0002 	t 15.96 0.14 -1.79	Number 0 Obs per P> t 0.000 0.891 0.076	of groups = group: min = avg = max = [95% Conf. .5748299 0594521 0611508	18 9.6 1 Interval .736911 .068350 .003025
Gector 28 Gector 28 Group variable Jumber of inst F(51, 188) Prob > F lexpK28 lexpK28 L1. dueurol lReR dueu	<pre>F(1, 209) = Prob > F = e: cod : time truments = 181 = 22.50 = 0.000</pre>	14.17 0.0002 Robust Std. Err. .0410819 .0323935 .0162664 .0438173	t 15.96 0.14 -1.79 -1.70	Number 0 Obs per P> t 0.000 0.891 0.076 0.091	of groups = group: min = avg = max = [95% Conf. .5748299 0594521 0611508 1609458	18 9.6 1 Interval .736911 .068350 .003025 .011927
Gector 28 Gector 28 Group variable Time variable Vumber of inst F(51, 188) Prob > F lexpK28 L1. dueurol IReR dueu vol1	<pre>F(1, 209) = Prob > F = e: cod : time truments = 181 = 22.50 = 0.000</pre>	14.17 0.0002 Robust Std. Err. .0410819 .0323935 .0162664 .0438173 .0897374	t 15.96 0.14 -1.79 -1.70 -1.44	Number 0 Obs per P> t 0.000 0.891 0.076 0.091 0.153	of groups = group: min = avg = max = [95% Conf. .5748299 0594521 0611508 1609458 3059142	18 9.6 1
Bector 28 Group variable From variable Sector 28 Group variable Number of inst F(51, 188) Prob > F lexpK28 L1. dueurol IReR dueu voll ldist	<pre>F(1, 209) = Prob > F = e: cod : time truments = 181 = 22.50 = 0.000 Coef. .6558707 .0044494 0290627 .0745092 .1288926 .5201272</pre>	14.17 0.0002 Robust Std. Err. .0410819 .0323935 .0162664 .0438173 .0897374 .0700999	t 15.96 0.14 -1.79 -1.70 -1.44 -7.42	Number 0 Obs per P> t 0.000 0.891 0.076 0.091 0.153 0.000	of groups = group: min = avg = max = [95% Conf. .5748299 0594521 0611508 1609458 3059142 6584106	18 9.6 1 .736911 .068350 .003025 .011927 .048128 381843
HO=0 _b[duen Sector 28 Group variable Number of inst F(51, 188) Prob > F lexpK28 L1. dueurol lReR dueu vol1	<pre>F(1, 209) = Prob > F = e: cod : time truments = 181 = 22.50 = 0.000</pre>	14.17 0.0002 Robust Std. Err. .0410819 .0323935 .0162664 .0438173 .0897374	t 15.96 0.14 -1.79 -1.70 -1.44	Number 0 Obs per P> t 0.000 0.891 0.076 0.091 0.153	of groups = group: min = avg = max = [95% Conf. .5748299 0594521 0611508 1609458 3059142	18 9.6 1 .736911 .068350 .003025 .011927 .048128 381843
Sector 28 Group variable Fime variable Number of inst F(51, 188) Prob > F lexpK28 L1. dueurol lReR dueu voll ldist SumVA28	<pre>F(1, 209) = Prob > F = e: cod : time truments = 181 = 22.50 = 0.000 Coef. .6558707 .0044494 0290627 0745092 1288926 5201272 .2630043</pre>	14.17 0.0002 Robust Std. Err. .0410819 .0323935 .0162664 .0438173 .0897374 .0700999	t 15.96 0.14 -1.79 -1.70 -1.44 -7.42	Number 0 Obs per P> t 0.000 0.891 0.076 0.091 0.153 0.000	of groups = group: min = avg = max = [95% Conf. .5748299 0594521 0611508 1609458 3059142 6584106	18 9.6 1 .736911 .068350 .003025 .011927 .048128 381843
Gector 28 Gector 28 Group variable Time variable Number of inst 7(51, 188) Prob > F lexpK28 L1. dueurol lReR dueu voll ldist SumVA28 Alpha _i	<pre>F(1, 209) = Prob > F = e: cod : time truments = 181 = 22.50 = 0.000 Coef. .6558707 .0044494 0290627 0745092 1288926 5201272 .2630043 yes</pre>	14.17 0.0002 Robust Std. Err. .0410819 .0323935 .0162664 .0438173 .0897374 .0700999	t 15.96 0.14 -1.79 -1.70 -1.44 -7.42	Number 0 Obs per P> t 0.000 0.891 0.076 0.091 0.153 0.000	of groups = group: min = avg = max = [95% Conf. .5748299 0594521 0611508 1609458 3059142 6584106	18 9.6 1 .736911 .068350 .003025 .011927 .048128 381843
HO=0 _b[duen Sector 28 Group variable Time variable Vumber of inst F(51, 188) Prob > F lexpK28 L1. dueurol lReR dueu voll ldist SumVA28 Alpha _i Beta _j	<pre>F(1, 209) = Prob > F = e: cod : time truments = 181 = 22.50 = 0.000 Coef. .0044494 0290627 .0044494 0290627 0745092 1288926 5201272 .2630043 yes yes</pre>	14.17 0.0002 Robust Std. Err. .0410819 .0323935 .0162664 .0438173 .0897374 .0700999	t 15.96 0.14 -1.79 -1.70 -1.44 -7.42	Number 0 Obs per P> t 0.000 0.891 0.076 0.091 0.153 0.000	of groups = group: min = avg = max = [95% Conf. .5748299 0594521 0611508 1609458 3059142 6584106	18 9.6
Gector 28 Gector 28 Group variable Jumber of inst F(51, 188) Prob > F lexpK28 L1. dueurol lReR dueu vol1 ldist SumVA28 Alpha; Beta; Tau	<pre>F(1, 209) = Prob > F = e: cod : time truments = 181 = 22.50 = 0.000 Coef. .0044494 0290627 .0044494 0290627 0745092 1288926 5201272 .2630043 yes yes</pre>	14.17 0.0002 Robust Std. Err. 0410819 0323935 0162664 0438173 0897374 0700999 1074418	t 15.96 0.14 -1.79 -1.70 -1.44 -7.42 2.45	Number 0 Obs per P> t 0.000 0.891 0.076 0.091 0.153 0.000 0.015	of groups = group: min = avg = max = [95% Conf. .5748299 0594521 0611508 1609458 3059142 6584106 .051058	18 9.6 1 Interval .736911 .068350 .003025 .011927 .048128 381843 .474950

Group variable	e: cod			Number	of obs	=	238
Time variable	: time			Number	of groups	; =	21
Number of inst		1		Obs per	group: m		
F(53, 217)						vg =	
Prob > F 	= 0.000					1ax =	1
		Robust					
lexpK29_33	Coef.	Std. Err.	t	P> t	[95% C	onf.	Interval
lexpK29_33							
L1.	.7510274		14.67	0.000	.65015	56	.851899
dueurol	.0646547	.024391	2.65		.01658		.112728
lReR	0090007			0.511	03595		.017957
dueu	.0343121	.0279728		0.221	0208		.089445
ldist	1802077 2438779	.0545396		0.084	38512 35137		.024711
SumVA29_33							124973
Alpha _i	yes	.0751202	0.20	0.751	.10525		.12177.
Betai	yes						
Tau	yes						
Arellano-Bond	test for AR(1) in first	differenc	 ces: z =	-5.07 P	r >	z = 0.00
Arellano-Bond	test for AR(2) in first	differenc	ces: z =	-1.24 P	r >	z = 0.21
lansen test of	overid. rest	rictions: c	 hi2(160)	= 189 5	9 Prob >	chi	 2 = 0 0º
			1112(100)	109.5	5 1100 7	0111	- 0.03
Long term coef							
HO=0 _b[duei	urol]/(1b[l.	lexpK29_33]) = 0				
F	r(1, 217) =	7.00					
E	F(1, 217) = Prob > F =	7.00 0.0087					
F							
Sector 29	Prob > F =			Number	of obs		211
Sector 29 Group variable	Prob > F =				of obs		
Sector 29 Group variable Time variable	Prob > F = e: cod : time	0.0087		Number	of groups	=	20
Sector 29 Group variable Time variable Number of inst	<pre>Prob > F = e: cod : time cruments = 182</pre>	0.0087		Number	of groups group: m	=	20
Sector 29 Group variable Time variable Number of inst F(52, 207)	<pre>Prob > F = 2: cod : time cruments = 182 = 54864.85</pre>	0.0087		Number	of groups group: m a	; = nin =	20
Sector 29 Group variable Time variable Number of inst F(52, 207)	<pre>Prob > F = 2: cod : time cruments = 182 = 54864.85</pre>	0.0087		Number	of groups group: m a	s = nin = nvg =	20 10.2
Sector 29 Group variable Time variable Jumber of inst F(52, 207)	Prob > F = e: cod : time :ruments = 182 = 54864.85 = 0.000	0.0087		Number	of groups group: m a m	s = lin = lvg = lax =	20 10.2
Sector 29 Group variable Fime variable Number of inst F(52, 207) Prob > F lexpK29	Prob > F = e: cod : time :ruments = 182 = 54864.85 = 0.000	0.0087		Number Obs per	of groups group: m a m	s = lin = lvg = lax =	20 10.2 1
Sector 29 Group variable Time variable Number of inst F(52, 207) Prob > F lexpK29 lexpK29	<pre>Prob > F = e: cod : time truments = 182 = 54864.85 = 0.000 Coef.</pre>	0.0087 Robust Std. Err.		Number Obs per P> t	of groups group: m a m [95% C	s = nin = nvg = nax = Conf.	20 10.2 Interval
Sector 29 Group variable Time variable Number of inst F(52, 207) Prob > F lexpK29 lexpK29 L1.	<pre>Prob > F = e: cod : time rruments = 182 = 54864.85 = 0.000 Coef6313032</pre>	0.0087 	t 9.63	Number Obs per P> t 0.000	of groups group: m a " [95% C 	s = lin = lvg = lax = Conf.	20 10.2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Sector 29 Group variable Time variable Number of inst F(52, 207) Prob > F lexpK29 lexpK29 L1. dueurol	<pre>Prob > F = e: cod : time cruments = 182 = 54864.85 = 0.000 Coef6313032 .0504315</pre>	0.0087 	t 9.63 2.02	Number Obs per P> t 0.000 0.045	of groups group: m a [95% C 	s = hin = hyg = hax = conf. 053 036	2(10.2 Interval .7605(.099655
Sector 29 Group variable Time variable Number of inst F(52, 207) Prob > F lexpK29 lexpK29 L1. dueuro1 lReR	<pre>Prob > F = e: cod : time cruments = 182 = 54864.85 = 0.000 Coef6313032 .05043150091948</pre>	0.0087 Robust Std. Err. .0655331 .0249699 .013626	t 9.63 2.02 -0.67	Number Obs per P> t 0.000 0.045 0.501	of groups group: m [95% C .50210 .00120 03605	s = nin = nvg = nax = 	2(10.2 Interval .7605(.099659 .017668
Sector 29 Group variable Time variable Number of inst F(52, 207) Prob > F lexpK29 lexpK29 L1. dueuro1 lReR dueu	<pre>Prob > F = 2: cod : time cruments = 182 = 54864.85 = 0.000 Coef6313032 .05043150091948 .0196003</pre>	0.0087 Robust Std. Err. .0655331 .0249699 .013626 .0352304	t 9.63 2.02 -0.67 0.56	Number Obs per P> t 0.000 0.045 0.501 0.579	of groups group: m [95% C .50210 .00120 03605 04985	s = hin = hvg = hax = conf. 053 036 084 061	2(10.2 Interval .7605(.099659 .017668 .089056
Sector 29 Group variable Time variable Number of inst F(52, 207) Prob > F lexpK29 lexpK29 L1. dueuro1 lReR	<pre>Prob > F = e: cod : time truments = 182 = 54864.85 = 0.000 Coef6313032 .05043150091948 .01960031400555</pre>	0.0087 Robust Std. Err. .0655331 .0249699 .013626 .0352304 .103633	t 9.63 2.02 -0.67 0.56 -1.35	Number Obs per P> t 0.000 0.045 0.501 0.579 0.178	of groups group: m [95% C .50210 .00120 03605 04985 34436	s = in = ivg = hax = conf. 053 036 084 661 571	20 10.2 Interval .76050 .099659 .017668 .089050 .06425
Sector 29 Group variable Fime variable Number of inst F(52, 207) Prob > F lexpK29 lexpK29 L1. dueuro1 lReR dueu vol1	<pre>Prob > F = 2: cod : time cruments = 182 = 54864.85 = 0.000 Coef6313032 .05043150091948 .0196003</pre>	0.0087 Robust Std. Err. .0655331 .0249699 .013626 .0352304 .103633 .0673357	t 9.63 2.02 -0.67 0.56	Number Obs per P> t 0.000 0.045 0.501 0.579	of groups group: m [95% C .50210 .00120 03605 04985	s = in = ivg = iax = conf. 053 036 084 051 071 022	2(10.2 Interval .7605(.099659 .017668 .089056
Sector 29 Group variable Time variable Number of inst F(52, 207) Prob > F lexpK29 lexpK29 L1. dueurol lReR dueu vol1 ldist	<pre>Prob > F = e: cod : time cruments = 182 = 54864.85 = 0.000 Coef. Coef6313032 .05043150091948 .019600314005553267604</pre>	0.0087 Robust Std. Err. .0655331 .0249699 .013626 .0352304 .103633	t 9.63 2.02 -0.67 0.56 -1.35 -4.85	Number Obs per P> t 0.000 0.045 0.501 0.579 0.178 0.000	of groups group: m [95% C .50210 .00120 03605 04985 34436 45951	s = in = ivg = iax = conf. 053 036 084 051 071 022	20 10.2 Interval .76050 .099655 .017668 .089056 .06425 194008
Sector 29 Group variable Time variable Number of inst F(52, 207) Prob > F lexpK29 L1. dueuro1 lReR dueu vol1 ldist SumVA29	<pre>Prob > F = A: cod : time cruments = 182 = 54864.85 = 0.000 Coef. Coef6313032 .05043150091948 .0196003 .140055532676040344603</pre>	0.0087 Robust Std. Err. .0655331 .0249699 .013626 .0352304 .103633 .0673357	t 9.63 2.02 -0.67 0.56 -1.35 -4.85	Number Obs per P> t 0.000 0.045 0.501 0.579 0.178 0.000	of groups group: m [95% C .50210 .00120 03605 04985 34436 45951	s = in = ivg = iax = conf. 053 036 084 051 071 022	20 10.2 Interval .76050 .099655 .017668 .089056 .06425 194008
Sector 29 Group variable Time variable Number of inst F(52, 207) Prob > F lexpK29 lexpK29 L1. dueurol lReR dueu voll ldist SumVA29 Alpha _i	<pre>Prob > F = e: cod : time truments = 182 = 54864.85 = 0.000 Coef. Coef6313032 .05043150091948 .0196003140055532676040344603 yes</pre>	0.0087 Robust Std. Err. .0655331 .0249699 .013626 .0352304 .103633 .0673357	t 9.63 2.02 -0.67 0.56 -1.35 -4.85	Number Obs per P> t 0.000 0.045 0.501 0.579 0.178 0.000	of groups group: m [95% C .50210 .00120 03605 04985 34436 45951	s = in = ivg = iax = conf. 053 036 084 051 071 022	20 10.2 Interval .76050 .099655 .017668 .089056 .06425 194008
Sector 29 Group variable Time variable Number of inst F(52, 207) Prob > F lexpK29 L1. dueuro1 lReR dueu vol1 ldist SumVA29 Alpha _i Beta _j	<pre>Prob > F = e: cod : time :ruments = 182 = 54864.85 = 0.000 Coef. Coef6313032 .05043150091948 .0196003140055532676040344603 yes yes</pre>	0.0087 Robust Std. Err. .0655331 .0249699 .013626 .0352304 .103633 .0673357	t 9.63 2.02 -0.67 0.56 -1.35 -4.85	Number Obs per P> t 0.000 0.045 0.501 0.579 0.178 0.000	of groups group: m [95% C .50210 .00120 03605 04985 34436 45951	s = in = ivg = iax = conf. 053 036 084 051 071 022	20 10.2 Interval .76050 .099655 .017668 .089056 .06425 194008
Sector 29 Group variable Time variable Number of inst (52, 207) Prob > F lexpK29 lexpK29 L1. dueurol lReR dueu voll ldist SumVA29 Alphai Betaj Tau Arellano-Bond Arellano-Bond	<pre>Prob > F = 2: cod : time cruments = 182 = 54864.85 = 0.000 Coef. .6313032 .05043150091948 .0196003140055532676040344603 yes yes yes yes test for AR(1 test for AR(2)</pre>	0.0087 Robust Std. Err. .0655331 .0249699 .013626 .0352304 .103633 .0673357 .058441	t 9.63 2.02 -0.67 0.56 -1.35 -4.85 -0.59 difference	Number Obs per P> t 0.000 0.045 0.501 0.579 0.178 0.000 0.556 ces: z = ces: z =	of groups group: m [95% C .50210 .00120 03605 04985 34436 45951 14967	<pre>s = sin = sin</pre>	2(10.2 10
Sector 29 Group variable Time variable Number of inst F(52, 207) Prob > F lexpK29 L1. dueuro1 lReR dueu vol1 ldist SumVA29 Alphai Betaj Tau Arellano-Bond Arellano-Bond	<pre>Prob > F = 2: cod : time cruments = 182 = 54864.85 = 0.000</pre>	0.0087 Robust Std. Err. .0655331 .0249699 .013626 .0352304 .103633 .0673357 .058441	t 9.63 2.02 -0.67 0.56 -1.35 -4.85 -0.59 difference	Number Obs per P> t 0.000 0.045 0.501 0.579 0.178 0.000 0.556 ces: z = ces: z =	of groups group: m [95% C .50210 .00120 03605 .04985 34436 45951 14967	s = iin = ivg = iax = conf. 253 366 84 661 571 222 62 72 > 27 >	2(10.2 10
Sector 29 Group variable Time variable Number of inst F(52, 207) Prob > F lexpK29 L1. dueuro1 lReR dueu vol1 ldist SumVA29 Alphai Betaj Tau Arellano-Bond Arellano-Bond	<pre>Prob > F = 2: cod : time cruments = 182 = 54864.85 = 0.000</pre>	0.0087 Robust Std. Err. .0655331 .0249699 .013626 .0352304 .103633 .0673357 .058441	t 9.63 2.02 -0.67 0.56 -1.35 -4.85 -0.59 difference	Number Obs per P> t 0.000 0.045 0.501 0.579 0.178 0.000 0.556 ces: z = ces: z =	of groups group: m [95% C .50210 .00120 03605 .04985 34436 45951 14967	s = iin = ivg = iax = conf. 253 366 84 661 571 222 62 72 > 27 >	2(10.2 10
Sector 29 Group variable Time variable Number of inst F(52, 207) Prob > F lexpK29 L1. dueurol lReR dueu voll ldist SumVA29 Alphai Betaj Tau Arellano-Bond Arellano-Bond Hansen test of Long term coef	<pre>Prob > F = e: cod : time :ruments = 182 = 54864.85 = 0.000 Coef6313032 .0504315 .0091948 .0196003140055532676040344603 yes yes yes test for AR(1 test for AR(2) : overid. rest</pre>	0.0087 Robust Std. Err. .0655331 .0249699 .013626 .0352304 .103633 .0673357 .058441 .058441 .058441	t 9.63 2.02 -0.67 0.56 -1.35 -4.85 -0.59 difference difference hi2(130)	Number Obs per P> t 0.000 0.045 0.501 0.579 0.178 0.000 0.556 ces: z = ces: z =	of groups group: m [95% C .50210 .00120 03605 .04985 34436 45951 14967	<pre>s = sin = sin</pre>	2(10.2 10

Prob > F = 0.0361

Sector 30_33						
Group variable Time variable Number of inst F(54, 237) Prob > F	: time cruments = 214 = 186773.96			Number o	f groups group: min	= 1 = 10.40
lexpK30_33	Coef.	Robust Std. Err.	t	P> t	[95% Con:	f. Interval]
ldist	.06512 0170943 .0488899 2301283 1271703 .0915951 yes yes yes test for AR(1	.0167609 .0295643 .1355764 .0356581 .0547484	-1.02 1.65 -1.70 -3.57 1.67 difference	0.309 0.100 0.091 0.000 0.096	0093525 4972171 1974177 0162606 	.1308796 .0159251 .1071323 .0369604 0569229 .1994507
Hansen test of Long term coef H0=0 _b[dueun H	ficient test	expK30_33];) = 0	= 188.42	Prob > cl	ni2 = 0.062
Sector 30						
Group variable Time variable Number of inst F(50, 171)	: time cruments = 180			Number o	f obs f groups group: min avg	= 171 = 1

F(50, 171) Prob > F		•		CDD PC1	avg = max =	
lexpK30	Coef.	Robust Std. Err.	+	P> +	[95% Conf.	Intervall
	+					
lexpK30						
L1.	.5305189	.0518867	10.22	0.000	.4280979	.6329399
dueurol	.0720323	.0893788	0.81	0.421	1043955	.2484602
lReR	056345	.0361858	-1.56	0.121	1277733	.0150834
dueu	2187553	.1144652	-1.91	0.058	444702	.0071915
voll	4284383	.3556736	-1.20	0.230	-1.130514	.2736379
ldist	584569	.1006077	-5.81	0.000	7831619	3859762
SumVA30	0464147	.0754541	-0.62	0.539	1953562	.1025267
Alphai	yes					
Betai	yes					
Tau	yes					
Arellano-Bond	test for AR(1) in first	differen	.ces: z =	-6.08 Pr >	z = 0.000
Arellano-Bond	test for AR(2) in first	differen	.ces: z =	0.97 Pr >	z = 0.334

Hansen test of	overid. restriction	s: chi2(130) =	148.69	Prob > chi2 =	0.125

Group variable				Number c	of obs =	= 1474
Time variable				Number c	of groups =	= 154
Number of inst		5		Obs per	group: min =	
F(49, 154)					avg =	
Prob > F	= 0.000				max =	- 15
		Robust				
lexpK31	Coef.	Std. Err.	t	₽> t	[95% Conf.	[Interval]
lexpK31						
L1.	.6946685	.0540753	12.85	0.000	.5878434	.8014937
dueuro1	0140863	.0414821	-0.34	0.735	0960338	.0678611
lReR	0036826	.0193921	-0.19	0.850	0419914	.0346262
dueu	0692766	.0518076	-1.34	0.183	1716218	.0330687
voll	0490607	.1397013	-0.35	0.726	3250389	.2269175
ldist	3526119	.0759278	-4.64	0.000	5026063	2026174
SumVA31	0152775	.0283369	-0.54	0.591	0712566	.040701
Alphai	yes					
Beta _j Tau	yes yes					
Iau	усь					
Arellano-Bond Arellano-Bond						z = 0.000 z = 0.226
	101 AR(2	.) IN IIISC		Jes: z =	-1.21 Pf >	2 = 0.226
Hansen test of	overid. rest	rictions: c	hi2(97)	= 117.07	/ Prob > chi	2 = 0.081
Sector 32						
Group variable				Number o		
Group variable Time variable	: time			Number c	of groups =	= 154
Group variable Time variable Number of inst	: time cruments = 155	5		Number c	of groups = group: min =	= 154 = 1
Group variable Time variable	: time cruments = 155	5		Number c	of groups = group: min = avg =	= 154 = 1 = 9.34
Group variable Time variable Number of inst F(49, 154)	: time truments = 155 = 11.01	5		Number c	of groups = group: min =	= 154 = 1 = 9.34
Group variable Time variable Number of inst F(49, 154) Prob > F	: time truments = 155 = 11.01 = 0.000	Robust		Number c Obs per	of groups = group: min = avg = max =	= 154 = 1 = 9.34 = 15
Group variable Time variable Number of inst F(49, 154)	: time truments = 155 = 11.01		t	Number c	of groups = group: min = avg = max =	= 154 = 1 = 9.34
Group variable Time variable Number of inst F(49, 154) Prob > F	: time truments = 155 = 11.01 = 0.000	Robust	t	Number c Obs per	of groups = group: min = avg = max =	= 154 = 1 = 9.34 = 15
Group variable Fime variable Number of inst F(49, 154) Prob > F lexpK32	: time truments = 155 = 11.01 = 0.000	Robust	t 6.29	Number c Obs per	of groups = group: min = avg = max =	= 154 = 1 = 9.34 = 15
Group variable Fime variable Number of inst F(49, 154) Prob > F lexpK32 lexpK32	: time cruments = 155 = 11.01 = 0.000 Coef.	Robust Std. Err.		Number c Obs per P> t	of groups = group: min = avg = max = [95% Conf.	= 154 = 9.34 = 19 Interval .784027
Group variable Time variable Number of inst F(49, 154) Prob > F lexpK32 lexpK32 L1. dueuro1 lReR	: time cruments = 155 = 11.01 = 0.000 Coef. .5966956 .1260603 0909561	Robust Std. Err. .0948279 .0625482 .0487196	6.29 2.02 -1.87	Number c Obs per P> t 0.000 0.046 0.064	of groups = group: min = avg = max = [95% Conf. .4093642 .002497 187201	= 154 = 9.34 = 19 Interval .784027 .2496239 .0052888
Group variable Fime variable Number of inst F(49, 154) Prob > F lexpK32 lexpK32 L1. dueurol lReR dueuro	: time : time : 11.01 = 0.000 Coef. .5966956 .1260603 0909561	Robust Std. Err. .0948279 .0625482 .0487196	6.29 2.02 -1.87	Number c Obs per P> t 0.000 0.046 0.064 0.061	of groups = group: min = avg = max = [95% Conf. .4093642 .002497 187201 1245521	= 15. = 9.3; = 1! . Interval . 7840277 .2496238 .0052888
Group variable Fime variable Number of inst F(49, 154) Prob > F lexpK32 lexpK32 L1. dueuro1 lReR dueu	: time : time : 11.01 = 0.000 Coef. .5966956 .1260603 0909561	Robust Std. Err. .0948279 .0625482 .0487196	6.29 2.02 -1.87	Number c Obs per P> t 0.000 0.046 0.064 0.061	of groups = group: min = avg = max = [95% Conf. .4093642 .002497 187201 1245521	= 15. = 9.3; = 1! . Interval . 7840277 .2496238 .0052888
Group variable Fime variable Number of inst F(49, 154) Prob > F lexpK32 lexpK32 L1. dueurol lReR dueu vol1 ldist	: time cruments = 155 = 11.01 = 0.000 Coef. .5966956 .1260603 0909561 .0034404 54402 367733	Robust Std. Err. .0948279 .0625482 .0487196 .0698523 .4324872 .1077239	6.29 2.02 -1.87 0.05 -1.26 -3.41	Number c Obs per P> t 0.000 0.046 0.064 0.961 0.210 0.001	of groups = group: min = avg = max = [95% Conf. .4093642 .002497 187201 1345521 -1.398393 5805403	= 15. = 9.3; = 1! . Interval .784027 .2496233 .005288 .1414321 .310353 1549258
Group variable Fime variable Number of inst F(49, 154) Prob > F lexpK32 lexpK32 L1. dueurol lReR dueu voll ldist SumVA32	: time cruments = 155 = 11.01 = 0.000 Coef. .5966956 .1260603 0909561 .0034404 54402 367733 .0126648	Robust Std. Err. .0948279 .0625482 .0487196 .0698523 .4324872 .1077239	6.29 2.02 -1.87 0.05 -1.26 -3.41	Number c Obs per P> t 0.000 0.046 0.064 0.961 0.210 0.001	of groups = group: min = avg = max = [95% Conf. .4093642 .002497 187201 1245521	= 15. = 9.3; = 1! . Interval .784027 .2496233 .005288 .1414321 .310353 1549258
Group variable Fime variable Number of inst F(49, 154) Prob > F lexpK32 L1. dueuro1 lReR dueu vol1 ldist SumVA32 Alpha _i	: time : time : 11.01 = 0.000 Coef. .5966956 .1260603 0909561 .0034404 54402 367733 .0126648 yes	Robust Std. Err. .0948279 .0625482 .0487196 .0698523 .4324872 .1077239	6.29 2.02 -1.87 0.05 -1.26 -3.41	Number c Obs per P> t 0.000 0.046 0.064 0.961 0.210 0.001	of groups = group: min = avg = max = [95% Conf. .4093642 .002497 187201 1345521 -1.398393 5805403	= 15. = 9.3; = 1! . Interval .784027 .2496233 .005288 .1414321 .310353 1549258
Group variable Fime variable Number of inst F(49, 154) Prob > F lexpK32 L1. dueurol lReR dueu voll ldist SumVA32 Alpha _i Beta _j	: time : time : 11.01 = 0.000 Coef. .5966956 .1260603 0909561 .0034404 54402 367733 .0126648 yes yes	Robust Std. Err. .0948279 .0625482 .0487196 .0698523 .4324872 .1077239	6.29 2.02 -1.87 0.05 -1.26 -3.41	Number c Obs per P> t 0.000 0.046 0.064 0.961 0.210 0.001	of groups = group: min = avg = max = [95% Conf. .4093642 .002497 187201 1345521 -1.398393 5805403	= 15. = 9.3; = 1! . Interval .784027 .2496233 .005288 .1414321 .310353 1549258
Group variable Time variable Number of inst F(49, 154) Prob > F lexpK32 L1. dueuro1 lReR dueu vol1 ldist SumVA32 Alpha _i	: time : time : 11.01 = 0.000 Coef. .5966956 .1260603 0909561 .0034404 54402 367733 .0126648 yes	Robust Std. Err. .0948279 .0625482 .0487196 .0698523 .4324872 .1077239	6.29 2.02 -1.87 0.05 -1.26 -3.41	Number c Obs per P> t 0.000 0.046 0.064 0.961 0.210 0.001	of groups = group: min = avg = max = [95% Conf. .4093642 .002497 187201 1345521 -1.398393 5805403	= 154 = 9.34 = 1! . Interval . 784027 .2496239 .0052888 .1414328 .310353 1549258
Group variable Time variable Number of inst F(49, 154) Prob > F lexpK32 L1. dueurol lReR dueu voll ldist SumVA32 Alpha _i Beta _j Tau	: time ruments = 155 = 11.01 = 0.000 Coef. .5966956 .1260603 0909561 .0034404 54402 367733 .0126648 yes yes yes	Robust Std. Err. .0948279 .0625482 .0487196 .0698523 .4324872 .1077239 .0729462	6.29 2.02 -1.87 0.05 -1.26 -3.41 0.17	Number c Obs per P> t 0.000 0.046 0.064 0.961 0.210 0.001 0.862	of groups = group: min = avg = max = [95% Conf. .4093642 .002497 187201 1345521 -1.398393 5805403 1314396	= 154 = 9.34 = 19 . Interval . 7840277 . 2496239 .0052888 .1414328 .3103533 - 1549258 .1567692
Group variable Time variable Number of inst F(49, 154) Prob > F lexpK32 lexpK32 lexpK32 L1. dueurol lReR dueu vol1 ldist SumVA32 Alphai Betaj Tau Arellano-Bond	: time :ruments = 155 = 11.01 = 0.000 Coef. .5966956 .1260603 0909561 .0034404 54402 367733 .0126648 yes yes yes test for AR(1	Robust Std. Err. .0948279 .0625482 .0487196 .0698523 .4324872 .1077239 .0729462	6.29 2.02 -1.87 0.05 -1.26 -3.41 0.17	Number c Obs per P> t 0.000 0.046 0.064 0.961 0.210 0.001 0.862 ces: z =	of groups = group: min = avg = max = [95% Conf. .4093642 .002497 187201 1345521 -1.398393 5805403 1314396 1314396	= 154 = 9.34 = 19 . Interval 1 . 2496235 .0052888 .1414328 .3103533 1549258 .1567692 z = 0.000
Group variable Fime variable Number of inst F(49, 154) Prob > F lexpK32 L1. dueurol lReR dueu voll ldist SumVA32 Alphai Betaj Tau Arellano-Bond Arellano-Bond	: time :ruments = 155 = 11.01 = 0.000 Coef. .5966956 .1260603 0909561 .0034404 54402 367733 .0126648 yes yes yes test for AR(1 test for AR(2	Robust Std. Err. .0948279 .0625482 .0487196 .0698523 .4324872 .1077239 .0729462	6.29 2.02 -1.87 0.05 -1.26 -3.41 0.17 difference	Number c Obs per P> t 0.000 0.046 0.064 0.961 0.210 0.001 0.862	of groups = group: min = avg = max = [95% Conf. .4093642 .002497 187201 1345221 -1.398393 5805403 1314396	= 154 = 9.34 = 19 . Interval 19 . 7840271 .2496235 .0052888 .1414328 .3103533 1549258 .1567692 z = 0.000 z = 0.994
Group variable Fime variable Number of inst F(49, 154) Prob > F lexpK32 L1. dueurol lReR dueu voll ldist SumVA32 Alphai Betaj Tau Arellano-Bond Arellano-Bond Hansen test of	: time : time : 11.01 = 0.000 Coef. .5966956 .1260603 0909561 .0034404 54402 367733 .0126648 yes yes yes test for AR(1 test for AR(2 : overid. rest	Robust Std. Err. .0948279 .0625482 .0487196 .0698523 .4324872 .1077239 .0729462	6.29 2.02 -1.87 0.05 -1.26 -3.41 0.17 difference	Number c Obs per P> t 0.000 0.046 0.064 0.961 0.210 0.001 0.862	of groups = group: min = avg = max = [95% Conf. .4093642 .002497 187201 1345221 -1.398393 5805403 1314396	= 154 = 9.34 = 19 . Interval 19 . 7840271 .2496235 .0052888 .1414328 .3103533 1549258 .1567692 z = 0.000 z = 0.994
Group variable Time variable Number of inst F(49, 154) Prob > F lexpK32 L1. dueurol lReR dueu voll ldist SumVA32 Alphai Betaj Tau Arellano-Bond Arellano-Bond Arellano-Bond Long term coef	: time : time : 11.01 = 0.000 Coef. .5966956 .1260603 0909561 .0034404 54402 367733 .0126648 yes yes yes test for AR(1 test for AR(2 : overid. rest	Robust Std. Err. .0948279 .0625482 .0487196 .0698523 .4324872 .1077239 .0729462	6.29 2.02 -1.87 0.05 -1.26 -3.41 0.17 differend differend hi2(106)	Number c Obs per P> t 0.000 0.046 0.064 0.961 0.210 0.001 0.862	of groups = group: min = avg = max = [95% Conf. .4093642 .002497 187201 1345221 -1.398393 5805403 1314396	= 154 = 9.34 = 15 Interval 1 .7840271 .2496235 .0052888 .1414328 .3103533 1549258 .1567692 z = 0.000 z = 0.994
Group variable Fime variable Number of inst F(49, 154) Prob > F lexpK32 lexpK32 lexpK32 L1. dueurol lReR dueu vol1 ldist SumVA32 Alphai Betaj Tau Arellano-Bond Arellano-Bond Hansen test of Long term coef H0=0 _b[dueu	: time ruments = 155 = 11.01 = 0.000 Coef. .5966956 .1260603 0909561 .0034404 54402 367733 .0126648 yes yes yes yes test for AR(1 test for AR(2 coverid. rest	Robust Std. Err. .0948279 .0625482 .0487196 .0698523 .4324872 .1077239 .0729462 .0729462 .0729462 .0729462 .0729462 .0729462 .0111111111111111111111111111111111111	6.29 2.02 -1.87 0.05 -1.26 -3.41 0.17 differend differend hi2(106)	Number c Obs per P> t 0.000 0.046 0.064 0.961 0.210 0.001 0.862	of groups = group: min = avg = max = [95% Conf. .4093642 .002497 187201 1345221 -1.398393 5805403 1314396	= 154 = 9.34 = 19 . Interval 19 . 7840271 .2496235 .0052888 .1414328 .3103533 1549258 .1567692 z = 0.000 z = 0.994

Group variable	e: cod			Number o	of obs	=		1392
Time variable				Number o				151
	truments = 142			Obs per	group:			1
F(48, 151) Prob > F	= 13.95 = 0.000					avg = max =		9.22 15
	- 0.000							
lexpK33	Coef.	Robust Std. Err.	t	P> t	[95%	Conf	Tnt	erval]
	+							
lexpK33								
L1.	.6762842	.0888622	7.61	0.000	.500			518581
dueuro1	.0895122	.0331847	2.70	0.008	.0239			55078
lReR dueu	0289514 0842498	.0178063 .0432072	-1.63 -1.95	0.106 0.053	064			062303
vol1				0.033	878			057634
ldist		.1052902	-3.21		546			301259
SumVA33	1183421		-1.24		3072			706033
Alphai	yes							
Betai	yes							
Tau	yes							
	test for AR(1 test for AR(2							0.001
	f overid. rest							
lansen test of	L OVELIG. LESC	rictions. c	1112(94)	= 107.74	4 PIOD	> CIII	.2 =	0.15
Long term coet H0=0 _b[duet	fficient test urol]/(1b[l.	lexpK33]) =	0					
-	7/1 151)	- - 00						
1	F(1, 151) = Prob > F =	5.82 0.0170						
	F100 > F =	0.01/0						
Coston 24 2E								
Sector 34_35								
Group variable				Number o	of obs			
Group variable Time variable	: time			Number o	of grou	ps =		177
Group variable Time variable Number of inst	: time cruments = 147				of grou	ps = min =	:	177 2
Group variable Time variable Number of inst F(50, 177)	: time truments = 147 = 9.72			Number o	of grou	ps = min = avg =	:	1800 177 2 10.17
Group variable Time variable Number of inst F(50, 177)	: time cruments = 147			Number o	of grou	ps = min =	:	177 2
Group variable Time variable Number of inst F(50, 177) Prob > F	: time cruments = 147 = 9.72 = 0.000	Robust		Number o Obs per	of group:	ps = min = avg = max =	: : : 	177 2 10.17 19
Group variable Fime variable Number of inst F(50, 177)	: time truments = 147 = 9.72			Number o	of group:	ps = min = avg = max =	: : : 	177 2 10.17 19
Group variable Time variable Number of inst F(50, 177) Prob > F lexpK34_35	: time cruments = 147 = 9.72 = 0.000	Robust	t	Number o Obs per	of group:	ps = min = avg = max =	: : : 	177 2 10.17 19
Group variable Time variable Number of inst F(50, 177) Prob > F	: time cruments = 147 = 9.72 = 0.000 	Robust Std. Err.		Number o Obs per P> t	of group: group: [95%	ps = min = avg = max = Conf.	Int	177 2 10.17 19 erval
Group variable Time variable Number of inst F(50, 177) Prob > F lexpK34_35 lexpK34_35	: time cruments = 147 = 9.72 = 0.000 	Robust Std. Err. .1096152	t 4.99 2.27	Number o Obs per	of group:	ps = min = avg = max = Conf. 	:	177 10.17 erval 638062
Group variable Fime variable Number of inst F(50, 177) Prob > F lexpK34_35 lexpK34_35 L1.	: time cruments = 147 = 9.72 = 0.000 	Robust Std. Err.	4.99	Number 0 Obs per P> t 0.000	of group: group: [95% .331]	ps = min = avg = max = Conf. 1644 7025	.7 .2	177 2 10.17 erval 638062 505636
Group variable Fime variable Number of inst F(50, 177) Prob > F lexpK34_35 lexpK34_35 L1. dueurol	: time cruments = 147 = 9.72 = 0.000 Coef. 	Robust Std. Err. .1096152 .0589983 .0280624	4.99 2.27	Number of Obs per P> t 0.000 0.024 0.248	of group: group: [95% .331: .017	ps = min = avg = max = Conf. Conf. 1644 7025 9392	Int .7 .2 .0	177 2 10.17 erval 505636 228209
Group variable Fime variable Number of inst F(50, 177) Prob > F lexpK34_35 lexpK34_35 Ll. dueuro1 lReR	: time cruments = 147 = 9.72 = 0.000 Coef. 	Robust Std. Err. .1096152 .0589983 .0280624 .0880208 .218748	4.99 2.27 -1.16 -1.00 -2.02	Number of Obs per P> t 0.000 0.024 0.248 0.318 0.045	of group: group: [95% .331: .017 0879 2618 874	ps = min = avg = max = Conf. Conf. 1644 7025 3392 3906 3044	Int .7 .2 .0 .0 .0	177 10.1 19 erval 638062 505636 228209 855201 10924
Group variable Fime variable Number of inst F(50, 177) Prob > F lexpK34_35 lexpK34_35 L1. dueurol lReR dueu vol1 ldist	: time cruments = 147 = 9.72 = 0.000 Coef. 	Robust Std. Err. .096152 .0589983 .0280624 .0880208 .218748 .1392186	4.99 2.27 -1.16 -1.00 -2.02 -3.50	Number of Obs per P> t 0.000 0.024 0.248 0.318 0.045 0.001	of group: group: [95% .331: .017 0879 2618 874: .7614	ps = min = avg = max = Conf. Conf. 1644 7025 392 3906 3044 4193	Int .7 .2 .0 .0 .0 .0	177 2 10.1 erval 505636 228209 855202 10924 119354
Group variable Fime variable Number of inst F(50, 177) Prob > F lexpK34_35 lexpK34_35 L1. dueurol lReR dueu voll ldist SumVA34_35	: time cruments = 147 = 9.72 = 0.000 Coef. 	Robust Std. Err. .096152 .0589983 .0280624 .0880208 .218748 .1392186	4.99 2.27 -1.16 -1.00 -2.02	Number of Obs per P> t 0.000 0.024 0.248 0.318 0.045	of group: group: [95% .331: .017 0879 2618 874	ps = min = avg = max = Conf. Conf. 1644 7025 392 3906 3044 4193	Int .7 .2 .0 .0 .0 .0	177 2 10.1 erval 505636 228209 855202 10924 119354
Group variable Fime variable Number of inst F(50, 177) Prob > F lexpK34_35 lexpK34_35 L1. dueurol lReR dueu voll ldist SumVA34_35 Alpha _i	: time truments = 147 = 9.72 = 0.000 	Robust Std. Err. .096152 .0589983 .0280624 .0880208 .218748 .1392186	4.99 2.27 -1.16 -1.00 -2.02 -3.50	Number of Obs per P> t 0.000 0.024 0.248 0.318 0.045 0.001	of group: group: [95% .331: .017 0879 2618 874: .7614	ps = min = avg = max = Conf. Conf. 1644 7025 392 3906 3044 4193	Int .7 .2 .0 .0 .0 .0	177 2 10.1 erval 505636 228209 855202 10924 119354
Group variable Fime variable Number of inst F(50, 177) Prob > F lexpK34_35 lexpK34_35 L1. dueurol lReR dueu voll ldist SumVA34_35 Alpha _i Beta _j	: time cruments = 147 = 9.72 = 0.000 	Robust Std. Err. .096152 .0589983 .0280624 .0880208 .218748 .1392186	4.99 2.27 -1.16 -1.00 -2.02 -3.50	Number of Obs per P> t 0.000 0.024 0.248 0.318 0.045 0.001	of group: group: [95% .331: .017 0879 2618 874: .7614	ps = min = avg = max = Conf. Conf. 1644 7025 392 3906 3044 4193	Int .7 .2 .0 .0 .0 .0	177 2 10.17 erval 505636 228209 855201 109247 119354
Group variable Fime variable Number of inst F(50, 177) Prob > F lexpK34_35 lexpK34_35 L1. dueurol lReR dueu voll ldist SumVA34_35 Alpha _i	: time truments = 147 = 9.72 = 0.000 	Robust Std. Err. .096152 .0589983 .0280624 .0880208 .218748 .1392186	4.99 2.27 -1.16 -1.00 -2.02 -3.50	Number of Obs per P> t 0.000 0.024 0.248 0.318 0.045 0.001	of group: group: [95% .331: .017 0879 2618 874: .7614	ps = min = avg = max = Conf. Conf. 1644 7025 392 3906 3044 4193	Int .7 .2 .0 .0 .0 .0	177 2 10.17 erval 505636 228209 855201 109247 119354
Group variable Time variable Number of inst F(50, 177) Prob > F lexpK34_35 lexpK34_35 lexpK34_35 lexuRX34_35 dueurol lReR dueu voll ldist SumVA34_35 Alpha _i Beta _j Tau	: time cruments = 147 = 9.72 = 0.000 Coef. . 5474853 . 134133 0325592 0881853 4426145 4866773 . 1264526 yes yes yes	Robust Std. Err. .1096152 .0589983 .0280624 .0880208 .218748 .1392186 .1440875	4.99 2.27 -1.16 -1.00 -2.02 -3.50 0.88	Number of Obs per P> t 0.000 0.024 0.248 0.318 0.045 0.001 0.381	of group: group: [95% .331: .017' 0879 2614 874: 7614 1578	ps = min = avg = max = Conf. Conf. 1644 7025 392 3906 3044 4193 3979	Int .77 .22 .00 .00 02 .4	177 2 10.17 erval 505636 228209 855201 109247 109247 108031
Group variable Time variable Number of inst F(50, 177) Prob > F lexpK34_35 lexpK34_35 lexpK34_35 lexpK34_35 lexpK34_35 lexpK34_35 Alexa Alphai Betaj Tau Arellano-Bond	: time cruments = 147 = 9.72 = 0.000 	Robust Std. Err. .1096152 .0589983 .0280624 .0880208 .218748 .1392186 .1440875	4.99 2.27 -1.16 -1.00 -2.02 -3.50 0.88 differend	Number of Obs per P> t 0.000 0.024 0.248 0.318 0.045 0.001 0.381 ces: z = ces: z =	of group: group: [95% .3312 .017 0879 2618 8742 1578 1578	<pre>ps = min = avg = max = Conf. Conf. 1644 7025 9392 3906 3044 4193 3979 Pr > Pr > Pr ></pre>	Int .77.22.00 .0002.44	177 2 10.17 erval] 638062 505636 228209 855201 109247 119354 108031 0.001 0.785
Group variable Time variable Number of inst F(50, 177) Prob > F lexpK34_35 lexpK34_35 lexpK34_35 L1. dueurol lReR dueu voll ldist SumVA34_35 Alphai Betaj Tau Arellano-Bond Arellano-Bond	: time cruments = 147 = 9.72 = 0.000 Coef. Coef. 5474853 .134133 0325592 0881853 4426145 4866773 .1264526 yes yes yes test for AR(1	Robust Std. Err. .0589983 .0280624 .0880208 .218748 .1392186 .1440875	4.99 2.27 -1.16 -1.00 -2.02 -3.50 0.88 difference	Number of Obs per P> t 0.000 0.024 0.248 0.318 0.045 0.001 0.381	of group group: [95% .331 .017 0879 2618 8741 7614 1578	<pre>ps = min = avg = max = Conf. Conf. 2392 3906 3044 4193 3979 Pr > Pr > Pr ></pre>	Int .77.22.00 .0002 .4	177 2 10.17 15 erval] 638062 505636 228209 855201 109247 109247 108031
Group variable Fime variable Number of inst F(50, 177) Prob > F lexpK34_35 L1. dueurol lReR dueu voll ldist SumVA34_35 Alpha _i Beta _j Tau Arellano-Bond Arellano-Bond Hansen test of	<pre>: time cruments = 147 = 9.72 = 0.000 </pre>	Robust Std. Err. .0589983 .0280624 .0880208 .218748 .1392186 .1440875	4.99 2.27 -1.16 -1.00 -2.02 -3.50 0.88 difference	Number of Obs per P> t 0.000 0.024 0.248 0.318 0.045 0.001 0.381	of group group: [95% .331 .017 0879 2618 8741 7614 1578	<pre>ps = min = avg = max = Conf. Conf. 2392 3906 3044 4193 3979 Pr > Pr > Pr ></pre>	Int .77.22.00 .0002 .4	177 10.17 19 erval 638062 505636 228209 855201 109247 109247 108032 0.002 0.789
Group variable Group variable Sumber of inst (50, 177) Prob > F lexpK34_35 lexpK34_35 L1. dueurol lReR dueu voll ldist SumVA34_35 Alphai Betaj Tau Arellano-Bond Arellano-Bond Arellano-Bond Arellano-Bond SumVA34_35 Alphai Betaj Tau	<pre>: time cruments = 147 = 9.72 = 0.000 </pre>	Robust Std. Err. .1096152 .0589983 .0280624 .0880208 .218748 .1392186 .1440875) in first) in first rictions: c	4.99 2.27 -1.16 -1.00 -2.02 -3.50 0.88 differend differend hi2(97)	Number of Obs per P> t 0.000 0.024 0.248 0.318 0.045 0.001 0.381	of group group: [95% .331 .017 0879 2618 8741 7614 1578	<pre>ps = min = avg = max = Conf. Conf. 2392 3906 3044 4193 3979 Pr > Pr > Pr ></pre>	Int .77.22.00 .0002 .4	177 10.17 19 erval 638062 505633 228209 855202 109242 109242 109032 109032 0.002 0.789
Group variable Fime variable Number of inst F(50, 177) Prob > F lexpK34_35 lexpK34_35 lexpK34_35 lexpK34_35 Alexa SumVA34_35 Alphai Betaj Tau Arellano-Bond Arellano-Bond Hansen test of Long term coef H0=0 _b[dueun	<pre>: time truments = 147 = 9.72 = 0.000 </pre>	Robust Std. Err. .1096152 .0589983 .0280624 .0880208 .218748 .1392186 .1440875) in first) in first rictions: c	4.99 2.27 -1.16 -1.00 -2.02 -3.50 0.88 differend differend hi2(97)	Number of Obs per P> t 0.000 0.024 0.248 0.318 0.045 0.001 0.381	of group group: [95% .331 .017 0879 2618 8741 7614 1578	<pre>ps = min = avg = max = Conf. Conf. 2392 3906 3044 4193 3979 Pr > Pr > Pr ></pre>	Int .77.22.00 .0002 .4	177 2 10.17 15 erval] 638062 505636 228209 855201 109247 109247 108031
<pre>F(50, 177) Prob > F lexpK34_35 lexpK34_35 lexpK34_35 lexpK34_35 lexpK34_35 lexpK34_35 dueu voll ldist SumVA34_35 Alphai Betaj Tau Arellano-Bond Arellano-Bond Arellano-Bond Long term coes H0=0 _b[dueu </pre>	<pre>: time truments = 147 = 9.72 = 0.000 Coef. . Coef. </pre>	Robust Std. Err. .1096152 .0589983 .0280624 .0880208 .218748 .1392186 .1440875) in first) in first rictions: c expK34_35])	4.99 2.27 -1.16 -1.00 -2.02 -3.50 0.88 differenc differenc 	Number of Obs per P> t 0.000 0.024 0.248 0.318 0.045 0.001 0.381	of group group: [95% .331 .017 0879 2618 8741 7614 1578	<pre>ps = min = avg = max = Conf. Conf. 2392 3906 3044 4193 3979 Pr > Pr > Pr ></pre>	Int .77.22.00 .0002 .4	177 2 10.17 15 erval] 638062 505636 228209 855201 109247 109247 108031

Group variable	cod :			Numper	of obs =	194
Time variable					of groups =	
Number of inst		9		Obs per	group: min =	
F(52, 192)					avg =	
Prob > F	= 0.000				max =	1
		Robust				
lexpK34	Coef.	Std. Err.	t	₽> t	[95% Conf.	Interval
lexpK34						
L1.	.7130738	.0668753	10.66	0.000	.5811692	.844978
dueuro1	.0911124		2.03		.002742	.179482
lReR	0500458	.0208456	-2.40	0.017	0911615	008930
dueu			-1.26		1851571	.040744
voll	5440304		-2.45		9829003	105160
ldist	3752151	.0909736	-4.12	0.000 0.992	5546512	195779
SumVA34	.0011346	.1126137	0.01	0.992	2209842	.223253
Alphai	yes					
Betaj	yes					
Tau	yes					
					-3.13 Pr > :	
Arellano-Bond	test for AR(2	2) in first (differenc	ces: z =	1.17 Pr > 2	z = 0.24
Hansen test of	overid. rest	rictions: c	hi2(97)	= 116.8	6 Prob > chi	2 = 0.08
H0=0 _b[dueu F		lexpK34]) = 4.85 0.0288	0			
HO=O _b[dueu	urol]/(1b[l. 7(1, 192) =	4.85	0			
HO=O _b[dueu	urol]/(1b[l. 7(1, 192) =	4.85	0			
H0=0 _b[dueu F	arol]/(1b[1. F(1, 192) = Prob > F =	4.85	0	Number	of obs =	
H0=0 _b[dueu F Sector 35 Group variable Time variable	<pre>aro1]/(1b[1, r(1, 192) = Prob > F = e: cod : time</pre>	4.85 0.0288	0	Number	of groups =	18
H0=0 _b[dueu F Sector 35 Group variable Time variable Number of inst	<pre>aro1]/(1b[1. F(1, 192) = Prob > F = e: cod : time cruments = 148</pre>	4.85 0.0288	0	Number	of groups = group: min =	18
H0=0 _b[dueu F Sector 35 Group variable Time variable Jumber of inst F(51, 180)	<pre>aro1]/(1b[1. r(1, 192) = Prob > F = e: cod : time cruments = 148 = 8.19</pre>	4.85 0.0288	0	Number	of groups = group: min = avg =	18 9.9
H0=0 _b[dueu F Sector 35 Group variable Time variable Jumber of inst F(51, 180)	<pre>aro1]/(1b[1. F(1, 192) = Prob > F = e: cod : time cruments = 148</pre>	4.85 0.0288	0	Number	of groups = group: min =	18
H0=0 _b[dueu F Sector 35 Group variable Time variable Jumber of inst F(51, 180)	<pre>aro1]/(1b[1. r(1, 192) = Prob > F = e: cod : time cruments = 148 = 8.19</pre>	4.85 0.0288	0	Number	of groups = group: min = avg =	18 9.9
H0=0 _b[dueu F Sector 35 Group variable Time variable Number of inst F(51, 180)	<pre>aro1]/(1b[1. r(1, 192) = Prob > F = e: cod : time cruments = 148 = 8.19</pre>	4.85 0.0288	0 t	Number	of groups = group: min = avg =	18 9.9 1
F Sector 35 Group variable Time variable Number of inst F(51, 180) Prob > F	<pre>arol]/(1b[1. F(1, 192) = Prob > F = Prob > F = e: cod : time cruments = 148 = 8.19 = 0.000</pre>	4.85 0.0288		Number Obs per	of groups = group: min = avg = max =	18 9.9 1
H0=0 _b[dueu F Sector 35 Group variable Time variable Number of inst F(51, 180) Prob > F lexpK35	<pre>arol]/(1b[1. F(1, 192) = Prob > F = Prob > F = e: cod : time cruments = 148 = 8.19 = 0.000</pre>	4.85 0.0288		Number Obs per	of groups = group: min = avg = max =	18 9.9 1
H0=0 _b[dueu F Sector 35 Group variable Time variable Number of inst F(51, 180) Prob > F lexpK35 lexpK35	<pre>arol]/(1b[1. F(1, 192) = Prob > F = Prob > F = e: cod : time cruments = 148 = 8.19 = 0.000 Coef.</pre>	4.85 0.0288		Number Obs per P> t	of groups = group: min = avg = max = [95% Conf.	18 9.9 1 Interval .516500
H0=0 _b[dueu F Sector 35 Group variable Time variable Number of inst F(51, 180) Prob > F lexpK35 lexpK35 L1.	<pre>aro1]/(1b[1. F(1, 192) = Prob > F = Prob > F = e: cod : time ruments = 148 = 8.19 = 0.000 </pre>	4.85 0.0288 8 Robust Std. Err. .0764875	t 4.78	Number Obs per P> t 0.000	of groups = group: min = avg = max = [95% Conf. .2146452	18 9.9 1 Interval .516500 .231961
H0=0 _b[dueu F Sector 35 Group variable Time variable Time variable Sroup of inst F(51, 180) Prob > F lexpK35 L1. dueuro1 lReR dueu	<pre>arol]/(1b[1. F(1, 192) = Prob > F = Prob > F = e: cod : time cruments = 148 = 8.19 = 0.000 Coef. .3655726 0132823</pre>	4.85 0.0288 0.0288 Robust Std. Err. .0764875 .1242853	t 4.78 -0.11 -1.83 -1.93	Number Obs per P> t 0.000 0.915	of groups = group: min = avg = max = [95% Conf. .2146452 2585258	18 9.9 1 Interval .516500 .231961 .008952 .0078
H0=0 _b[dueu F Sector 35 Group variable Jumber of inst (51, 180) Prob > F lexpK35 lexpK35 L1. dueurol IReR dueu voll	<pre>arol]/(1b[1. F(1, 192) = Prob > F = Prob > F = e: cod : time cruments = 148 = 0.000 Coef. </pre>	4.85 0.0288 0.0288 Robust Std. Err. .0764875 .1242853 .0622594 .1922578 .4483392	t 4.78 -0.11 -1.83 -1.93 -1.19	Number Obs per P> t 0.000 0.915 0.069 0.055 0.234	of groups = group: min = avg = max = [95% Conf. .2146452 2585258 236752 750878 -1.419992	18 9.9 1 Interval .516500 .231961 .008952 .0078 .349361
H0=0 _b[dueu F Sector 35 Group variable Time variable Jumber of inst (51, 180) Prob > F lexpK35 lexpK35 L1. dueurol lReR dueu voll ldist	<pre>arol]/(1b[1. F(1, 192) = Prob > F = Prob > F = e: cod : time cruments = 148 = 0.000 Coef. .3655726 0132823 1139 371509 5353148 7669301</pre>	4.85 0.0288 0.0288 Robust Std. Err. .0764875 .1242853 .0622594 .1922578 .4483392 .141905	t 4.78 -0.11 -1.83 -1.93 -1.19 -5.40	Number Obs per P> t 0.000 0.915 0.069 0.055 0.234 0.000	of groups = group: min = avg = max = [95% Conf. .2146452 2585258 236752 750878 -1.419992 -1.046941	18 9.9 1 Interval .516500 .231961 .008952 .0078 .349361 486918
H0=0 _b[dueu F Sector 35 Group variable Time variable Number of inst F(51, 180) Prob > F lexpK35 lexpK35 L1. dueurol lReR dueu vol1 ldist SumVA35	<pre>arol]/(1b[1. F(1, 192) = Prob > F = Prob > F = e: cod : time cruments = 148 = 0.000 Coef. .3655726 0132823 1139 371509 5353148 7669301 .3906799</pre>	4.85 0.0288 0.0288 Robust Std. Err. .0764875 .1242853 .0622594 .1922578 .4483392	t 4.78 -0.11 -1.83 -1.93 -1.19	Number Obs per P> t 0.000 0.915 0.069 0.055 0.234	of groups = group: min = avg = max = [95% Conf. .2146452 2585258 236752 750878 -1.419992	18 9.9 1 Interval .516500 .231961 .008952 .0078 .349361 486918
H0=0 _b[dueu F Sector 35 Group variable Time variable Number of inst F(51, 180) Prob > F lexpK35 lexpK35 L1. dueuro1 lReR dueu vol1 ldist SumVA35 Alphai	<pre>arol]/(1b[1. r(1, 192) = Prob > F = Prob > F = </pre>	4.85 0.0288 0.0288 Robust Std. Err. 0764875 .1242853 .0622594 .1922578 .4483392 .141905	t 4.78 -0.11 -1.83 -1.93 -1.19 -5.40	Number Obs per P> t 0.000 0.915 0.069 0.055 0.234 0.000	of groups = group: min = avg = max = [95% Conf. .2146452 2585258 236752 750878 -1.419992 -1.046941	18 9.9 1 Interval .516500 .231961 .008952 .0078 .349361 486918
H0=0 _b[dueu F Sector 35 Group variable Time variable Number of inst F(51, 180) Prob > F lexpK35 lexpK35 L1. dueuro1 lReR dueu vol1 ldist SumVA35 Alphai Betaj	<pre>arol]/(1b[1. r(1, 192) = Prob > F = Prob > F = 2: cod : time cruments = 148 = 8.19 = 0.000 Coef. .3655726 0132823 1139 371509 5353148 7669301 .3906799 yes yes</pre>	4.85 0.0288 0.0288 Robust Std. Err. 0764875 .1242853 .0622594 .1922578 .4483392 .141905	t 4.78 -0.11 -1.83 -1.93 -1.19 -5.40	Number Obs per P> t 0.000 0.915 0.069 0.055 0.234 0.000	of groups = group: min = avg = max = [95% Conf. .2146452 2585258 236752 750878 -1.419992 -1.046941	18 9.9 1 Interval .516500 .231961 .008952 .0078 .349361 486918
H0=0 _b[dueu F Sector 35 Group variable Time variable Number of inst F(51, 180) Prob > F lexpK35 lexpK35 L1. dueuro1 lReR dueu vol1 ldist SumVA35 Alphai	<pre>arol]/(1b[1. r(1, 192) = Prob > F = Prob > F = </pre>	4.85 0.0288 0.0288 Robust Std. Err. 0764875 .1242853 .0622594 .1922578 .4483392 .141905	t 4.78 -0.11 -1.83 -1.93 -1.19 -5.40	Number Obs per P> t 0.000 0.915 0.069 0.055 0.234 0.000	of groups = group: min = avg = max = [95% Conf. .2146452 2585258 236752 750878 -1.419992 -1.046941	18 9.9 1

Sector 36_37						
Group variable Time variable Number of inst F(52, 200) Prob > F	: time truments = 149 = 20497.90)		Number	of obs of groups group: min = avg = max =	= 200 = 1 = 9.65
lexpK36_37	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	. Interval]
lexpK36_37 L1. dueurol lReR dueu voll ldist SumVA36_37 Alpha _i Beta _j Tau	.6208955 0423854 0535295 0958173 1819876 5636127 .0038612 yes	.0384104 .0206432 .0577432 .1640435 .1043495	9.66 -1.10 -2.59 -1.66 -1.11 -5.40 0.29	0.271 0.010 0.099 0.269 0.000		.0333559 0128232 .0180464 .1414891 3578462
Arellano-Bond Arellano-Bond		,				
Hansen test of	f overid. rest	rictions: c	chi2(97)	= 111.9	8 Prob > ch	12 = 0.142

References

- Anderson, J. (1979). A Theoretical Foundation for the Gravity Equation. American Economic Review 69: 106–116. <u>http://www.jstor.org/pss/1802501</u>
- Anderson, J., and E. van Wincoop (2003). Gravity with Gravitas: A Solution to Border Puzzle. *American Economic Review* 93: 170–192. <u>http://ideas.repec.org/a/aea/aecrev/v93y2003i1p170-192.html</u>
- Arellano, M., and S. Bond (1991). Some Tests of Specification for Panel Data: Monte Carlo Evidence and a Application to Employment Equations. *Review of Economic Studies* 58: 277–297. <u>http://ideas.repec.org/a/bla/restud/v58y1991i2p277-97.html</u>
- Arellano, M., and O. Bover (1995). Another Look at the Instrumental Variable Estimation of Error-Components Models. *Journal of Econometrics* 68: 29–51. <u>http://ideas.repec.org/a/eee/econom/v68y1995i1p29-51.html</u>
- Baldwin, R. (2006). In or Out: Does It Matter? An Evidence-Based Analysis of the Euro's Trade Effects. CEPR-Report. <u>http://books.google.de</u>
- Baldwin, R., and V. Di Nino (2006). Euros and Zeros: The Common Currency Effect on Trade in New Goods. HEI WP n.21/2006. <u>http://ideas.repec.org/p/nbr/nberwo/12673.html</u>
- Baldwin, R., F. Skudelny and D. Taglioni (2005). Trade Effects of the Euro: Evidence from Sectoral Data. ECB Working Paper No. 446. <u>http://ideas.repec.org/p/ecb/ecbwps/20050446.html</u>
- Baltagi, B.H., P. Egger and M. Pfaffermayr (2003). A Generalised Design for Trade Flows Models. *Economic Letters* 80: 391–397. <u>http://ideas.repec.org/a/eee/ecolet/v80y2003i3p391-397.html</u>
- Blundell, R., and S. Bond (1998). Initial Condition and Moment Restrictions in Dynamic Panel Data Models. *Journal of Econometrics* 87: 115–143. <u>http://ideas.repec.org/a/eee/econom/v87y1998i1p115-143.html</u>
- Bun, M., and F. Klaassen (2002a). Has the Euro Increased Trade? Tinbergen Institute Discussion Paper 02-108/2. <u>http://ideas.repec.org/p/dgr/uvatin/20020108.html</u>
- Bun, M., and F. Klaassen (2002b). The Importance of Dynamics in Panel Gravity Models of Trade. UvA-Econometrics Discussion Paper 2002/18. <u>http://aimsrv1.fee.uva.nl/koen/web.nsf/view/3779408AB588A7D2C1256CEF0047CE23/</u> <u>\$file/0218.pdf</u>
- Deardoff, A.V. (1998). Determinants of Bilateral Trade: Does Gravity Work in a Neoclassical World? In Jeffrey A. Frankel (ed.), *The Regionalisation of the World Economy*. Chicago, University of Chicago Press for NBER, pp. 7–22. books.google.de
- De Benedictis, L., and C. Vicarelli (2005). Trade Potential in Gravity Panel Data Models. *Topics in Economic Analysis and Policy* 5(1). <u>http://ideas.repec.org/a/bep/eaptop/v5y2005i1p1386-1386.html</u>

De Benedictis, L., R. De Santis and C. Vicarelli (2005). Hub-and-Spoke or Else? Free Trade Agreements in the Enlarged EU. *European Journal of Comparative Economics* 2 (2): 245–260.

http://ideas.repec.org/a/liu/liucej/v2y2005i2p245-260.html

- de Nardis, S., and C. Vicarelli (2003). Currency Unions and Trade: The Special Case of EMU. *Weltwirtschaftliches Archiv/Review of World Economics* 139: 625–649. <u>http://ideas.repec.org/a/spr/weltar/v140y2004i3p625-649.html</u>
- de Nardis, S., R. De Santis and C. Vicarelli (2008). The Euro's Effects on Trade in a Dynamic Setting. European Journal of Comparative Economics 5 (1). <u>http://ideas.repec.org/p/isa/wpaper/80.html</u>
- De Santis, R., and C. Vicarelli (2007). The Deeper and Wider EU Strategies of Trade Integration. *Global Economy Journal* 7 (4). <u>http://ideas.repec.org/p/isa/wpaper/79.html</u>
- Evenett, S.J., and W. Keller (2002). On Theories Explaining the Success of Gravity Models. *Journal of Political Economy* 110: 281–316.
- Faruqee, A. (2004). Measuring the Trade Effects of EMU. IMF Working Paper WP/04/154. http://ideas.repec.org/p/imf/imfwpa/04-154.html
- Feenstra, R. (2004). Advanced International Trade. Princeton, N.J.: Princeton University Press. books.google.de
- Fernandes A. (2006). Trade Dynamics and the Euro Effects: Sector and Country Estimates: Mimeo. <u>http://ideas.repec.org/p/hhs/iiessp/0746.html</u>
- Flam, H., and H. Nordstrom (2003). Trade Volume Effects of the Euro: Aggregate and Sector Estimates. Institute for International Economic Studies. Mimeo.
- Flam, H., and H. Nordstrom (2006). Euro Effects on the Intensive and Extensive Margins of Trade: Institute for International Economic Studies: Mimeo. <u>http://ideas.repec.org/p/hhs/iiessp/0750.html</u>
- Glick, R., and A. Rose (2002). Does a Currency Union Affect Trade? The Time Series Evidence: *European Economic Review* 46(6): 1125-1151.29 <u>http://ideas.repec.org/a/eee/eecrev/v46y2002i6p1125-151.html</u>
- Helpman, E., and Krugman P. (1985). Market Structure and Foreign Trade: Increasing Returns, Imperfect Competition and the International Economy. Cambridge, Mass.: MIT Press. http://books.google.de
- Marques, H., and J. Spies (2006). Trade Effects of the Europe Agreements. University of Hohenheim Discussion Paper n. 274. http://ideas.repec.org/p/hoh/hohdip/274.html
- Melitz, M. (2003). The Impact of Trade on Aggregate Industry Productivity and Intra-Industry Reallocations. *Econometrica* 71(6): 1695–1726.
- Melitz, M., and G. Ottaviano (2005). Market Size, Trade and Productivity. Harvard University, Department of Economics. <u>http://papers.ssrn.com/sol3/papers.cfm?abstract_id=734049</u>

- Micco, A., E. Stein and G. Ordoñez (2003). The Currency Union Effect on Trade: Early Evidence from EMU. *Economic Policy* 18(37): 317–356. <u>http://ideas.repec.org/a/bla/ecpoli/v18y2003i37p315-356.html</u>
- Roodman D. (2006). How to Do Xtabond 2: An Introduction to "Difference" and "System" GMM in Stata, WP n. 103, Centre for Global Developments, December. www.cgdev.org/files/11619 file HowtoDoxtabond8 with foreword.pdf
- Rose, A. (2000). One Money, One Market: Estimating the Effect of Common Currencies on Trade. *Economic Policy* 15(30): 7–46. http://ideas.repec.org/p/nbr/nberwo/7432.html
- Rose, A., and E. Van Wincoop (2001). National Money as a Barrier to International Trade: The Real Case for Currency Union. *American Economic Review* 91(2): 386–390. http://ideas.repec.org/a/aea/aecrev/v91y2001i2p386-390.html
- Rose, A., and T.D. Stanley (2005). A Meta Analyses of the Effect of Common Currency on International Trade. *Journal of Economic Survey* 19(July): 347–365. http://ideas.repec.org/p/nbr/nberwo/10373.html

Please note:

You are most sincerely encouraged to participate in the open assessment of this article. You can do so by either rating the article on a scale from 5 (excellent) to 1 (bad) or by posting your comments.

Please go to:

www.economics-ejournal.org/economics/journalarticles/2008-17

The Editor