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1  Introduction 

Stochastic dominance (SD) has been proved to be a powerful tool for ranking random variables and is 

employed in various fields such as finance, decision analysis, economics and statistics etc. (cf., Levy, 1992, 

2006; Chakravarty and Zoli, 2012; Jouini et al., 2013; Tsetlin et al., 2015; Post et al., 2015 and Post, 2016; 

Gao and Zhao, 2017). The SD rules indicate when one random variable is to be ranked higher than another by 

specifying a condition which the difference between their cumulative distribution functions (CDFs) must 

satisfy. However, economic and financial activities usually induce transformations of an initial risk, and the 

classical SD rules are inefficient in ranking such transformations. Transformations of random variables have 

been discussed in the early stochastic dominance literature, especially in the risk analysis portion. For example, 

Sandom (1971) has used a particular linear, risk altering, transformation in discussing the comparative statics 

of risk. Hadar and Russell (1971, 1974) have dealt with special cases of the transformation question, 

emphasizing its use in dealing with portfolios of random variables. Cheng, Magill, and Shafer (1987) have 

used the transformation approach to address the comparative statics of first degree stochastic dominance shifts 

in a random variable within a general decision model context. Meyer (1989) has proposed the first and second 

stochastic dominance (FSD and SSD) criteria for the increasing, continuous, and piecewise differentiable 

transformations on continuous random variables. Meyer goes on to analyze the transformation resulting from 

coinsurance, the transformation resulting from holding a stock with the corresponding call option, or even 

holding call and put options simultaneously. Gao and Zhao (2017) have developed FSD and SSD criteria for 

monotonic transformations on discrete random variables, and they apply these results in ranking 

transformations resulting from pension funds. These applications indicate that the transformation approach is 

useful in discussing comparatives statics of random variable changes and financial issues. 

For the general transformations, Levy (1992) has given several sufficient conditions under which one 

transformation dominates another by FSD and SSD. Hereafter, some authors discuss the transformations of 

different random variables (cf., Peluso and Trannoy, 2007, 2012; Denuit et al., 2013). To the best of our 

knowledge, Theorem 5 of Levy (1992) is the only result on the stochastic dominance for general 

transformations. However, we have found that its dominance condition for SSD is not sufficient and its 

dominance condition for FSD can be relaxed. Then, by restricting attention to the monotone property of the 

dominating transformation, we present a revised exact sufficient condition for one transformation dominating 

another. Next, we further extend the stochastic dominance criteria to the most general transformations. 
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Moreover, we further generalize these stochastic dominance criteria for transformations on continuous random 

variables to the discrete case. Finally, we employ the SD approach to analyze the transformations resulting 

from holding a stock with the corresponding call option. 

The paper is organized as follows. Section 2 presents a counterexample to show that Levy’s theorem about 

SSD does not hold. By discussing the monotone property of the dominating transformation, Section 3 derives 

the exact sufficient condition for one transformation dominating another by SSD. Section 4 deduces the 

stochastic dominance criteria for the most general transformations, which further perfect and improve Levy’s 

result and extend Meyer’s result to more general case. Section 5 further provides the stochastic dominance 

criteria for transformations on discrete random variables. Section 6 analyzes the transformations resulting 

from holding a stock with the corresponding call option. Section 7 concludes the paper. 

2  Levy’s sufficient conditions and its counterexample 

Suppose that X  is a continuous random variable with support in the finite interval [ , ]a b . Its density 

function and cumulative distribution function are denoted by ( )f x  and ( )F x , respectively. The 

transformation functions ( )m x  and ( )n x  are assumed to be integrable in [ , ]a b , and the corresponding 

cumulative distribution functions of the transformed random variables ( )m X  and ( )n X  are denoted by 

( )mF x  and ( )nF x , respectively. Then, ( )m X  dominates ( )n X  by FSD if ( ) ( )m nF x F x  and by SSD if 

( ) ( )
x x

m nF t dt F t dt
 

   for all [ , ]x a b . 

To facilitate the narrative, we will refer to transformed random variables, derived by applying 

transformation functions to X , as transformations on X , or shortly transformations. Obviously, the 

classical SD rules rely heavily on CDFs. But in most cases CDFs of transformations are difficult to compute 

as ( ) ( ( ) )mF x P m X x   and ( ) ( ( ) )nF x P n X x  , and the frequently-used integration by parts is invalid in 

this case. Thus, the classical SD rules based on the CDFs framework lose their great charm when dealing with 

the transformations. In order to determine the SD relations between two general transformations, Levy (1992) 

gives several sufficient conditions under which one transformation dominates the other by FSD and SSD, the 

main result is shown as follows. 

Alleged Theorem 5. (Levy, 1992) Given a random variable X  with the density ( )f x  and support in the 

interval [ , ]a b , the random variable ( )Y m X dominates the random variable ( )Z n X  in the first degree if  

{ ( ) ( )} ( ) 0m x n x f x   for all x  in [ , ]a b .                              (1) 

Similarly, the dominance condition for SSD is given by  

{ ( ) ( )} ( ) 0
x

a
m t n t f t dt   for all x  in [ , ]a b .                            (2) 

                                                        

Note: For simplicity, we assume that the range of the random variable is finite. Actually, the stochastic dominance criteria can easily be 

extended to the infinite range by mathematical skills (see Hanoch and Levy, 1969). 
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Although Levy’s Theorem 5 only proposes the sufficient conditions for FSD and SSD relations between 

two transformed random variables, its really meaningful contribution is that it tries to represent the SD rules 

by the transformation functions and the density function of the original random variable, rather than by CDFs 

of the transformed random variables. To better illustrate this meaning, Figure 1 to Figure 4 show the 

relationship between the method of Levy’s Theorem 5 and that under the framework of CDFs for the 

uniformly distributed random variable.  

●The comparative diagrams for FSD 

                      

      Figure 1: The CDFs of ( )m x  and ( )n x                Figure 2: The transformations of ( )m x  and ( )n x  

●The comparative diagrams for SSD 

                       

    Figure 3: The CDFs of ( )m x  and ( )n x           Figure 4: The transformations of ( )m x  and ( )n x  

Figure 1 and Figure 3 respectively illustrate the classical SD rules of ( )m x  dominating ( )n x  by FSD and 

SSD under the framework of CDFs. Figure 2 and Figure 4 respectively describe the SD relations of ( )m x  

dominating ( )n x  by FSD and SSD under the framework of Alleged Theorem 5.  

From Figure 1 to Figure 4 we find that ( )mF x  and ( )nF x  under the framework of CDFs are respectively 

replaced by ( )m x  and ( )n x  under Alleged Theorem 5, while they have the relatively reverse position 

relation in the cases of FSD and SSD. Obviously, it is much more convenient to verify the dominance 

relations by condition (1) and condition (2) than by the framework of CDFs which needs to justify 

( ) ( )m nF x F x  and ( ) ( )
x x

m nF t dt F t dt
 

  .  



 

 5 

Notice that the cumulative distribution functions ( )mF x  and ( )nF x  are both increasing and right 

continuous while the transformation functions ( )m x  and ( )n x  are only assumed to be integrable, and the 

monotonicity is not required in Alleged Theorem 5, we have adequate reasons to question the correctness of 

this theorem. We will first provide a counterexample to the second part of Alleged Theorem 5. 

Example 1. Let X  be a random variable with the uniform distribution in the interval [ 1,1] . Define 

4 , 1 0
( )

, 0 1

x x
m x

x x

   
 

 
 and  

3 , 1 0
( )

2 , 0 1

x x
n x

x x

   
 

 
 . 

Then ( ) ( )m x n x x    and 
2

1

1
{ ( ) ( )} ( ) 0

4

x x
m t n t f t dt




    for all x  in [ 1,1] , which means that 

( )m x  and ( )n x  satisfy condition (2) in Alleged Theorem 5. But for the increasing and concave utility 

function ( ) xu x e  , we have  

[ ( ( )] [ ( ( )]E u m X E u n X  

0 1
3 4 21 1

2 21 0
( ) ( )x x x xe e dx e e dx 


      

2 3 4

1 1 5 1 1 1
[( ) ( )]

2 12 2 3 4e e e e
      

1 1 5 12 5
[ ]

2 12 24

e

e e


    

0 . 

Thus, ( )m X  does not dominate ( )n X  by SSD.□ 

Example 1 shows that the condition { ( ) ( )} ( ) 0
x

a
m t n t f t dt   for all x  in [ , ]a b  is not sufficient for 

( )m X  dominating ( )n X  by SSD. By carefully analyzing Theorem 5 of Levy (1992), we find that the 

monotone property of the dominating transformation is inevitable for stochastic dominance of transformations. 

Actually, we have proved the following conclusion.  

3  A revised sufficient condition for SSD 

In this part, we will revise Theorem 5 of Levy (1992) and derive the exact sufficient condition for one 

transformation dominating another by SSD. 

Theorem 1. Given a random variable X  with the density ( )f x  and support in the interval [ , ]a b ,  

( )m x  and ( )n x  are transformations defined on [ , ]a b . If ( )m x  is increasing, continuous, and piecewise 

differentiable in [ , ]a b , then the random variable ( )Y m X  dominates ( )Z n X  by SSD if 

{ ( ) ( )} ( ) 0
x

a
m t n t f t dt   for all x  in [ , ]a b . 

Proof. See Appendix A. 
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By restricting the monotonicity and differentiability of the dominating transformation, Theorem 1 provides 

the exact sufficient condition for one transformation dominating another by SSD. Compared with Theorem 5 

of Levy (1992), Theorem 1 gives a revised dominance condition concerning SSD, so it can be viewed as an 

primary improvement of Theorem 5 in Levy (1992).  

Furthermore, in the next paragraph we will prove that the FSD condition listed in Alleged Theorem 5 and the 

SSD condition listed in Theorem 1 can be weakened via complicated mathematics skill. 

4  Stochastic dominance criteria for general transformations 

Theorem 5 in Levy(1992) and Theorem 1 of this paper give the dominance condition under which one 

transformation dominates another by FSD and SSD. In the following, we will prove that these conditions can 

be relaxed to a more general case. That is, the restrictions to the dominating transformation in Theorem 1 can be 

further relaxed. 

Theorem 2. Given a random variable X  with the density ( )f x  and support in the interval [ , ]a b ,  

( )m x  and ( )n x  are transformations defined on [ , ]a b . Then we have 

(1) ( )m X  dominates ( )n X  by FSD if ( ( ) ( )) ( ) 0m x n x f x   holds almost everywhere in [ , ]a b , i.e., 

{ [ , ] | ( ( ) ( )) ( ) 0}S x a b m x n x f x     is a set of measure zero. 

(2) If ( )m x  is increasing in [ , ]a b , then ( )m X  dominates ( )n X  by SSD if { ( ) ( )} ( ) 0
x

a
m t n t f t dt   

for all x  in [ , ]a b . 

Proof. See Appendix B. 

Theorem 2 provides two dominance conditions under which one transformation dominates another by FSD 

or SSD for the most general transformations. Compared with Theorem 5 of Levy (1992), in Theorem 2(1) 

points are permitted to violate the dominance condition (1) only if they constitute a set of measure zero. So, 

Theorem 2(1) reduces the dominance condition for FSD in Theorem 5 of Levy (1992). Compared with 

Theorem 1, Theorem 2(2) only requires the dominating transformation to be increasing, and the property of 

differentiability is not necessary. 

Moreover, only the increasing property is considered in Theorem 2, and we can derive a similar conclusion 

if the dominating transformation is decreasing. 

Theorem 3. Given a random variable X  with the density ( )f x and support in the interval [ , ]a b ,   

( )m x  and ( )n x  are transformations defined on [ , ]a b . Suppose ( )m x  is decreasing in [ , ]a b , then we 

have ( )m X  dominates ( )n X  by SSD if { ( ) ( )} ( ) 0
b

x
m t n t f t dt   for all x  in [ , ]a b . 

Proof. See Appendix C. 

Remark 1. Meyer (1989) proposes the FSD and SSD criteria for transformations that if ( )m x  and ( )n x  

are increasing, continuous and piecewise differential functions, then ( )m X  dominates ( )n X  by FSD if and 

only if  { ( ) ( )} ( ) 0m x n x f x   for all x  in [ , ]a b , and ( )m X  dominates ( )n X  by SSD if and only if 
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{ ( ) ( )} ( ) 0
x

a
m t n t f t dt   for all x  in [ , ]a b . 

Obviously, Theorem 2 and Theorem 3 extend Meyer’s result to a more general case. Either the dominating 

or the dominated transformation in Meyer (1989) is assumed to be increasing, continuous, and piecewise 

differentiable. However, in Theorem 2 and Theorem 3, only the dominating transformation is assumed to be 

monotonous, and there are no any other restrictions to both the dominating and the dominated transformation. 

Apparently, the differentiability is redundant. Furthermore, Theorem 3 considers the decreasing 

transformation that is absence in Meyer’s result. 

  Remark 2. The concept of increasing risk and increasing n th degree risk, introduced by Rothschild and 

Stiglitz (1970) and Ekern (1980), play an important role in risk analysis. It requires that all the random 

variables to be compared have the same mathematical expectations. Given this supposition, we can easily 

induce the following conclusion from Theorem 2 and Theorem 3.  

Corollary. Given a random variable X  with the density ( )f x  and support in the interval [ , ]a b ,  

( )m x  and ( )n x  are transformations defined on [ , ]a b . Suppose that [ ( )] [ ( )]E m X E n X , then we have 

(1) Supposing that ( )m x  is increasing in [ , ]a b , ( )m X  has more increasing risk than ( )n X  if 

{ ( ) ( )} ( ) 0
x

a
m t n t f t dt   or { ( ) ( )} ( ) 0

b

x
m t n t f t dt   for all x  in [ , ]a b . 

(2) Supposing that ( )m x  is decreasing in [ , ]a b , ( )m X  has more increasing risk than ( )n X  if 

{ ( ) ( )} ( ) 0
b

x
m t n t f t dt   or { ( ) ( )} ( ) 0

x

a
m t n t f t dt   for all x  in [ , ]a b . 

From this corollary, we can easily deduce that there exist a kind of risk transformations which lead to the SSD 

relation which is completely opposite to the conclusion of Theorem 5 in Levy (1992). 

Example 2. Assume that the random variable X  satisfies standard normal distribution. Define  

       
3 , 0

( )
, 0

x x
m x

x x

 
 

 
 and 

2 , 0
( )

0, 0

x x
n x

x

 
 


.  

Obviously, ( )m x  and ( )n x  satisfy condition (2). According to Theorem 5 of Levy (1992), it should be 

concluded that ( )m X  dominates ( )n X  by SSD. But, the truth is on the opposite side. Actually, by Theorem 

3, it is easy to prove the fact that ( )n X  dominates ( )m X  by SSD since 

2

2
1

{ ( ) ( )} ( ) 0
2

x

x
n t m t f t dt e



 

    for all x  in ( , )  .  

5  Stochastic dominance criteria for general transformations on discrete random variables 

By discussing Levy’s dominance conditions for one transformation dominating another by FSD or SSD, we 

obtain several stochastic dominance criteria for transformations, which perfect and improve Levy and Meyer’s 

results. It must be pointed out that all the conclusions, whether Levy and Meyer’s results or the stochastic 

dominance criteria developed in the paper, are concentrating on transformations of continuous random 

variables. Actually, there exist similar stochastic dominance criteria for transformations on discrete random 
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variables. Gao and Zhao (2017) have discussed the stochastic dominance relationship between two 

transformations on discrete random variables, and presents several sufficient conditions for ranking 

transformations on discrete random variables by FSD or SSD. Such conclusions can be summarized in the 

following theorem. 

Theorem 4. Let X  be a discrete random variable whose prospects are characterized by 

1 1{ , ; , , }n np x p x   with 1 2 nx x x    and support in the finite interval [ , ]a b . For any two functions 

( )m x  and ( )n x  defined on [ , ]a b , we get two transformed random variables ( )m X  and ( )n X , denoted 

as 1 1{ , ( ); , , ( )}n np m x p m x  and 1 1{ , ( ); , , ( )}n np n x p n x , or shortly as 1 1{ , ; , , }n np m p m  and 

1 1{ , ; , , }n np n p n , respectively. Then we have: 

(1) The transformed random variable ( )m X  dominates ( )n X  by FSD if i im n  for all 1, 2, ,i n  . 

(2) If ( )m x  is increasing and 
1

( ) 0
k

i i i
i

m n p


   for all 1, 2, ,k n  , then the transformed random 

variable ( )m X  dominates ( )n X  by SSD. 

(3) If ( )m x  is decreasing and ( ) 0
n

i i i
i k

m n p


   for all 1, 2, ,k n  , then the transformed random 

variable ( )m X  dominates ( )n X  by SSD. 

(4) Suppose that ( )m x  is increasing and [ ( )] [ ( )]E m X E n X . If 
1

( ) 0
k

i i i
i

m n p


   or 

( ) 0
n

i i i
i k

m n p


   for all 1, 2, ,k n  , then ( )m X  has more increasing risk than ( )n X . 

(5) Suppose that ( )m x  is decreasing and [ ( )] [ ( )]E m X E n X . If ( ) 0
n

i i i
i k

m n p


   or 

1

( ) 0
k

i i i
i

m n p


   for all 1, 2, ,k n  , then ( )m X  has more increasing risk than ( )n X . 

The proofs of the first three items in Theorem 4 are in Gao and Zhao (2017), and the proofs of the last two 

items follow from them and are omitted. Theorem 4 presents several dominance conditions for ranking 

transformations on discrete random variables by FSD or SSD, and it overcomes the drawbacks of Meyer and 

Levy’s results that cannot deal with transformations on discrete random variables. 

6  Applications in the option strategy 

  It is well-known that put and call option contracts can modify the value of common stock. These contracts 

provides the buyer of the option with the right to either buy (call) or sell (put) shares of common stock at a 

fixed price referred to as the striking price. On the other hand, the seller of such an option contract incurs the 

obligation to either sell or buy the common stock at the agreed upon striking price if the contract purchaser 
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decides to exercise the option. To model one such option transaction using the transformation notation, let X  

represent the random value of 100 shares of a given common stock and assume that its support is the interval 

[ , ]a b . An investor who owns the common stock can sell a call contract (100 shares) with striking price mx  

for a price of mp . This investment of selling a call option while owning the common stock can be 

represented by the following transformation 
,

( )
,

m m

m m m

x p x x
m x

x p x x

 
 

 
. The original random value x  

becomes ( )m x  when the stock is held and the call option is sold. That is, this sale of the call option while 

holding the common stock alters the value of the total investment by adding the option price to the stock value 

in the event that the option is not exercised, and fixes the investment’s value at the option price plus the string 

price if the option is exercised. A similar option strategy with striking price nx  and option price np  defines 

transformation ( )n x . It is certainly that ( )m x  and ( )n x  are both increasing in [ , ]a b . Then, how to 

choose the better option strategy? 

  To answer this question, we first form the difference of ( )m x  and ( )n x . Assuming that m nx x , then 

we have 

  

,

( ) ( ) ( ) ( ),

( ) ( ),

m n m

m m n m n

m m n n n

p p a x x

m x n x x p x p x x x

x p x p x x b

  


      
     

 . 

Of course, experience in choosing option strategies with varying sizes for the striking price indicates that it is 

unlikely for the option price charged to be smaller with lower striking price. Furthermore, it is typical for the 

reduction in the option price to be a fraction of the increase in the striking price. Thus it is further assumed 

that m np p , and that n m m nx x p p   . Under this restriction, the difference ( ) ( )m x n x  is first 

positive and constant, then declines with slope minus 1, and finally is constant and negative.  

From the definition of FSD, it is easily to declare that there is no FSD relation between ( )m X  and ( )n X . 

However, if { ( ) ( )} ( ) 0
b

a
m x n x f x dx  ( ( )f x  denote the probability distribution function of X , then by 

Theorem 2 we deduce that ( )m X  dominates ( )n X  by SSD. That is, if the mean value of ( )m X  is at 

least large as the mean value of ( )n X , then ( )m X  is a better choice for all risk-averse investors. 
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While this example deals with the selling of a call option, the purchase of a put option contract can also be 

modeled using a similar transformation. One can also model the simultaneous purchase or sale of put or call 

contracts with different striking prices, although the transformations involved become cumbersome.  

7  Conclusion 

We first present a counterexample to show that Levy’s result with respect to SSD does not hold. Then, we 

give the revised exact dominance condition for one transformation dominating another by SSD. Next, we 

propose several stochastic dominance criteria for the most general transformations, which can be viewed as a 

further improvement of Theorem 5 in Levy (1992). Moreover, we further generalize these stochastic 

dominance criteria for transformations on continuous random variables to the discrete case. Finally, we 

employ the SD approach to analyze the transformations resulting from holding a stock with the corresponding 

call option.  

Whether on theory or in applications, much can still be done concerning transformations and stochastic 

dominance. It would be useful to extend such stochastic dominance criteria to transformations on more than 

one random variables and to consider higher-degree SD rules for transformations. In addition, we will further 

apply these results to the analysis of transformations resulting from economic and financial issues. 
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Appendix A 

Proof of Theorem 1. For an arbitrary utility function 2( )u x U , where 2U  denotes the set of utility function 

u  satisfying the first derivative 0u   and the second derivative 0u  . By the second-order Taylor 

expansion, for all [ , ]x a b , we have 21
2

( ( )) ( ( )) ( ( ))[ ( ) ( )] ( )[ ( ) ( )]xu n x u m x u m x n x m x u n x m x      , i.e.  

          21
2

( ( )) ( ( )) ( ( ))[ ( ) ( )] ( )[ ( ) ( )]xu m x u n x u m x m x n x u m x n x      ,  (A1) 

where x  is among ( )m x  and ( )n x . Then 

         ( ( ( )) ( ( ( )) [ ( ( )) ( ( ))] ( )
b

a
E u m X E u n X u m x u n x f x dx    

       21
2

( ( ))[ ( ) ( ) ( ) [ ( )][ ( ) ( )] ( )
b b

xa a
u m x m x n x f x dx u m x n x f x dx        

       21
2

( ( )) [ [ ( ) ( )] ( ) ] [ ( )][ ( ) ( )] ( )
b x b

xa a a
u m x d m t n t f t dt u m x n x f x dx         

       ( ( )) [ ( ) ( )] ( ) [ ( ( ))] ( ) [ ( ) ( )] ( )
b b x

a a a
u m b m t n t f t dt u m x m x m t n t f t dtdx          

21
2

[ ( )][ ( ) ( )] ( )
b

xa
u m x n x f x dx   .     (A2) 
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Then, by the definition of ( )u x  and the supposition that { ( ) ( )} ( ) 0
x

a
m t n t f t dt   for all x  in [ , ]a b , we 

derive the conclusion that ( ( ( )) ( ( ( )) 0E u m X E u n X  . □ 

Appendix B 

Proof of Theorem 2. (1) For an arbitrary utility function 1( )u x U , where 1U  denotes the set of  utility 

function u  satisfying the first derivative 0u  . By the differential mean value theorem, we have 

              ( ( )) ( ( )) ( )[ ( ) ( )]xu m x u n x u m x n x    for all [ , ]x a b ,  (B1) 

where x  is among ( )m x  and ( )n x . Then we have 

( ( ( )) ( ( ( ))E u m X E u n X  

[ ( ( )) ( ( ))] ( )
b

a
u m t u n t f t dt  ( )[ ( ) ( )] ( )

b

ta
u m t n t f t dt   

[ , ]

( )[ ( ) ( )] ( ) ( )[ ( ) ( )] ( )t t

S a b S

u m t n t f t dt u m t n t f t dt 


      . (B2) 

Since S  is a set of measure zero, we have 

               ( )[ ( ) ( )] ( ) 0t

S

u m t n t f t dt   . (B3) 

For the second term on the right of (B2), by the definitions of 1U  and S , we know that ( )tu   and 

[ ( ) ( )] ( )m t n t f t  are non-negative for all [ , ]t a b , which implies that 

             
[ , ]

( )[ ( ) ( )] ( ) 0t

a b S

u m t n t f t dt


   . (B4) 

Substitute (B3), (B4) into (B2), we have ( ( ( )) ( ( ( )) 0E u m X E u n X  , i.e. ( )m X  dominates ( )n X  by FSD. 

(2) If { ( ) ( )} ( ) 0m x n x f x   holds almost everywhere in [ , ]a b , then from Theorem 2(1) we conclude that 

( )m X  dominates ( )n X  by FSD, and then it still holds for SSD via the hierarchical property of SD rules. 

Therefore, we only need to consider the case that [ ( ) ( )] ( ) 0
S

m x n x f x dx  . In this case, S must consist of one 

or more intervals where hold that [ ( ) ( )] ( ) 0m x n x f x  , here we neglect single-point sets of S for they are sets 

of measure zero. Without loss of generality, we suppose that there are k  intervals ,( ) ( 1, , )i ic d i k   with 

1 1 2 2 k kc d c d c d      . According to the given condition that { ( ) ( )} ( ) 0
x

a
m t n t f t dt   for all x  in 

[ , ]a b , for the first interval 1 1[ , ]c d  we have  

1 1 1

1

[ ( ) ( )] ( ) [ ( ) ( )] ( ) [ ( ) ( )] ( ) 0
d c d

a a c
m t n t f t dt m t n t f t dt m t n t f t dt        . 

This means that there must exist a previous subset 1A  such that 

1

1

1

[ ( ) ( )] ( ) | ( ) ( ) | ( )
d

c
A

m t n t f t dt m t n t f t dt    . (B5) 
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Similarly, for 2 2( , )c d , we have 
2 2 2

2

[ ( ) ( )] ( ) [ ( ) ( )] ( ) [ ( ) ( )] ( ) 0
d c d

a a c
m t n t f t dt m t n t f t dt m t n t f t dt        . 

From Equation (B5) and 1 1 2 2c d c d   , we can derive that 

2

[ ( ) ( )] ( ) [ ( ) ( )] ( )
c

a B
m t n t f t dt m t n t f t dt    , (B6) 

where 2 1 1 1[ , ] / { ( , )}B a c A c d   denotes the set of all the elements of 2[ , ]a c  except for 1 1 1( , )A c d . So 

there exists a subset 2A B  lying on the left-hand side of 2 2( , )c d  and satisfying  

2

2

2

[ ( ) ( )] ( ) | ( ) ( ) | ( )
d

c
A

m t n t f t dt m t n t f t dt    , and 1 2A A   . (B7) 

By the mathematical induction, we can draw the conclusion that for any interval ( , )i ic d , there exists a subset 

iA  of [ , ]a b  satisfying the following properties:  

(i) ix A  , we have ix c ;  

(ii) if ix A , then [ ( ) ( )] ( ) 0m x n x f x  ;  

(iii) [ ( ) ( )] ( ) | ( ) ( ) | ( )
i

i

i

d

c
A

m t n t f t dt m t n t f t dt    .  

(iv) all the subsets ( 1, , )iA i k   are disjoint with each other. 

Notice that for 2( )u x U , we have 0u  , meaning that ( )u x  is decreasing. Then, according to property (i) 

– (iv) and the monotonous condition of ( )u x  and ( )m x , we can make the following statements. 

(a) Note that [ ( ) ( )] ( ) 0m x n x f x   for any interval ,( )( 1, , )i ic d i k  . By differential mean value theorem, 

we have ( ( )) ( ( )) ( )[ ( ) ( )]xu m x u n x u m x n x    for all x  in ( , )i ic d  and 2( )u x U , where x  is among 

( )m x  and ( )n x , i.e., ( ) ( )xm x n x  . Hence, 

[ ( ( )) ( ( ))] ( )
i

i

d

c
u m t u n t f t dt  

( )[ ( ) ( )] ( )
i

i

d

tc
u m t n t f t dt  ( )[ ( ) ( )] ( )

i

i

d

tc
u m t n t f t dt   

( ( ))[ ( ) ( )] ( )
i

i

d

c
u m t m t n t f t dt  ( ( )[ ( ) ( )] ( )

i

i

d

ic
u m c m t n t f t dt   

( ( ) [ ( ) ( )] ( )
i

i

d

i c
u m c n t m t f t dt   . (B8) 

(b) Similarly, for the subset iA  of [ , ]a b , from property (ii) and the differential mean value theorem we have 

( ) ( )xn x m x  , and 

              [ ( ( )) ( ( ))] ( )
iA

u m t u n t f t dt  

( )[ ( ) ( )] ( )
i

t

A

u m t n t f t dt  ( ( ))[ ( ) ( )] ( )
iA

u m t m t n t f t dt   
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            ( ( )) [ ( ) ( )] ( )
i

i

A

u m c m t n t f t dt  ( ( )) [ ( ) ( )] ( )
i

i

d

i c
u m c n t m t f t dt  .  (B9) 

Combining with expressions (B8) and (B9), we obtain that  

[ ( ( )) ( ( ))] ( ) [ ( ( )) ( ( ))] ( ) 0
i

i

i

d

c
A

u m t u n t f t dt u m t u n t f t dt     . 

Then we have 

           ( ( ( )) ( ( ( )) [ ( ( )) ( ( ))] ( )
b

a
E u m X E u n X u m t u n t f t dt    

1

{ [ ( ( )) ( ( ))] ( ) [ ( ( )) ( ( ))] ( ) }
i

i

i

k d

c
i A

u m t u n t f t dt u m t u n t f t dt


       

0 . □                                                                   (B10) 

Appendix C 

Proof of Theorem 3. Suppose that { ( ) ( )} ( ) 0
b

x
m t n t f t dt   for all x  in [ , ]a b  and ( )m x  is decreasing, 

we now prove ( )m X  dominates ( )n X  by SSD.  

If [ ( ) ( )] ( ) 0m x n x f x   is true almost everywhere in [ , ]a b , then by Theorem 1 we conclude that ( )m X  

dominates ( )n X  by FSD and correspondingly, ( )m X  dominates ( )n X  by SSD with the hierarchical 

property of SD relations.  

Otherwise, we divide the set of points satisfying [ ( ) ( )] ( ) 0m x n x f x   into k  intervals ,( )( 1, , )i ic d i k   

with 1 1 2 2 k kc d c d c d      . Here, the discrete points which satisfy [ ( ) ( )] ( ) 0m x n x f x   can be 

omitted because these points make no contribution to the expected utility of ( )m X  and ( )n X .  

Since [ ( ) ( )] ( ) 0
b

x
m t n t f t dt   for all x  in [ , ]a b , we can draw the conclusion that for any interval 

,( )( 1, , )i ic d i k  , there exists a subset iA  in [ , ]a b  satisfying:  

(i) ix A  , we have ix d ;  

(ii) if ix A , then [ ( ) ( )] ( ) 0m x n x f x  ;  

(iii) [ ( ) ( )] ( ) | ( ) ( ) | ( )
i

i

i

d

c
A

m t n t f t dt m t n t f t dt    ; 

(iv) all the subsets ( 1, , )iA i k   are disjoint with each other. 

Suppose that the utility function ( )u x  is increasing and concave, then by the differential mean value 

theorem, we derive ( ( )) ( ( )) ( )[ ( ) ( )]xu m x u n x u m x n x    for all [ , ]x a b , where x  is among ( )m x  and 

( )n x . Since ( )u x  and ( )m x  are both decreasing in [ , ]a b , we have  

(1) For ( , )i ix c d , we have ( ) ( )xm x n x   and 

[ ( ( )) ( ( ))] ( ) ( )[ ( ) ( )] ( )
i i

i i

d d

tc c
u m t u n t f t dt u m t n t f t dt     
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( ( ))[ ( ) ( )] ( )
i

i

d

c
u m t m t n t f t dt  ( ( )[ ( ) ( )] ( )

i

i

d

ic
u m d m t n t f t dt   

( ( ) [ ( ) ( )] ( )
i

i

d

i c
u m d n t m t f t dt   .   (C1) 

  (2) For ix A , we have ( ) ( )xn x m x   and 

          [ ( ( )) ( ( ))] ( ) ( )[ ( ) ( )] ( )
i i

t

A A

u m t u n t f t dt u m t n t f t dt     

( ( ))[ ( ) ( )] ( )
iA

u m t m t n t f t dt  ( ( )) [ ( ) ( )] ( )
i

i

A

u m d m t n t f t dt   

( ( )) [ ( ) ( )] ( )
i

i

d

i c
u m d n t m t f t dt  . (C2) 

Thus, 

[ ( ( )) ( ( ))] ( ) [ ( ( )) ( ( ))] ( ) 0
i

i

i

d

c
A

u m t u n t f t dt u m t u n t f t dt     .  (C3) 

According to expressions (C1), (C2) and (C3), we obtain 

( ( ( )) ( ( ( )) [ ( ( )) ( ( ))] ( )
b

a
E u m X E u n X u m t u n t f t dt    

1

{ [ ( ( )) ( ( ))] ( ) [ ( ( )) ( ( ))] ( ) }
i

i

i

k d

c
i A

u m t u n t f t dt u m t u n t f t dt


       

0 .□ (C4) 
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