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Abstract

The use of fundamentalist traders in the stock market models is problematic since
fundamental values in the real world are unknown. Yet, in the literature to date,
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priceto earnings ratio as a proxy for fundamentals. If price to earnings are either too high
or too low, they sell or buy, respectively.
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1 Introduction

Stock market modellers often assume that there is a fundamental value for stocks.
This value is known by, at least, a subsection of the traders, also known as funda-
mentalists. The rest of the agent population is made up of price following, chartists,
and random noise traders. Fundamentalists profit from selling stocks which are
above their fundamental value and vice versa. Their activity drives the stock price
back to underlying fundamental value. Recent examples include: Franke and West-
erhoff (2012); Fischer and Riedler (2014); Leal and Napoletano (2017); Chiarella
et al. (2017); Zhou and Li (2017).

This approach has been very successful in replicating some of the most well-
known stylized facts about stock market returns: the absence of significant auto
correlation (Samuelson, 1965; Cont, 2005; Stanley et al., 2008), fat tails (Gu et al.,
2008), and volatility clustering (Gigerenzer and Selten, 2002). In these frameworks,
the lack of auto correlation can largely be explained by fundamentalists trading
on a noisy fundamental (Gaunersdorfer and Hommes, 2007), or by noise traders
(Chiarella et al., 2009); chartist activity explains the fat tails (Cont and Bouchaud,
2000); and switching between the two explains volatility clustering (Lux and
Marchesi, 2000).

There is evidence of both types of behaviour in actual markets (Balvers and
Wu, 2006). However, Bouchaud et al. (2008) argue that the inclusion of traders
which know the underlying fundamental value of a stock is somewhat of a heroic
assumption. In reality the number factors influencing the fundamental value of a
stock are so large that there should be, at the very least, an irreducible intrinsic
error.

In this paper, we set out to develop an agent-based framework in which agents
do not know the fundamental value. As fundamentals cannot be fully observed,
traders use the price-to-earnings ratio as a proxy. If the price to earnings ratio is
too high (too low), traders will try to sell (buy) stocks.

Our model consists of two types of traders, technical traders and zero-
intelligence traders. Technical traders use a moving average trading strategy.
Brock et al. (1992) identify moving average technical trading as profitable and
widely used. In its simplest form this strategy means buying or selling when
the short period moving average deviates from the long period moving average.
Two contrary variants of this strategy, momentum (Hong and Stein, 1999) and
mean-reversion (Balvers et al., 2000), can both be profitable. Balvers et al. (2000)
even find that combination momentum-contrarian strategies outperform both pure
momentum and pure contrarian strategies. Momentum traders estimate a price
trend and assume that it will extrapolate. On the other hand, momentum traders
calculate price deviations from the average price and assume that prices will revert
to the trend.
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We calibrate our model parameters to S&P500 data. Despite its weaker as-
sumptions about fundamentals, our model is generally able to replicate the main
observed stylized facts: no auto correlation, fat tails, and long memory in returns,
along with volume correlations with price volatility and occasionally volatility
clustering.

2 The Model

We model a stock market in which heterogeneous agents trade with each other
following either mean-reversion or momentum strategies with a fundamental com-
ponent or a zero-intelligence rule. The model was implemented using Python
3l

2.1 Agents

The model contains three types of agents: traders x, a firm f, and the stock
market limit-order book which matches orders c. All agents are boundedly rational
(Gigerenzer and Selten, 2002). They can observe their own state variables, the
values of their state variables in previous periods, and some state variables of other
agents.

Trader x, records the following state variables: an amount of deposits dy and
the number of stocks #, it holds. Each individual trader has a time-frame over
which it calculates moving averages: the short moving average ¢!, and the long
moving average ¢2. In addition, each trader will have a currently preferred strategy:
mean reversion s“, momentum s, or zero-intelligence s°.

Firm f records its stochastic profits or losses r. The firm has a fixed amount of
stocks ny which are distributed at the beginning of the simulation.

The stock market is implemented using a limit order book c. The limit-order
book is made up of a bids-book, b., which holds all active bid-type orders and an
asks-book a., which holds all active ask-type orders. At any time, the stock market
keeps track of the best bid of’;f and ask of"; type orders. Each limit order o contains
information about the limit ﬁrice Po volume v, and the agent x,, which issued it.

Table 1 provides an overview of the state variables and their domains. In the
notation of variables, subscripts mark the agent and the time step ¢ of the variable.
Superscripts indicate indicate other parameter attributes: low (7), high (%), bid (b),
ask (a) or if the variable or parameter refers to another variable or action.

! The code is available online at: https://github.com/LCfP/abm
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Symbol | Description Possible values

id identifier 0-c0

ry Firm profits 0-c0

h¢ Firm amount of stocks outstanding 0-c0

dy Trader deposits i 0-c0

hy Trader stocks in portfolio i 0-c0
bay Trader bid ask spread (measured in basis points) [L, u]

Iy Trader returns 0-c0
pefC’ Trader price-to-earnings upper threshold 24 - 28
pei Trader price-to-earnings lower threshold 11-13

VFy Trader-volume-risk-aversion fixed

n Propensity-to-switch fixed

gl Trader short moving average memory 50 -60

q)% Trader long moving average memory 65-93

Sy Trader strategy {u,y,z}

b, Bids book list of bid orders
ac Asks book list of ask orders
otb, ; Best active bid order bid order

of, ; Best active ask order ask order
Do Limit-order price 0-c0

Vo Limit-order volume 0-00

X Limit-order owner 0-c0

Table 1: State Variables

2.2 Simulation sequence

In this section we describe the simulation algorithm. We simulate agent actions
and interactions over ¢ periods. As a consequence of these actions and interactions,
the state variables of the agents are updated every period. Unless stated otherwise,
agents act in a random order. Each period represents a day in which the following
sequence takes place.

Firm profits

At the beginning of certain working days n, firms release their updated profits ry.
We follow Bottazzi and Secchi (2003) and represent firm sectoral growth with a
Geometric Brownian Motion:

rt:r171W<.LL7676) (1)
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Where W (L, 0, 9) is a process which follows a Geometric Brownian motion.

Trading

Then, traders enter the market. Random noise traders determine whether to buy or
sell with equal probability. Noise traders supply liquidity in the market by buying
and selling randomly. Noise traders x° buy and sell randomly given probabilities
to buy p? and to sell p{ that are assigned every period.

If a trader is using a momentum or mean reversion strategy, it first determines
if the stock is currently under or overpriced based on the price to earnings ratio,
pe;. If this is the case it will immediately submit an order to the order book which
can either be a buy or a sell order,

_ 0? lf Pet < pei,

Or = { o} if  pe; > pel', ’ 2)

If neither condition holds the trader will determine whether it wants to buy or

sell using its trading strategy. The agent, following either x* or x”, decides to buy

or sell by relying on the long and short moving average of the price. It calculates

the momentum of the price series, m, by dividing the long term moving average,
MA!, by the short term moving average, MA®,

MA?®

my = m, (3)
where momentum and mean reversion traders calculate momentum over a
different time window. When prices gain momentum and vary from a calculated
trend, mean reversion traders will buy and sell believing that the price will return
to the original trend. On the other hand, momentum traders buy when the prices

gain momentum and sell when it drops (Hong and Stein, 1999).
Thus, if the trader uses a momentum strategy it will try to buy if momentum is

sufficiently high and vice verse,

ol if m>u,
or=4 0] if m<l, . 4)

ol if I<m<u,

If the trader uses a mean reversion strategy it will try to sell high momentum
stocks and buy negative momentum stocks,

o if m<l,
op=1 0} if m>u, , (5)

o if I<m<u,
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where, u and [ are the upper and lower threshold the trader wants to buy/sell
respectively. Then, the trader will decide at which volume and price it want to
submit the limit order.

The trader submit an order price, of, close to the best (highest price) bid, o?*,
and best (lowest price) ask price , of*, present in the limit order book. The price
is then a random variable with normal distribution with standard deviation 6 set
around o%* and o?* depending on if the trader wants to buy or sell, respectively.

X ~N("*,0 if =o?,
p_{ (0] ) i 0y =0y 6)

o = XwN(o?’b,Q) it o, =0,

Regarding volume, each trader has a volume risk parameter vr, which accounts
for its appetite for selling all its stock or depleting its money when taking selling
or buying. The trader decides on the traded volume o} as follows:

dyy . b
=Vr if o

oy =9 oo )
hvry it o,

This offer is then sent to the limit-order book. As it enters the limit-order book,
the stock market will redetermine the the best (highest price) bid, of’ , and best
(lowest price) ask price and match them at the best ask price if the bid price is
higher than the ask price,

0FP = o™ if oM > %P (8)
The two orders are matched at the volume of the lowest volume order.

0" = min(o{™ .0]"") )
Then, a transaction takes place. The bid holder j transfers an amount of money

Ad; to the ask holder i. Simultaneously the ask holder transfers a number of stocks
Ah; to the bid holder.

Ad;=0;"0,"". (10)

Ad; = —Ad; (11)

www.economics-ejournal.org 6



conomics Discussion Paper

Ah; = o7, (12)

Ah; = —Ah; (13)

The empty bids are then deleted from the order book. If there is volume left on
the incoming order, the continuous double auction repeats itself until remaining
volume is depleted or there are no more available matching orders.

As each agent exits the market, the age of the offers that are in the limit order
book increases by 1. When an order reaches the expiration time c¢, it is removed
from the order book. The next trader then proceeds to enter the market and the
same process is repeated.

Strategy switching

After trading, momentum and mean reversion traders evaluate the performance
of their strategy after a set number of days, n. Over this period, they compare
their average returns, 7y ,, to the average market return over this period, 7,. The
probability that the trader will keep its current strategy, pr, is determined by the
amount of missed returns and the agent propensity to switch, 1 ,

pri=1—n(Fn—Fcp) (14)

Where the missed returns of trader k,, is the difference between the volume
adjusted average price at which the stock was traded and the price which the agent
traded for in the previous period. 7 is the propensity to switch strategy.

2.3 Calibration

We calibrated the initial values of state variables and parameters so that the model
matches the stylized facts from the S&P500. Table 2 presents an overview of the
model parameters. To restrict the parameter space for the calibration somewhat,
we set the simulation time to 200 days, the number of agents at 1000, and the time
for profit updates / strategy evaluation to be 20 (working) days.

Then to calibrate the total amount of money, initial firm profit and the discount
rate, we built a benchmark stochastic model filled with zero-intelligence traders
which would result in a price-to-earnings ratio pe close to the average, pe,s00.

and above the first quartile g1, pqlpSOO’ and below the second quartile g2, pe§p500’
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S&P500 price-to-earnings ratios. For this, we retrieved monthly price-to-earnings
ratios for the S&P500 from Quandl. We determined ranges, (start, end, step),
for initial total money, (26000, 33000, 2000), initial firm profit, (1000, 10000,
2000), and the discount rate, (0.01, 0.25, 0.02). Then, we calculated all possible
combinations of these parameters using full factorial sampling, see (Thiele et al.,
2014), and simulated zero-intelligence model for each combination. Following
Thiele et al. (2014),for every combination, we calculated the costs for deviations
from the observed price-to-earnings ratio as,

( Xsp500 —Xsim ) 2
Xsp500 ‘
o otherwise

- 1 , 2
i Xg,500 < Xsim < X5ps500

Cpe(X) = (15)

This led us to the values for these parameters which can be found in Table
2. Figure 1 shows the price to earnings dynamics in the model after the initial
calibration exercise. This stable benchmark model serves as a starting point to
calibrate the model with technical traders.

26

Price to earnings

1z
o

50 100 150 00
(Simulation time)

Figure 1: Price-to-earnings-ratio in the zero-intelligence model

Then, to determine the parameters needed to support momentum and mean-
reversion trading, we calibrate the percentage technical traders versus noise
traders, initial percentage mean-reversion traders versus momentum traders,
price-to-earnings preferences, order expiration time, order-price-variability, order-
variability, short and long moving average, hold threshold, and the propensity to
switch strategy. For the second calibration, we sampled the parameter space using
Latin Hypercube sampling. Then using Equation 15, we minimize the costs to
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match four stylized facts for returns: no autocorrelation (c,(w)), fat tails (c(x)),
volatility clustering (c,(y)), and long-memory (c;,(z)). Our benchmark for this
calibration was closing price and volume data for the S&P500 retrieved from
Google Finance.

We calculate the total costs of each simulation as,

c(w,x,9,2) = ca(W) +cr(x) +cv(y) +cm(2)-

(16)

After 500 simulations, we ended up with four parameter sets and picked the
one with the lowest costs to end up with the remaining values in Table 2.

Symbol | Description® Values (start, end, step)
p Simulation time 1761, -, -
1 Number of agents 1000, -, -
[ Number of periods between each firm profit update 20
U Firm percentage drift 0.058
o Brownian motion delta 0.00396825396
(o] Daily volatility expected in firm profits 0.125
do Initial total amount of money* [26000, 26000%1.1]
€o Initial profit* 1000
v Discount rate* 0.17
B Share of mean reversion traders** 0,1,0.01
o Share of momentum traders** 0,1,0.01
Y Share of noise traders** 6
peo Price to earnings window™** [(13, 16),(21, 24)]
4 Order expiration time** (100, 10000)
[ Agent order price variability** 1,1
X Agent order variability** 1.5
MA, | Initial MA®** [20, 40]
MAL | Initial MA"** [120, 150]
o Agent hold threshold** [0.9995, 1.0005]
VI'y Agent volume risk parameter** 0.1
n Propensity to switch strategy** 1.1
Table 2: Parameters
2 # Determined in the initial calibration, ** Determined in the second calibration.
www.economics-ejournal.org 9
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3 Simulation Results

In this section, we explore the dynamics of the model. First, we review the stylized
facts which the model is able to reproduce. Then, we discuss the model dynamics
of a typical simulation exercise.

3.1 Model dynamics

In this section, we explore the typical dynamics of the model. At the very start
of the model there is a small learning phase in which the model adjusts and the
price settles in the upper are of the price-to-earnings window. The momentum
traders push the price up, while technical traders with lower price-to-earnings ratios
create downward price pressure. This period is characterized by relatively stable
returns and volumes. Then, as the momentum traders start forgetting the upward
momentum, prices start moving down. This means that the momentum changes,
creating downward price pressure. As the price-to-earnings ratio approaches the
threshold for most agents, they start to buy stocks, driving the price back up again.
This can be seen in Figure 2.

le-2 25

Closing price
Returns
o
[42]

(=]
[52)
(=]
-y
[=1
o
[<2)
[=]
]
[=]
o
o
(42}
[=]

100 150 200
led

Price to earnings
Volume

100
Days

Figure 2: Typical closing price (top-left), Returns (top-right), Price-to-earnings ratios (bottom-left),
and volume (bottom-right).

Over time, the momentum strategy proves to be marginally less profitable then

the mean reversion strategy. This leads to some switching behaviour appreciated in
Figure 3.
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I mean reversion
B momentum
B zero intelligence

08

g
=)

Percentage

o
i

0.2

0.0
0 50 100 150 200

Days

Figure 3: Share of trading strategies

3.2 Stylized facts

Stylized facts are statistical regularities that are reproduced in a wide range of dif-
ferent markets Buchanan (2012). Stock markets stylized facts are well documented,
both on a micro and a macro level. For an extensive overview, we refer to Cont
(2001); Gould et al. (2013). The capacity of a model to reproduce a list of these
stylized facts acts as an initial metric of its validity.

Our model, like other contemporary models, is able to replicate five well
established stylized facts at the same time. These stylized facts are: no auto
correlations, fat tails, clustered volatility, and long-memory, although we note that
clustered volatility only shows up in a minority of simulations.

Empirical results show that linear autocorrelations of asset returns are in most
cases close to zero. Cont (2001) argues that if returns were autocorrelated, rational
agents could more easily predict future returns. Arbitrage eliminates autocorrela-
tion. Figure 4 show that, in our model, there is an absence of autocorrelation in
returns. This is generated by both the noise traders and the contrarian interactions
between momentum and mean-reversion traders.

In our model fat tails are generated by regimes in which the trend following
agents are omni-present. Heavy tails can be observed if the (unconditional) distri-
bution of returns displays a heavy tail with positive excess kurtosis Cont (2005).
Fat tails, also known as heavy tailed distributions, empirical evidence displays
heavier tails than what one would expect in a normal distributions Cont (2001).
This means that extreme events occur more often than if returns followed normal
distributions.

www.economics-ejournal.org 11
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—— Simulation
0.8 — S&P500

Autocorrelation

Lags

Figure 4: Autocorrelation in returns, Simulation average and standard deviations

Returns display irregular volatility at different time intervals (Gigerenzer and
Selten, 2002). In the calibrated version of our model, absolute autocorrelations are
positive and close the the observed values in the S&P500. However, this effect
weakens over multiple runs. Figure 5 shows how for our calibrated model the
autocorrelation in absolute returns approximates the S&P500 benchmark. However,
as the grey band shows, this result does not hold up over multiple runs. In the
baseline, volatility clustering is generated by a switch from one market regime to
another, as the momentum disappears from memory. Similar to Guillaume et al.
(1997) where differences in trader memories are also suggested to be the source of
volatility clustering

Empirical returns have been shown to display long memory (Ferreira and
DionAsio, 2016; Arouri et al., 2012). The hurst component in our model also
deviates from the 0.5 which characterizes a random walk. Table 3 summarizes the
statistics associated with the stylized facts for both the S&P500 and the average of
50 simulation runs with different random seeds.

Stylized fact S&P500 | Model
Autocorrelation -0.0079 | -0.0055
Kurtosis 4.1262 | 94.3714
Autocorrelation abs 0.1602 0.0255

Hurst -0.0024 | 0.0118

Correlation volume-price volatility | 0.4671 0.2067

Table 3: Stylized facts model average over 50 runs

www.economics-ejournal.org 12
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— S&P500
—— Benchmark simulation

08

Autocorrelation

-0.2

Lag

Figure 5: Autocorrelation in absolute returns, Simulation seed = 0 and standard deviations around
the average

4 Summary and discussion

In this paper, we presented an agent-based framework in which agents do not
know the fundamental value. Using a combination of momentum, mean reversion
and noise traders and the price-to-earnings ratio, as a proxy for deviations from
fundamentals, we where able to replicate the main observed stylized facts: no auto
correlation, fat tails, and long memory in returns, along with volume correlations
with price volatility and (occasionally) volatility clustering.

In future research, we would like to amend the model somewhat to replicate
volatility clustering more consistently. Also, we would like to extend the analysis
of this model by performing a sensitivity analysis on the parameters. This would
help us explore exactly what flavours of this model can reproduce the stylized
facts and why. We believe that our framework is flexible enough to replicate more
stylized facts simultaneously. Ideally, both at the micro (order-book) and macro
level.

Finally, we would like to make the model more realistic. We feel that the zero-
intelligence traders are somewhat ad-hoc as such behaviour is not actually observed
in real stock markets. In our model, these traders capture a host of different types of
trading motivations such as market making and portfolio re-balancing. Therefore,
in future works, we want to replace the noise traders by traders which follow
market maker strategies and by traders which rebalance a portfolio of stocks. For
the latter, we aim to extend our model with multiple firms and multiple stocks.
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