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Abstract 
Replication crisis and debates about p-values have raised doubts about what we can 
statistically infer from research findings, both in experimental and observational studies. 
With a view to the present debate on inferential errors, this paper systematizes and 
discusses experimental designs with regard to the inferences that can and – perhaps more 
important – that cannot be made from particular designs. 
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1 Introduction 

Starting with CHAMBERLIN (1948), SAUERMANN and SELTEN (1959), HOGGATT (1959), SIEGEL and 

FOURAKER (1960), and SMITH (1962), economists have increasingly adopted experimental designs over 

the last decades. Their motivation to do so was to obtain – compared to observational studies – more 

trustworthy information about the causalities that govern human behavior. Unfortunately, it seems that 

in the process of adopting the experimental method, no tightly inference-focused systematization of 

economic experiments has emerged. Some scholars use randomization as the defining quality and equate 

“experiments” with “randomized controlled trials” (ATHEY and IMBEN 2017). Despite ensuing changes 

in the nature of feasible inferences, other researchers include non-randomized designs into the definition 

as long as behavioral data are generated through a treatment manipulation (HARRISON and LIST 2004). 

One might speculate that economists tend to conceptually stretch the term “experiment” because the 

seemingly attractive label suggests that they have adopted “trustworthy” research methods that are com-

parable to those in the natural sciences. Whatever the reason, confusion regarding the different types of 

research designs that are labeled as experiments entails the risk of inferential errors.  

The inferences that can be made from controlled experiments based on the ceteris paribus approach 

where “everything else but the item under investigation is held constant” (SAMUELSON and NORDHAUS 

1985: 8) are different from those that can be made from observational studies. The former rely on the 

research design to ex ante ensure ceteris paribus conditions that facilitate the identification of causal 

treatment effects. Observational studies, in contrast, rely on an ex post control of confounders through 

statistical modeling that, despite attempts to move from correlation to causation, does not provide a way 

of ascertaining causal relationships that is as reliable as a strong ex ante research design (ATHEY and 

IMBEN 2017). But even within experimental approaches, different designs facilitate different inferences.  

In this paper, we address the question of statistical and scientific induction and, more particularly, the 

role of the p-value for making inferences beyond the confines of a particular experimental study. We 

aim at an adequate differentiation of experimental designs that contributes to a better understanding of 

the inferences that can and – perhaps more important – that cannot be made from particular designs. For 

the sake of simplicity, we limit the discussion of treatment comparison to binary treatments. 

2 Experiments aimed at identifying causal treatment effects 

The label “experiment” is first of all used for studies that, instead of using survey data or pre-existing 

observational data, are based on a deliberate intervention (treatment) and a design-based control over 

confounders. Identifying the effects of the treatment on the units (subjects) under study requires a com-

parison; often no-treatment observations are compared to with-treatment observations. Two different 

designs are used to ensure control and thus ceteris paribus conditions: (1) Randomized controlled trials 

rely on a between-subject design and randomization to generate equivalence between compared groups; 

i.e. we randomly assign subjects to treatments to ensure that known and unknown confounders are bal-

anced across treatment groups (statistical independence). (2) Non-randomized controlled trials, in con-

trast, rely on a within-subject design and before-and-after comparisons; i.e. we try to hold everything 

but the treatment constant over time and compare the before-and-after-treatment outcomes for all sub-

jects who participate in the experiment.1  

The persuasiveness of causal claims depends on the credibility of the alleged control. Comparing ran-

domized treatment groups is generally held to be a more convincing device to identify causal relation-

ships than before-and-after treatment comparisons (CHARNESS et al. 2012). This is due to the fact that 

                                                      
1 The term “non-randomized controlled trial” is also used for between-subject designs when the technique of as-

signing subjects to treatments, e.g. alternate assignment, is not truly random but claimed to be as good as a random.  
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randomization balances known and unknown confounders across treatment groups and thus ensures 

statistical independence.2 In contrast, efforts to hold everything else but the treatment constant over time 

in before-and-after comparisons are limited by the researcher’s capacity to identify and fix confounders. 

A particular threat to causal inference arises when subjects’ properties change through treatment expo-

sure. That is, holding “everything” but the treatment constant over time can be difficult because sequen-

tially exposing subjects to multiple treatments may cause order effects that violate the ceteris paribus 

condition (CHARNESS et al. 2012). However, as CZIBOR et al. (2019) emphasize, within-subject designs 

also have their advantages: besides the fact that they can more effectively make use of small experi-

mental groups, they facilitate the identification of higher moments of the distribution. Whereas between-

subject designs are limited to estimating average treatment effects, within-subject designs enable re-

searchers to look at quantiles and assess heterogeneous treatment effects among subjects. 

Due to the particular credibility of randomization as a means to establish control over confounders, the 

use of the term “experiment” – accompanied by the label “natural” – has even been extended to obser-

vational settings where, instead of a deliberate treatment manipulation by a researcher, the socio-eco-

nomic or natural environment has randomly “assigned treatments” among some set of units. Regarding 

this terminology, DUNNING (2013: 16) notes “that the label ‘natural experiment’ is perhaps unfortunate. 

[…], the social and political forces that give rise to as-if random assignment of interventions are not 

generally ‘natural’ in any ordinary sense of that term. [… and], natural experiments are observational 

studies, not true experiments, again, because they lack an experimental manipulation. In sum, natural 

experiments are neither natural nor experiments” but may be structurally close to randomization.3 

3 Inferences in experiments based on treatment comparisons  

Sharing the essential approach of providing for an ex ante, design-based control over confounders 

through the introduction of a well-defined treatment into an otherwise controlled environment, random-

ized-treatment-group comparisons and before-and-after-treatment comparisons facilitate causal infer-

ences. The meaning of statistical inference and the p-value, however, are different in the two cases. In 

randomized-treatment-group comparisons, the p-value linked to the treatment difference is usually 

based on the approximation of the randomization distribution (cf. RAMSEY and SCHAFER 2013), i.e. the 

distribution of the difference between group averages and the standard error used in a two-independent-

sample t-test. Regardless of how participating subjects were recruited, the resulting p-value targets the 

following question: when there is no treatment-group difference, how likely is it that we would find a 

difference as large as (or larger than) the one observed when we repeatedly assigned the experimental 

subjects at random to the treatments under investigation (VOGT et al. 2014: 242). In randomized con-

trolled experiments, the evaluation of internal validity and causal inference can be aided by statistical 

inference based on the p-value, which represents a continuous measure of the strength of evidence 

against the null hypothesis of there being no treatment effect in the group of experimental subjects. 

While scientific inferences beyond the confines of the experimental group under study are often desired, 

it must be recognized that randomization-based inference is no help for generalizing from experimental 

subjects to a broader population from which they have been recruited. Using statistical inference to help 

make such generalizations would require that, besides being randomized, the recruited experimental 

                                                      
2 DUFLO et al. (2007) note that randomization only achieves that confounders are balanced across treatments “in 

expectation;” i.e. balance is only ensured if we have a “sufficiently” large experimental group to start with (law of 

large numbers). In the case of a very small experimental group, an observed difference between two randomized 

treatment groups could easily be contaminated by unbalanced confounders.  
3 HARRISON and LIST (2004) speak of “doing natural field experiments” to tag field experiments with subjects from 

the social group of interest and a covert manipulation of subjects’ real-life environment. For terminological clear-

ness it should be noted that such field experiments are not natural experiments but deliberate interventions. 
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subjects had been randomly drawn from a defined parent population. If they are not, extending inference 

from the experimental subjects to any broader group must be based on scientific reasoning beyond sta-

tistical measures such as p-values. This implies accounting for contextual factors and the entirety of 

available knowledge including external evidence for the phenomenon under study.4 

When we not only randomize a given group of experimental subjects but also recruit them from a defined 

parent population through random sampling, the question arises of how to link randomization-based 

inference, which is concerned with internal validity and causality, to sampling-based inference, which 

is concerned with external validity and generalization towards the broader parent population. The “true” 

standard error of the randomization distribution would reflect the idea of frequently re-randomizing a 

given group of, let’s say, n =100 subjects in hypothetical experimental replications. The standard error 

in a two-independent-sample t-test, in contrast, presumes that we repeatedly draw random samples of 

n = 100 subjects from a population before carrying out the randomized experiment. As stated above, 

two-sample t-tests are often also used for causal inferences from randomized-treatment-group compar-

isons even though they are conceptually based on random sampling from populations. If we accept the 

sampling-based standard error as an approximation of the randomization-based standard error (ATHEY 

and IMBEN 2017) – it is an upwardly-biased approximation because it considers sampling error in addi-

tion to randomization error – the resulting p-value can be used as an aid for simultaneously assessing 

internal and external validity. One should always be explicit about the fact, however, that the interpre-

tation of the p-value must be strictly limited to causal inferences within the given group of experimental 

subjects when the group of experimental subjects was not recruited through random sampling. 

Contrary to randomization, a p-value associated with the treatment difference in before-and-after-treat-

ment comparisons is conceptually per se based on random sampling and the sampling distribution, i.e. 

the distribution of the average individual before-and-after difference and thus the standard error in a 

paired t-test. This is just another label for a one-sample t-test on the variable “individual before-and-

after differences.” Statistical inference based on the one-sample p-value implies that we concern our-

selves with the question of what we can learn about the population mean from a random sample. In other 

words, we are asking the following question: assuming there is no difference in the population, how 

likely is it that we would find an average before-and-after difference as large as (or larger than) the one 

observed if we carried out very many statistical replications and subjected repeatedly drawn random 

samples to the same treatment procedure. Therefore, our p-value is a continuous measure of the strength 

of evidence against the null of there being no treatment effect in the parent population. While being an 

inferential tool to help make generalizations from the sample of experimental subjects to a broader pop-

ulation (external validity), it must be recognized that a p-value in before-and-after comparisons is no 

help whatsoever for assessing causality. Instead, causality claims hinge on the credibility of the ceteris 

paribus claim and must be based on transparent experimental protocols that show what exactly research-

ers did to hold everything but the treatment constant over time. A p-value in a one-sample t-test informs 

us about the random sampling error, irrespective of whether our experimental procedure was successful 

in holding everything but the treatment constant over time or not. The only important assumption is that 

the treatment that leads to the observation of individual before-and-after differences presumably remains 

unchanged over all statistical replications. One should be clear that there is no role for a p-value when 

subjects in before-and-after-treatment comparisons are not randomly recruited.  

                                                      
4 Even though the p-value is the cornerstone of the statistical methodology that is currently in dominant use, it is 

but a summary statistic of the data at hand from which inductive inferences do not flow automatically. Elaborating 

on the per se limited inferential content of the p-value is not within this paper’s scope, however. For a discussion 

see for example, AMRHEIN et al. (2019), HIRSCHAUER et al. (2018, 2019), MCSHANE et al. (2017), TRAFIMOV et 

al. (2018), WASSERSTEIN and LAZAR (2016), WASSERSTEIN et al. (2016, 2019), or ZILIAK and McCloskey (2008).  
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Being a probabilistic concept based on a chance model (i.e. a hypothetical replication of a chance mecha-

nism), p-values are not applicable if there is no random process of data generation (either randomization 

or random sampling). When there is no randomization, maintaining the p-value’s probabilistic foundation 

therefore poses serious conceptual challenges when we already have the data of the whole target popu-

lation (DENTON 1988: 166f.). An example is an experimental within-subject design where experimental 

subjects are clearly a non-random convenience sample, or where we do not want to generalize beyond 

the confines of the particular sample to start with. In such cases, the sample already constitutes the finite 

population to which we are limited. Due to the lack of a chance mechanism that could hypothetically be 

replicated, there is no role for the frequentist p-value and statistical significance testing. The fact that 

there is no room for statistical inference when we already have data of the entire inferential target pop-

ulation is formally reflected in the finite population correction factor. Rather than assuming that a sample 

was drawn from an infinite population – or at least that a small sample of size n was drawn from a very 

large population of size N – the finite population correction factor (1-n/N)0.5 accounts for the fact that, 

besides absolute sample size, sampling error decreases when the sample size becomes large relative to 

the whole population. The correction reduces the standard error and is commonly used when sample 

share is more than 5% of the population (KNAUB 2008). Having the entire population corresponds to a 

correction factor of zero and thus a corrected standard error of zero. 

If p-values are nonetheless calculated for entire populations (or non-random samples for that matter), 

one would have to imagine an infinite “unseen parent population” (or “superpopulation”), i.e. an under-

lying stochastic mechanism that is hypothesized to have generated the observations in the observed 

sample. DENTON (1988) critically notes that this rhetorical device, which is also known as “great urn of 

nature,” does not evoke wild enthusiasm from everybody. “However, some notion of an underlying 

[random] process – as distinct from merely a record of empirical observations – has to be accepted for 

the testing of hypotheses in econometrics to make any sense” (DENTON 1988: 167). We would add that 

researchers who resort to the p-value in such circumstances should explicitly explain why and how they 

base their inferential reasoning on the notion of a superpopulation. When doing so, they should be clear 

that this notion does not facilitate statistical inference in the conventional sense of generalizing towards 

a numerically larger parent population. Instead, inferences would be limited to the unseen superpopula-

tion in terms of a random process that is supposed to “apply” to only and exclusively the subjects who 

happen to be in the sample. 

4 Inferences in experiments without treatment comparisons 

In experimental treatment comparisons, the term “control” means first of all generating ceteris paribus 

conditions (ex-ante control over confounders) with the objective of identifying causal treatment effects. 

We know that this ex-ante control comes in two forms: in randomized-treatment-group comparisons, 

control over confounders is achieved without exercising control over the environment; i.e. randomiza-

tion, which balances confounders (including unknown ones) across treatment groups, replaces environ-

mental control. In before-and-after-treatment comparisons, in contrast, control over confounders re-

quires that we exercise control over the environment and fix and maintain all factors that could influence 

subjects’ behaviors besides the treatment under investigation. 

Often, economic experiments do not settle for identifying causal treatment effects among experimental 

subjects in more or less artificial experimental environments. Instead, experimenters want to learn what 

governs the behaviors of certain social groups in relevant real-world contexts and, eventually, how pol-

icy interventions would work in these contexts. This requires not only going beyond internal validity 

and causality. It also requires moving external validity beyond statistical inference, which is solely con-

cerned with random error in repeated random sampling from the same population and thus the sample-
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population relationship. That is, we cannot limit ourselves to the question of how we can generalize 

from the behavior of experimental subjects in a particular but potentially uninformative experiment to 

the would-be behavior of the parent population in this very experiment. Instead, we need to address the 

experiment-real-world relationship. Or using a well-known expression coined by SMITH (1982), we 

should exercise “control over subjects’ preferences” and search for experimental designs which ensure 

that subjects’ choices in the experiment reveal their “true” preferences. In the terminology of measure-

ment theory we would say that, besides the uncertainty of the measurement due to sampling error (meas-

urement precision/reliability; signal-to-noise ratio), we are now concerned with the accuracy of the 

measurement (measurement validity) and the question of whether the measurement instrument “exper-

iment” yields a manifest variable (observed experimental behavior) that is informative regarding the 

latent variable of interest, i.e. people’s true preferences. It should be noted that an experiment’s meas-

urement accuracy cannot be evaluated by statistical tools. It can only be evaluated based on the logical 

consistency and plausibility of the argument that is put forward in justification of the particular experi-

mental design and/or in relation to a presumed standard of knowledge. 

Control over subjects’ preferences is crucial for the external validity of economic experiments irrespec-

tive of whether they are based on treatment comparisons or not. However, this aspect of external validity 

is often more salient in economic experiments that study only one treatment and do not aim for causal 

inferences through ceteris paribus treatment comparisons. While still relying on an experimenter’s in-

tervention, such experiments are focused on measuring latent preferences such as individual risk or 

social preferences. Prominent examples are experimental games such as prisoner’s dilemmas, trust 

games, or public goods games that are implemented to find out, for instance, whether the choices made 

by individuals are in line with conventional rational choice predictions.5 For example, one might delib-

erate how large the real payments (incentives) that are linked to subjects’ abstract earnings in a dictator 

“game” would have to be to achieve a valid measurement in that these incentives make subjects reveal 

their true prosocial preferences. Another example is the attempt to avoid “experimenter demand effects” 

that often threaten external validity because subjects are usually aware of participating in an experiment 

and often inclined to please experimenters (DE QUIDT et al. 2018). When assessing the quality of the 

experimental control over subjects’ preferences, one should be clear that this aspect of external validity 

has nothing to do with p-values. In other words, we may jointly have randomization and random sam-

pling and control over subjects’ preferences in an experiment. However, we may also have an experi-

ment without randomized treatment comparison and without random recruitment, but with an attempted 

control over subjects’ preferences. Imagine an incentivized dictator game carried out with a non-random 

convenience sample of students who happen to be in an experimenter’s classroom on a particular Friday. 

In this case, all inductive inferences – be they towards the experimental behavior of a broader population 

of students or other demographic groups, or towards the real-life behavior of the classroom students or 

broader populations – must be based on scientific arguments beyond p-values. It would therefore be a 

gross abuse to use the term “statistical significance” for a purported corroboration of such inferences. 

Control over the environment, in terms of shaping, knowing, and describing all behaviorally relevant 

factors besides the treatment of interest, generally decreases from lab experiments to field experiments, 

irrespective of whether they are based on treatment comparisons or not. Any taxonomic proposal that 

takes account of the diminishing control over the environment from the lab to the field is open to debate 

– at least for non-randomized experiments. Attaching the label “experiment” to studies that rely on 

proper randomization to control for confounders is likely to cause little controversy even when they are 

carried out in the field where it is difficult to know, let alone fix all relevant factors besides the treatment. 

                                                      
5 Of course, all these games could also be used within a randomized design. Simply imagine an experiment in 

which subjects are randomly assigned to two dictator experiments with differing initial endowments.   



 7 

In non-randomized designs, in contrast, the classification is likely to become controversial at some point; 

i.e. an arguable minimum level of control over the relevant environment would seem to be a prerequisite 

for calling a non-randomized approach an experiment. Irrespective of the label, we must take account 

of the specific research design when making inferences: (1) Causal inference must be based on scientific 

arguments but cannot be supported by a p-value when an experiment is not based on randomization. An 

important example are experimental within-subject designs. When causal inferences are based on doubt-

ful claims of control over confounders, one should consider alternative experimental designs (e.g. ran-

domized instead of non-randomized designs) or even a regression-based statistical control of observable 

confounders.6 (2) Inference dealing with the sample-population relationship (generalization) must be 

based on scientific reasoning but cannot be supported by a p-value when there was no random sampling 

from a broader (numerically larger) population. This is the case, for example, when randomized exper-

iments are carried out with subjects from non-random convenience sample. (3) Inference dealing with 

the experiment-real-world relationship and thus the question of whether experimental subjects reveal 

their “true” preferences in a particular experiment cannot be supported by a p-value at all. When the 

control over subjects’ preferences is in question, one should avoid overhasty conclusions and check the 

robustness of results in replication studies with more valid experimental designs – preferably in field 

experiments carried out with subjects from the relevant parent population and a manipulation of sub-

jects’ real-life environments. 

5 Inferences in quasi-experiments  

Often, non-randomized study designs focus on the behavioral outcomes induced by an intervention in 

one social group as opposed to another. Such designs are examples of “quasi-experiments” (CAMPBELL 

and STANLEY 1966) in which the ceteris paribus condition is in question. For illustration, imagine a 

dictator “game” in which a mixed-sex group of experimental subjects are used as first players who can 

decide which share of their initial endowment they give to a second player (one person acts as second 

player for the whole group). Additionally, assume that the experimental subjects are a convenience sam-

ple but not a random sample of a well-defined broader population. What kind of statistical inferences 

are possible? Neither one of the two chance mechanisms – random sampling or randomization – applies. 

Consequently, there is no role for the p-value: (i) Statistical inference towards a wider population be-

yond our experimental subjects is not possible because we are limited to a non-random sample. (ii) Sta-

tistical inference regarding causal relationships is not possible because there was no random assignment 

of subjects to treatments. Instead, one treatment was used to obtain a behavioral measurement in two 

predefined social groups. We should therefore simply describe, without reference to a p-value, the ob-

served difference and the experimental conditions – or carry out a regression analysis to control for 

                                                      
6 There is no need to resort to regression when proper randomization ensures ex ante that confounders are statisti-

cally independent of treatments. In some cases, for instance when only a small experimental group is available (cf. 

footnote 2), switching to an ex-post control of confounders in a statistical model may be appropriate, however. It 

may therefore be useful to realize how, in the simplest case without confounders, a treatment-group comparison 

relates to a linear model where we regress the response to a binary treatment dummy and a constant. Generally 

speaking, the sampling distributions of estimated regression coefficients �̂�𝑗 that link predictors 𝑥𝑗 to response 𝑦 

are the distributions of the point estimates derived from a hypothetically repeated random sampling of the response 

variable at the fixed values of the predictors (RAMSEY and SCHAFER 2013: 184). Using a dummy regression (and 

a p-value based on the sampling distribution) instead of comparing two group averages (and a p-value based on 

the randomization distribution) can therefore be questioned on the grounds that it implies switching to a chance 

model that is at odds with the actually applied chance mechanism. There are specific constellations (equal variance 

in both groups or, alternatively, heteroscedasticity-robust regression standard errors) that lead to identical standard 

errors. However, group comparison and dummy regression only coincide as long as the former is based on the 

sampling-based approximation of the standard error of the randomization distribution. If the group comparison 

were based on the “true” standard error of the randomization distribution, we would obtain a lower standard error 

compared to which the standard error in the regression would be upwardly biased (ATHEY and IMBEN 2017). 
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confounders if necessary; for example, the male subjects may be more or less wealthy than the female 

subjects which could be another explanation for the differences between the two groups. 

Due to engrained disciplinary habits, researchers might be tempted to implement “statistical significance 

testing” routines in our dictator game example even though there is no chance model upon which to base 

statistical inference. While there is no random process, implementing a two-sample t-test might be the 

spontaneous reflex to find out whether there is a “statistically significant” difference between the two 

sexes. One should recognize, however, that doing so would require that some notion of a random mech-

anism is accepted. In our case, this would require imagining a randomization distribution that would 

have resulted if money amounts had been randomly assigned to sexes (“treatments”). Our question 

would be whether the money amounts transferred to the second player differed more between the sexes 

than what would be expected in the case of such a random assignment. We must realize, however, that 

there was no random assignment of subjects (with all their potentially confounding characteristics) to 

treatments, i.e. the sexes might not be independent of covariates. Therefore, the p-value based on a two-

sample t-test for a difference in mean does not address the question of whether the difference in the 

average transferred money amount is caused by the subjects’ being male or female. That could be the 

case, but the difference could also be due to other reasons such as female subjects being less or more 

wealthy than male subjects. As stated above, it would therefore make sense to control for known con-

founders in a regression analysis ex post – again, without reference to a p-value as long as the experi-

mental subjects have not been recruited through random sampling.  

6 Conclusion 

Systematizations of economic experiments have not predominantly addressed the inferences that can be 

made in different types of experimental designs. Usages of the term “experiment” range from a narrow 

view of “applying randomization” to identify causal effects, to a broad perspective of “trying something 

out” or measuring something. Our paper has shown that an adequate differentiation of experimental 

designs advances the understanding of what we can infer from different types of experimental studies. 

Several points should be kept in mind: first, a random process of data generation – either random as-

signment or random sampling – is required for frequentist tools such as p-values to make any sense, 

however little it may be. Second, the informational content of p-values are different in randomization-

based inference as opposed to sampling-based inference. Randomization-based inference is concerned 

with internal validity and causality, whereas sampling-based inference is concerned with external valid-

ity in terms of generalizing from a sample to its parent population. Third, while being conceptually 

different, the sampling-based standard error used in a two-sample t-test can be used as an approximation 

in randomization-based inference. If one accepts the approximation, and if experimental subjects are 

recruited through random sampling, the resulting p-value can be used as an aid both for assessing inter-

nal validity and for generalizing to the parent population. However, if experimental subjects are not 

randomly recruited, statistical inferences must be limited to assess the causalities within the given study 

population. Forth, in the context of economic experiments, there are two essentially different meanings 

of the term “control” that must not be confused. In experiments aimed at identifying causal treatment 

effects, control means first of all ensuring ceteris paribus conditions (statistical independence of treat-

ments). Besides that, the term “control” is concerned with external validity beyond the sample-popula-

tion relationship. The expression “control over preferences” is used to indicate experimental designs in 

which a valid measurement is achieved in that experimental subjects can be believed to reveal their true 

real-world preferences. This design quality, which is crucial for making valid inferences, is part of sci-

entific reasoning but cannot be aided by p-values.  
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