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1 Introduction

A central empirical finding from the use of dynamic factor models in applied
macroeconomics is that a few factors can explain a large fraction of the to-
tal variance of many macroeconomic series. The factor structure is typically
used for signal extraction and forecasting, although in some cases maximum
likelihood-based methods can be used to test hypotheses of economic interest.
Extensive surveys of the dynamic factor model literature can be found in Bai
and Ng (2008), Stock and Watson (2011) and Stock and Watson (2016).

Maximum likelihood estimation for dynamic factor models with a high-
dimensional panel of time series becomes rapidly infeasible given the large num-
ber of parameters. However, in Doz et al. (2011, 2012) a solution was put
forward to overcome this problem via either (a) a two-step hybrid approach
that links the simplicity and speed of principal components to the efficiency
of the Kalman smoother or (b) quasi-maximum likelihood where factor esti-
mates are computed iteratively using the Kalman smoother on the state-space
representation via the expectation–maximization (EM) algorithm.

Both approaches are robust to cross-sectional misspecification, time-series
correlation of the idiosyncratic components, and non-Gaussianity. Since then,
state-space based maximum likelihood methods have been increasingly adopted
in the applied literature, e.g. Luciani (2015) and Scotti (2016), among others.

In this paper, we replicate and extend the Monte Carlo experiment presented
in Doz et al. (2012) on the suitability of ML for extracting dynamic factors from
large datasets, by using different software, a larger number of replications and
a wider set of scenarios. We find that most of the statements in the original
article are supported, but the relative quality of full ML estimation, compared
to the alternative procedures proposed in the same paper, could be substantial
in some cases, whereas in other settings it may not be so decisive to outweigh
the extra computational cost.

For our replication exercise, we used the DFM package for gretl (see Lucchetti
and Venetis (2019)), which implements three estimators for dynamic factor mod-
els, namely the benchmark principal components estimator (PC), the two-step
Kalman smoother based estimator (TS) put forward by Doz et al. (2011) and
the quasi-maximum likelihood EM based estimator (ML) by Doz et al. (2012).

The paper is organised as follows: section 2 describes the data generating
process, section 3 offers a narrow sense replication of the Monte Carlo study in
Doz et al. (2012) and section 4 extends (wide sense replication) the experiment,
in a direction which should address common concerns of practitioners. Section
5 briefly concludes the paper by summarising our findings.

2 Setup of the experiment

The models that we consider can be written in state-space representation as

xt
N×1

= Λ0ft + Λ1ft−1 + · · ·+ Λsft−s + et (1)

ft
q×1

= A1ft−1 +A2ft−2 + · · ·+Apft−p + ut (2)

where xt is a vector of N standardised observable variables and ft is the q-
element vector of (unobserved) common dynamic factor; the shocks to the ob-
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servation equation (1), et, are known as the idiosyncratic component, and are
assumed to be uncorrelated with ft at all leads and lags. It is assumed that the
elements of et are weakly correlated both cross-sectionally and serially, so that
the factors ft summarise the most relevant cross-covariance properties of the
variables. Both processes ft and et are assumed to be second-order stationary.

It should be noted that s, the lag order in the observation equation (1), is
assumed to be finite here, in accordance with the study we are replicating. In
fact, a sizeable body of literature (mainly by Forni, Hallin, Lippi and several co-
authors) has analysed the so-called generalised dynamic factor model, in which
this assumption is relaxed, and estimation is typically carried out via spectral
methods. See Forni et al. (2000, 2005, 2015, 2017) and for recent applications
see Barigozzi and Hallin (2015, 2017) and Barigozzi et al. (2018).

In accordance with Doz et al. (2012), we consider the following data generat-
ing process in our Monte Carlo study: the idiosyncratic shocks were generated
as

et = Det−1 + vt, vt ∼ N.i.d (0N , T ) (3)

where D is a diagonal matrix. We call di its i-th diagonal entry. As for the
matrix T ,

Ti,j = τ |i−j| (1− didj)
√
γiγj (4)

γi =
βi

1− βi
V ar (χi,t) (5)

where χi,t = λ′0,ift + ... + λ′s,ift−s denotes the ith common component. The
Toeplitz matrix T is the covariance matrix of the vector et, so the parame-
ter τ controls for the amount of cross-correlation in the idiosyncratic errors,

Corr (ei,t, ej,t) = τ |i−j|. The parameter βi =
V ar(ei,t)

V ar(xi,t)
denotes noise variance

proportion for the i−th variable and is drawn from the uniform distribution
βi ∼ i.i.d. U ([u, 1− u]). When u = 0.5, “observables” xi,t have cross-sectionally
homoskedastic idiosyncratic components. The exact factor model corresponds
to the case τ = 0 and D = 0. The elements of the loadings matrices Λi were
drawn from a standard Normal distribution. The above data generating process
is considerably broader than the one adopted by Doz et al. (2012), which can
be derived as a special case of equations (1)-(5). Similar experiments have also
been performed by Breitung and Tenhofen (2011) and Bai and Li (2016).1

The aim of the experiment is to carry out a comparison between estimators
on their ability to reconstruct the latent factors. As is well known, the individual
factors cannot be estimated, so the comparison will be based on a statistic that
measures the closeness of the space spanned by the “true” simulated factors ft
and their estimators f̂t. If we denote by F and F̂ the matrices holding ft and
f̂t, respectively, the statistic we use is the trace R2, that can be written as,

TR =

tr

[
F ′F̂

(
F̂ ′F̂

)−1
F̂ ′F

]
tr (F ′F )

1In Forni et al. (2018) a comparison between alternative modelling techniques is also per-
formed, but with a focus on forecasting.
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and satisfies 0 ≤ TR ≤ 1; it tends to 1 as the canonical correlation between
estimated and true factors increases. Values of TR close to 0 indicate high dis-
crepancies between the space spanned by the actual and the estimated factors.2

The three estimators considered are principal components (PC ), the two-
step estimator (TS ) and the maximum likelihood estimator (ML).

3 Replication of the original results

The first exercise we perform is a narrow sense replication exercise, in which the
relative performance of three different methods for factor extraction is investi-
gated.

The original experiment assumed s = 0 and p = 1 as well as A1 = α · Iq,
D = d · IN with α, d being scalar-valued. The parameter u is set to 0.1 in
all experiments, so that the idiosyncratic components et can have substantially
different variances and the observable series xt exhibit different signal-to-noise
ratios.

The three tables 2, 4, 6 present a reproduction of all Monte Carlo results from
the original study of Doz et al. (2012). The original study’s results are shown
in tables 1, 3, 5 and are placed side-by-side in all tables with our replicating
study’s corresponding estimates. The data generation process (DGP) is exactly
the same as that of the original paper, the only difference is that we ran the
Monte Carlo experiment with 5000 replications, instead of 500.

The tables contain several subtables, each of which has different values of T
(the sample size) for each row and of N (the number of observable variables)
for each column. The first sub-table contains the average of the TR statistic
for the ML estimator and the second one the average number of EM iterations
needed to achieve convergence, as a rough proxy for computational speed.

The three sub-tables below display the relative performance of the PC and
TS estimators compared to the ML estimator, measured by the trace ratios
TRML/TRPC , TRML/TRTS .3

As can be seen, results are qualitatively identical and quantitatively very
close to the original article: the maximum likelihood estimator appears to have
a slight edge on the other two methods, especially so when the idiosyncratic
disturbances et are closer to the “ideal” factor models (that is, both their cross-
sectional correlation and autocorrelation are 0). It is noteworthy that the rel-
ative advantage of ML tends to vanish as either the time dimension T or the
cross-sectional dimension N increase. Moreover, the extra computational cost
for the extraction of factors via ML may be substantial (especially for small
samples).

4 Extended replication

In this section, we extend the original Monte Carlo experiment so as to shed
more light on the relative properties of the three factor extraction methods

2We are using this measure of the ability to reconstruct the factor space in accordance with
the original article, but we would like to stress that this is a purely descriptive statistic and
we are not in the position of judging if difference between methods are statistically significant.

3We dropped results with TR < 0.05 to avoid spuriously large trace ratios and we ensure
that initial conditions satisfy stationarity restrictions.
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considered in the previous section.
The additional set of simulations we run can be motivated as follows: in

most cases, the interest of the practitioner is in using the estimated factors as a
by-product for a model of interest, that can be used for forecasting/nowcasting
purposes, structural analysis or more.

In a time-series context (especially at higher frequencies), it is very likely
that the factors may affect the observables in a lag-distributed pattern, so the
proper value of s in equation (1) is larger than 0. As is well known (for example,
see Bai and Ng (2007)), equation (1) can be re-written in a “static” form

xt = ΛFt + et,

where the vector Ft contains ft and its lags, suitably stacked, and Λ is the
horizontal concatenation of the Λi matrices. The dimension of the Ft vector is
q · (s + 1). The interest of the practitioner is arguably to use a method that
reconstructs as closely as possible the space spanned by Ft. The possibilities
we investigate are

1. compute the q-vector f̂t via ML and then stack its lags to form F̂t;

2. compute the q-vector f̂t via TS and then stack its lags to form F̂t;

3. compute F̂t by extracting the first q · s principal components;

4. approximate F̂t via the first principal component;

5. approximate F̂t via the first principal component and its lags.

In order to initialise the algorithm, we use the method outlined4 in Stock
and Watson (2005, p. 13), Forni and Gambetti (2010, p. 206) and Lütkepohl
(2014, p. 14) to retrieve the dynamic factor space from principal components.
It entails running a p-order VAR on estimated principal components and then
performing PC extraction on the residuals.

The last two methods are clearly sub-optimal, but we consider them to
evaluate how serious the shortcoming is, in the light of the fact that in many
cases it is customary for practitioners to use the first principal component as
the “dominant” factor, regardless of any statistically oriented criterion, (see for
example Bai and Ng (2007)).

We performed the experiment with a wide variety of alternative values for the
DGP parameters; to be specific, we experimented with different values for α, d, q
and s, thereby considering different scenarios on factor persistence, idiosyncratic
error persistence and lag specifications in the observation equation; the full
results are not tabulated here for the sake of conciseness, but are available upon
request. The results for the experiment we chose to show, as representative of
the whole set of results, are displayed in table 7.

As shown in table 7, ML clearly dominates TS and all the methods based on
a limited set of principal components. The only way to achieve a qualitatively
similar approximation to the space spanned by the true factors is by using the
full set of principal components, compared to which the advantage of using ML
becomes smaller, especially for larger values of T and N .

4In an alternative multi-step estimation setup based on principal components and least
squares.
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Table 7: Extended experiment

N = 10 N = 25 N = 50 N = 100
TRML

T = 50 0.58 0.65 0.69 0.70
T = 100 0.70 0.79 0.81 0.82

Number of iterations

T = 50 46 27 22 21
T = 100 25 15 13 12

TRML/TRTS

T = 50 1.57 1.25 1.12 1.11
T = 100 1.70 1.22 1.16 1.08

TRML/TRPC

T = 50 1.09 1.08 1.06 1.04
T = 100 1.13 1.09 1.05 1.03

TRML/TRPC,1

T = 50 1.76 1.65 1.62 1.59
T = 100 1.86 1.76 1.69 1.66

TRML/TRPC,1,lags

T = 50 1.59 1.54 1.52 1.50
T = 100 1.74 1.68 1.63 1.60

Notes: Comparing alternative dynamic factor extraction methods when s = 1.
Data generation process input set at: s = 1, p = 1, α = 0.9, d = 0.5, τ = 0.5,
u = 0.1, q = 2.
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The EM-based ML method exhibits a noticeably larger overhead in terms of
computational complexity than in the original Monte Carlo experiment by Doz
et al. (2012). This was to be expected, since the structure of the model we are
considering is significantly more complex in terms of lag specification (s = 1 in
equation (1)).

Perhaps the relative superiority of PC to TS may be considered surprising
at first sight. However, the two methods use a different number of factors, since
PC uses s·q factors and estimates consistently the factor space, whereas TS only
uses q factors (plus their lags), so this result should be taken as an indication
that TS may perform rather poorly in finite samples.

It is interesting to compare the three PC-based models under the viewpoint
of misspecification: clearly, method 3 (PC ) is a correct way to estimate the
full set of static factors, whereas methods 4 and 5 (PC,1 and PC,1,lags) are
not, in that they are based on a specification of equation (1) where s or q
are too small. It is evident - last two sub-panels of table 7 - that the effects of
misspecification are quite dramatic and larger values of T and N do not mitigate
the shortcomings.

Our set of extra results can be summarised as follows: the most important
element to consider is persistence, either as a characteristic of latent factors or
as the lag length in the observation equation (1). When persistence is high,
factors are estimated more accurately with maximum likelihood than any of the
other methods we considered; the only exception is principal components for
the full set of static factors, which on the other hand has the disadvantage of
requiring a set of q · s series instead of just q. Anyhow, the near-equivalence of
ML and PC requires T and/or N to be rather large; in mid-sized samples ML
retains a noticeable edge.

5 Conclusions and possible extensions

We use an independent software implementation to replicate the simulation
results of Doz et al. (2012) regarding factor estimation in dynamic settings using
the benchmark principal component method, a two step Kalman smoother based
method and EM-based maximum likelihood estimation.

Our narrow sense replication exercise fully confirms the results in the orig-
inal article. As for our extended replication experiment, we find that ML is
the dominant method in a wide array of situations, notably when persistence is
substantial. Those results go one step further than the closing remark by Doz
et al. (2012) “...Efficiency improvements are relevant when the factor extraction
is difficult, that is, when there are more common factors to estimate... ”, by
including a richer set of dynamic specifications and the possibility of misspeci-
fication.

The present work could be extended in several directions: for instance, the
lag orders s and p and the number of dynamic factors q are assumed to be
known and fixed ex ante; it may be conjectured that different methods could
display different performance if the lag orders have to be selected or if q has to
be estimated through criteria such as the one put forward in Hallin and Lǐska
(2007). Another possible extension could be using, for the comparison, a DGP
taken from some empirical exercise. These extensions, however, would broaden
the present article’s scope considerably and are left for future work.
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