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1 Introduction
All-pay auctions with complete information have been widely used to model R&D, lobbying and tour-
naments (Baye, Kovenock and De Vries, 1993; Dasgupta, 1982; Hillman and Riley, 1989). Due to the
tractability concern, most theoretical models assume a continuous strategy space (Baye, Kovenock and
De Vries, 1996; Che and Gale, 1998). Moreover, even under a discrete strategy space, one could take a
sequence of finer and finer grids, and the limit would be the equilibrium under a continuous strategy space
(Dasgupta and Maskin, 1986).

However, the cardinality of the set of Nash equilibrium may be larger under a discrete strategy space
than that under a continuous strategy space. Taking an all-pay auction for two homogeneous players as
an example, i.e., the value of the object is the same for the two players, the equilibrium is unique and
symmetric under the continuous strategy space (Baye et al., 1996). However, if the value of the object
is an even number, there exists a continuum of symmetric equilibria in the discrete strategy space and the
uniform equilibrium bidding distribution becomes a special case among all symmetric equilibria (Bouckaert,
Degryse and De Vries, 1992). Additionally, whether an asymmetric Nash equilibrium exists or not has yet
to be discussed. Therefore, it is important to complete the characterization of equilibria in all-pay auctions,
and it may have implications for guiding experimental design and analysis.

Altogether, we fully characterize the Nash equilibrium in two-player all-pay auctions with a discrete
strategy space for homogeneous bidders, i.e., v1 = v2. Furthermore, we extend our analysis to heterogeneous
bidders, i.e., v1 > v2. We choose the two-player case because the corresponding Nash equilibrium under
a continuous strategy space is unique, while with more than two players, unless we have v1 > v2 > v3, a
continuum of asymmetric equilibria already exists (Baye, Kovenock and De Vries, 1996). Therefore, with
a two-player all-pay auction model, it is clear to compare the prediction difference between continuous and
discrete strategy spaces.

We show that the characterization of equilibrium depends on the parity of the reward size, and revenue
equivalence does not hold in certain conditions. In particular, a continuum of asymmetric Nash equilibria
exists and individuals do not play uniformly. Moreover, we extend the model to the case in which a bidding
cap is imposed, and present similar theoretical predictions. Additionally, we show that when a favor-one-
sided tie-breaking rule is implemented, the Nash equilibrium does not depend on the parity of the reward
size anymore.

2 Theoretical Model
In a two-player all-pay auction, each risk-neutral player i ∈ {x, y} chooses bi. The value of the object: Qi,
is a positive integer. Every bidder chooses a bid from {0, 1, . . . , C − 1, C}, and C is a bidding cap. Without
loss of generality, the payoff function for player x under a random tie-breaking rule is given by:

πx(bx, by) =


−bx, bx < by

Qx

2 − bx, bx = by

Qx − bx, bx > by

2.1 Homogeneous Bidders without Caps
In this subsection, we characterize the Nash equilibrium for homogeneous bidders without caps, i.e., Qx =
Qy = Q and C =∞.

The following proposition shows that when Q = 2n, there exists not only a continuum symmetric
equilibria (Bouckaert et al., 1992), but also a continuum asymmetric equilibria. Furthermore, when Q =
2n+1, the unique symmetric Nash equilibrium is characterized in Bouckaert et al. (1992) and Schep (1995).
We also include it in the following proposition for the completeness of the characterization.

Proposition 1. 1. When Q = 2n, all equilibria are characterized as follows:
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(a) For player x,

P x0 = P x2 = · · · = P xQ−2 = 2Vy/Q,

P x1 = P x3 = · · · = P xQ−1 = 2(1− Vy)/Q,

and Vy ∈ [0, 1].

(b) For player y,

P y0 = P y2 = · · · = P yQ−2 = 2Vx/Q,

P y1 = P y3 = · · · = P yQ−1 = 2(1− Vx)/Q,

and Vx ∈ [0, 1].

2. When Q = 2n+ 1, the unique Nash equilibrium is symmetric (Bouckaert et al. 1992 & Schep 1995):

P0 = P1 = · · · = PQ−1 =
1

Q
,

and Vx = Vy = 1/2.

Proof. See A.

First, Proposition 1 indicates that when Q = 2n, the equilibria strategy is purely determined by Vx and
Vy . Second, although players may not have equal probability on every integer from 0 to Q− 1, each of them
puts the same mass on all even numbers as well as the same probability on all odd numbers. Additionally,
no player submits a bid which is equal to Q.

Second, it implies that the expected total bids no longer equal the value of the object, i.e., full dissipation.
Instead, they are either lower or at most equal to the value of the object. Specifically, when Q = 2n+1, the
expected total bid is Q− 1. While it is Q− Vx − Vy ∈ [Q− 2, Q] for Q = 2n.

2.2 Heterogeneous Bidders without Caps
Now we consider the heterogeneous bidders’ case, i.e., the value of the object or the bidding cost is different
between the two players. Without loss of generality, we assume Qx −Qy > 1 and C =∞. 1

First, Baye et al. (1996) show that a unique equilibrium exists under the continuous strategy space when
there are two players. Moreover, Vx = Qx −Qy and Vy = 0. However, the equilibrium characterization is
different in the discrete strategy space, as shown in the next proposition.2

Proposition 2. 1. When Qy = 2n, all equilibria are characterized as follows:

(a) For player x,

P x0 = P x2 = · · · = P xQy
= 0,

P x1 = P x3 = · · · = P xQy−1 = 2/Qy.

1When Qx −Qy = 1, the special solution in Proposition 2.2(a) is Px
0 = Px

2 = · · · = Px
Qy−1 = 2Vy/Qy , Px

1 = Px
3 = · · · =

Px
Qy−2 = (2− 2Vy)/Qy , Px

Qy
= (1− 2Vy)/Qy , and Vy ∈ [0, 1/2] in Proposition 2.2(c).

2Cohen and Sela (2007) point out one of the equilibria in the discrete strategy space, though the focus of the paper is not the
complete characterization of the Nash equilibria.
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(b) For player y, the equilibrium strategy is determined by a linear system, and the special solution
is:

P y0 = (Vx + 1)/Qx,

P y1 = P y3 = · · · = P yQy−1 = 0,

P y2 = P y4 = · · · = P yQy−2 = 2/Qx,

P yQy
= (Qx −Qy + 1− Vx)/Qx.

(c) In all equilibria, Vx ∈ [Qx −Qy − 1, Qx −Qy + 1] and Vy = 0.

2. When Qy = 2n+ 1 and Qx −Qy > 1, all equilibria are characterized as follows:

(a) For player x, the equilibrium strategy is determined by a linear system, and the special solution
is:

P x0 = P x2 = · · · = P xQy−1 = 0,

P x1 = P x3 = · · · = P xQy−2 = 2/Qy,

P xQy
= 1/Qy.

(b) For player y,

P y0 = (Qx −Qy + 1)/Qx,

P y1 = P y3 = · · · = P yQy
= 0,

P y2 = P y4 = · · · = P yQy−1 = 2/Qx.

(c) In all equilibria, Vx = Qx −Qy and Vy = 0.

Proof. See B.

Proposition 2 implies that the expected payoff for player y is always zero, which is the same as that
under the continuous strategy space. Moreover, when Qy = 2n, her expected bid can be any number in

[
Q2

y−2Qy

2Qx
,
Q2

y+2Qy

2Qx
]. When Qy = 2n+ 1, it is always

Q2
y−1

2Qx
<

Q2
y

2Qx
.

Next, the expected payoff for player x lies between [Qx −Qy − 1, Qx −Qy + 1] for Qy = 2n, while it

is Qx −Qy for Qy = 2n + 1. Furthermore, when Qy = 2n, her expected bid is Qy

2 , and it is
Q2

y+1

2Qy
>

Qy

2

with Qy = 2n+ 1.
Additionally, although both players’ equilibrium bidding distribution may depend on a linear system, it

is worthwhile to note that both of their expected bids are solely determined by the other player’s expected
payoff.

2.3 Homogeneous Bidders with Caps
Considering homogeneous bidders with a bidding cap. Che and Gale (1998) show that a unique symmetric
Nash equilibrium exists under the continuous strategy space, and we prove that the set of Nash equilibrium
is larger in the discrete case.

First, it is easy to show that when Q > 2C, the unique equilibrium is a pure strategy in which everyone
bids C (Boudreau, 2011). Therefore, we focus on Q ≤ 2C in the following analysis.

Proposition 3. 1. When Q = 2n ≤ 2C, all equilibria are characterized as follows:
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(a) For player x,

P x0 = P x2 = · · · = P x2C−Q = 2Vy/Q,

P x1 = P x3 = · · · = P x2C−Q−1 = 2(1− Vy)/Q,
P x2C−Q+1 = P x2C−Q+2 = · · · = P xC−1 = 0,

P xC = 2(Q− C − Vy)/Q,

where Vy ∈ [0, 1].

(b) For player y,

P y0 = P y2 = · · · = P y2C−Q = 2Vx/Q,

P y1 = P y3 = · · · = P y2C−Q−1 = 2(1− Vx)/Q,
P y2C−Q+1 = P y2C−Q+2 = · · · = P yC−1 = 0,

P yC = 2(Q− C − Vx)/Q,

where Vx ∈ [0, 1].

2. When Q = 2n+ 1 ≤ 2C, the Nash equilibrium is unique and symmetric:

P0 = P1 = · · · = P2C−Q = 1/Q,

P2C−Q+1 = P2C−Q+2 = · · · = PC−1 = 0,

PC = 2(Q− C − 1/2)/Q,

and Vx = Vy = 1/2.

Proof. See C.

Compared to the no-cap case in Section 2.1, Proposition 3 suggests that under a bidding cap C, neither
player puts probability mass in [2C − Q + 1, Q − 1]. However, given Q, Vx and Vy , the expected bids are
the same between no-cap and cap cases. Furthermore, when a bidding cap C is implemented, the difference
of equilibrium characterization between continuous and discrete strategy spaces is similar to that without a
bidding cap.

2.4 Heterogeneous Bidders with Caps
We consider heterogeneous bidders with a bidding cap in the following analysis. Without loss of generality,
we assume C < Qy − 1, Qx −Qy > 1 and Qy ≤ 2C. 3

Proposition 4. 1. When Qy = 2n < 2C, all equilibria are characterized as follows:

(a) For player x,

P x0 = P x2 = · · · = P x2C−Qy
= 0,

P x1 = P x3 = · · · = P x2C−Qy−1 = 2/Qy,

P x2C−Qy+1 = P x2C−Qy+2 = · · · = P xC−1 = 0,

P xC = 2(Qy − C)/Qy.

3When C = Qy − 1, it is same as heterogeneous bidders without caps. When Qx − Qy = 1, similar to footnote 2, the
special solution in Proposition 4.2(a) is Px

0 = 2/Qy , Px
1 = 1/Qy , Px

2 = Px
4 = · · · = P y

2C−Qy−1 = 2(1 − Vy)/Qy ,

Px
3 = Px

5 = · · · = P y
2C−Qy

= 2Vy/Qy , Px
2C−Qy+1 = Px

2C−Qy+2 = · · · = Px
C−1 = 0, Px

C = 2(Qy − C − Vy)/Qy , and
Vy ∈ [0, 1/2] in Proposition 4.2(c). When Qy > 2C, the unique equilibrium is a pure strategy in which everyone bids C.
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(b) For player y, the equilibrium strategy is determined by a linear system, and the special solution
is:

P y0 = (Vx + 1)/Qx,

P y1 = P y3 = · · · = P yQy−1 = 0,

P y2 = P y4 = · · · = P y2C−Qy−2 = 2/Qx,

P y2C−Qy
= (Qy −Qx + 1 + Vx)/Qx,

P y2C−Qy+1 = P y2C−Qy+2 = · · · = P yC−1 = 0,

P yC = (2Qx − 2C − 2Vx)/Qx.

(c) In all equilibria, Vx ∈ [Qx −Qy − 1, Qx −Qy + 1] and Vy = 0.

2. When Qy = 2n+ 1 < 2C, all equilibria are characterized as follows:

(a) For player x, the equilibrium strategy is determined by a linear system, and the special solution
is:

P x0 = 0,

P x1 = 1/Qy,

P x2 = P x4 = · · · = P y2C−Qy−1 = 2/Qy,

P x3 = P x5 = · · · = P y2C−Qy
= 0,

P x2C−Qy+1 = P x2C−Qy+2 = · · · = P xC−1 = 0,

P xC = 2(Qy − C)/Qy.

(b) For player y,

P y0 = (Qx −Qy + 1)/Qx,

P y1 = P y3 = · · · = P y2C−Qy
= 0,

P y2 = P y4 = · · · = P y2C−Qy−1 = 2/Qx,

P y2C−Qy+1 = P y2C−Qy+2 = · · · = P yC−1 = 0,

P yC = 2(Qy − C)/Qx.

(c) In all equilibria, Vx = Qx −Qy and Vy = 0.

Proof. See D.

Similar to the payoff equivalence between no-cap and with-cap cases in a continuous strategy space (Che
and Gale, 1998), Proposition 4 suggests that when a discrete strategy space is used, this property still holds.
Combining Propositions 2 and 4, we also expect that in a discrete strategy space, the equilibrium bidding
distribution for heterogeneous bidders is not uniform anymore, which is different from those in a continuous
strategy space.

Altogether, when the bidding strategy space is discrete, for both with and without bidding cap cases,
the characterization of the Nash equilibrium depends on the parity of the reward size. Moreover, a key
assumption for all our analyses is the random tie-breaking rule in which one of the player is randomly
selected as the winner whenever there is a tie. However, in many real-life examples, a favor-one-sided tie-
breaking rule instead of a random tie-breaking rule is implemented. For example, two firms compete for a
market in which consumers have stickiness. If one of the firm is the incumbent, whenever its advertisement
expenditure is no less than the opponent firm, it can occupy the market.
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In the next proposition, we show that when this favor-one-sided tie-breaking rule is used, the equilibrium
strategy is independent of the parity of the reward size.4

Proposition 5. Let τ = min{Qx, Qy, C}. When Qx ≥ Qy and the tie-breaking rule favors player x, the
Nash equilibria are characterized as follows:

1. For player x, P x0 = P x1 = · · · = P xτ−1 = 1
Qy

and P xτ =
Qy−τ
Qy

.

2. For player y, P y0 = Vx

Qx
, P y1 = · · · = P yτ−1 = 1

Qx
and P yτ = Qx−τ+1−Vx

Qx
.

3. In all equilibria, Vx ∈ [Qx − τ,Qx − τ + 1] and Vy = 0.

Proof. See E.

Compared to the analyses for Propositions 2 and 4, Proposition 5 suggests that the equilibrium bidding
distribution becomes uniform again with this favor-one-sided tie-breaking rule. Specifically, player x bids
uniformly in {0, 1 · · · τ−1}. Player y bids uniformly in {1, 2 · · · τ−1}, and the probabilities for her to bid 0
and τ respectively are both determined by Vx. In addition, the expected bids for player x is τ

2Qy
(2Qy−τ−1)

and it is τ
2Qx

(2Qx − τ + 1− 2Vx) for player y.

3 Conclusion
In this paper, we characterize the Nash equilibrium in a two-player complete information all-pay auction
with a discrete strategy space. Compared to a continuous strategy space, the set of equilibrium bidding
strategies under a discrete strategy space is much larger, and the characterization of the Nash equilibrium
depends on the parity of the reward size. When Q = 2n, for both homogeneous and heterogeneous bidders,
the equilibrium is not unique anymore and a continuum of Nash equilibrium exists. When Q = 2n + 1, as
shown in Schep (1995), the equilibrium for homogeneous bidders is symmetric and unique, whereas multiple
Nash equilibria still exist for heterogeneous bidders. Furthermore, we extend our analysis to the case of
bidding with a cap and find that the introduction of the bidding cap only affects the bidding probability in the
upper end. Additionally, when a favor-one-sided tie-breaking rule is used, the equilibrium characterization
becomes independent of the reward size.

Altogether, our results complete the theoretical analysis of complete information all-pay auctions in the
two-player case. In future work, several modeling assumptions could be relaxed, such as extending the
analysis to n > 2 players as well as relaxing the assumption of risk neutrality. Second, our equilibrium
characterization depends on the parity of the reward size, unless a favor-one-sided tie-breaking rule is used.
Therefore, it would be interesting to test the effect of reward size and the effect of the tie-breaking rule using
laboratory experiments.

4Otsubo (2015) studies a special case where Qx = Qy = Q and C =∞.
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Online Appendices

First, Bouckaert et al. (1992) have shown that all equilibria are characterized by the following matrix
format:

1
2 0 0 · · · · · · 0 P i0

Vj

Qj

1 1
2 0 · · · · · · 0 P i1

Vj+1
Qj

1 1 1
2 · · · · · · 0 P i2 ≤ Vj+2

Qj

...
...

...
...

...
...

...
...

1 1 1 · · · · · · 1
2 P iτ

Vj+τ
Qj

(1)

where i, j ∈ {x, y} and i 6= j. Additionally, τ = min{Qx, Qy, C}. Based on the the complementary
slackness condition, we have:

P i0 + · · ·+ 1
2P

i
n <

Vj+n
Qj
⇒ P jn = 0,

P in > 0⇒ P j0 + · · ·+ 1
2P

j
n = Vi+n

Qi
.

Additionally, P in ≥ 0 and P i0 + P i1 + · · ·+ P iτ = 1.
In the following lemma, we show that ∀n ∈ {1, 2, . . . , τ − 1}, the upper bound of P in is always 2

Qj
.

Lemma 1. P in ≤ 2
Qj

.

Proof. Without loss of generality, we prove P xn ≤ 2
Qy

by contradiction. If P xn > 2
Qy

, together with P x0 +

P x1 + · · ·+ 1
2P

x
Qn+1

≤ Vy+n+1
Qy

, we must have P x0 +P x1 + · · ·+ 1
2P

x
Qn

<
Vy+n
Qy

. Consequently, P x0 +P x1 +

· · · + 1
2P

x
Qn−1

<
Vy+n−1
Qy

. Based on the slackness condition, P yn−1 = P yn = 0. Therefore, bidding n for
player x is strictly dominated by bidding n− 1, and it contradicts the assumption: P xn >

2
Qy

.

A Proof of Proposition 1
The proof of Proposition 1 are contained in the following lemmas. The first lemma shows that in all equilib-
ria, both players bids Q with zero probability.

Lemma 2. P xQ = P yQ = 0.

Proof. We prove this by contradiction. First, if P xQ > 0, bidding Q for player y is strictly dominated by
bidding zero, i.e., P yQ = 0. Second, as the expected payoff for player x to bid Q is 0, we must have P y0 = 0.
Together, we have:

P y1 + · · ·+ P yQ−1 = 1. (1)

P y1 + · · ·+ 1

2
P yQ−1 ≤

Q− 1

Q
. (2)

Therefore, we have P yQ−1 ≥
2
Q . By Lemma 1, P yQ−1 = 2

Q must hold, and Equation 1 becomes:

P y1 + · · ·+ P yQ−2 =
Q− 2

Q
. (3)
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Next, we show that under the assumption: P xQ > 0, P yQ−2 = 0 must hold. Again, we prove this by
contradiction.

If P yQ−2 > 0, given Equation 3, we have P y0 + P y1 + · · · + 1
2P

y
Q−2 <

Q−2
Q , and it implies P xQ−2 = 0.

Moreover, P yQ−2 > 0 implies P x0 +P x1 + · · ·+P xQ−3+
1
2P

x
Q−2 =

Vy+Q−2
Q . Together, we have the following

equation:

P x0 + P x1 + · · ·+ P xQ−3 =
Vy +Q− 2

Q
. (4)

As P yQ−1 = 2
Q , by the complementary slackness condition, we have:

P x0 + P x1 + · · ·+ P xQ−3 +
1

2
P xQ−1 =

Vy +Q− 1

Q
. (5)

Combining Equations 4 and 5, we have P xQ−1 = 2
Q . Therefore, we have P x0 +P

x
1 +· · ·+P xQ−3+P

x
Q−1 =

Vy+Q
Q , and it suggests P xQ = 0.

Similarly, we can show that P yQ = P yQ−2 = · · · = 0 and P yQ−1 = P yQ−3 = · · · = 2
Q .

When Q = 2n, using the complementary slackness condition, we can easily show that P x0 + P x1 ≥ 2
Q ,

P x2 + P x3 ≥ 2
Q , · · · , P xQ−2 + P xQ−1 ≥ 2

Q . Altogether, they suggest that P xQ = 0, which contradicts P xQ > 0.
When Q = 2n+ 1, P y0 = 1

Q , and it contradicts P y0 = 0.

By Lemma 2, the matrix format (1) becomes:

1
2 0 0 · · · · · · 0 P i0

Vj

Q

1 1
2 0 · · · · · · 0 P i1

Vj+1
Q

1 1 1
2 · · · · · · 0 P i2 ≤ Vj+2

Q

...
...

...
...

...
...

...
...

1 1 1 · · · · · · 1
2 P iQ−1

Vj+Q−1
Q

(6)

The next lemma shows that all “≤" in (6) must be “=".

Lemma 3. There is no strict inequality in (6) .

Proof. We prove Lemma 3 in the following steps.

1. We first show P i0 + P i1 + · · ·+ 1
2P

i
Q−1 =

Vj+Q−1
Q by contradiction.

If P i0 + P i1 + · · · + 1
2P

i
Q−1 <

Vj+Q−1
Q , P jQ−1 = 0. Therefore, Vi ≥ 1. Now we show Vi = 1 must

hold.

If Vi > 1, P iQ−1 = 0 and Vj > 1. Based on (6) and the complementary slackness condition, it
is easy to get P i0 = P i1 = · · · = P iQ−2 = 0. Therefore, we must have Vi = 1. Consequently,
P j0 + P j1 + · · · + P jQ−2 = 1 and P j0 + P j1 + · · · + 1

2P
j
Q−2 ≤

Q−1
Q . Combining with Lemma 1, we

have P jQ−2 = 2
Q .

Next we show P jQ−3 = 0 by contradiction.

If P jQ−3 > 0, P j0 + P j1 + · · · + 1
2P

j
Q−3 < Q−2

Q , which implies P iQ−3 = 0. Furthermore, the

complementary slackness condition suggests that P i0 + P i1 + · · · + P iQ−4 +
1
2P

i
Q−2 =

Vj+Q−2
Q and
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P i0 +P i1 + · · ·+P iQ−4 =
Vj+Q−3

Q . Altogether, P iQ−2 = 2
Q must hold, and it implies P i0 +P i1 + · · ·+

P iQ−2 =
Vj+Q−1

Q , which contradicts the prior assumption P i0 + P i1 + · · ·+ 1
2P

i
Q−1 <

Vj+Q−1
Q .

Similarly, it is easy to show that P jQ−1 = P jQ−3 = · · · = 0 and P jQ−2 = P jQ−4 = · · · = 2
Q .

When Q = 2n, the complementary slackness condition suggests P i0 + P i1 ≤ 2
Q , P i2 + P i3 ≤ 2

Q , · · · ,
P iQ−2 + P iQ−1 ≤ 2

Q , P iQ−2 + P iQ−1 <
2
Q , which contradicts P i0 + P i1 + · · ·+ P iQ−1 = 1.

When Q = 2n+ 1, P j0 = 1
Q . Based on the complementary slackness condition, Vj = 0, P i0 = P i2 =

· · · = P iQ−3 = 0 and P i1 = P i3 = · · · = P iQ−2 = 2
Q . Altogether, P iQ = 1

Q , which is an contradiction
to Lemma 2.

2. Next, we show P i0 + P i1 + · · ·+ 1
2P

i
Q−2 =

Vj+Q−2
Q by contradiction.

If P i0+P
i
1+· · ·+ 1

2P
i
Q−2 <

Vj+Q−2
Q , P jQ−2 = 0. Combining with P i0+P

i
1+· · ·+P iQ−2 =

2Vj+Q−2
Q ,

we have P iQ−2 >
2Vj

Q ≥ 0. Based on the complementary slackness condition, P j0+P
j
1+· · ·+P

j
Q−3 =

Vi+Q−2
Q . As P j0 + P j1 + · · ·+ P jQ−3 = 2Vi+Q−2

Q , we must have Vi = 0.

Similar to the proof in Step 1, we can show that P jQ−1 = P jQ−3 = · · · = 2
Q and P jQ−2 = P jQ−4 =

· · · = 0.

When Q = 2n, the complementary slackness condition suggests that P i0 + P i1 ≥ 2
Q , P i2 + P i3 ≥ 2

Q ,
· · · , P iQ−2 + P iQ−1 >

2
Q , which contradict P i0 + P i1 + · · ·+ P iQ−1 = 1.

When Q = 2n+ 1, P j0 = 1
Q , and it contradicts 1

2P
j
0 ≤ 2Vi

Q = 0.

3. Repeating the proof procedure in the prior steps, we can show that except 1
2P

i
0 ≤

Vj

Q , no strict inequal-

ity in (6) exists. Based on the complementary slackness condition and P j0 + P j1 + · · ·+ P jQ−1 = 1, it

is also easy to show that 1
2P

i
0 =

Vj

Q must hold.

By Lemma 3, we solve the matrix format (6) and get the following equilibrium solutions:

P i0 = P i2 = · · · = 2Vj

Q ,

P i1 = P i3 = · · · = 2−2Vj

Q .

When Q = 2n, we have:

P i0 = P i2 = · · · = P iQ−2 =
2Vj

Q ,

P i1 = P i3 = · · · = P iQ−1 =
2−2Vj

Q ,

where Vj ∈ [0, 1].
When Q = 2n+1, to guarantee P i0 +P i1 + · · ·+P iQ = 1, we must have Vi = Vj = 1/2. Therefore, we

have:

P i0 = P i1 = · · · = P iQ−1 = 1
Q .
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B Proof of Proposition 2
AssumingQx−Qy > 1, neither players would bid higher thanQy+1. Consequently, Vx ≥ Qx−Qy−1 > 0.
The proof of Proposition 2 are contained in the following two lemmas, and we first show that player x never
bids zero.

Lemma 4. P x0 = 0.

Proof. We prove this by contradiction.
If P x0 > 0, then Vy > 0. Therefore, P x0 + P x1 + · · · + 1

2P
x
Qy

<
Vy+Qy

Qy
. Based on the complementary

slackness condition, P yQy
= 0.

Moreover, the complementary slackness condition also suggests P y0 = 2Vx

Qx
and P y1 ≤

2(1−Vx)
Qx

. Conse-
quently, Vx ≤ 1. Together with Vx ≥ Qx − Qy − 1, we get Qx ≤ Qy + 2, and because of Qx − Qy > 1,
Qx = Qy + 2 must hold.

When Qx = Qy + 2, Vx = 1. Therefore, P y0 + P y1 + · · · + 1
2P

y
Qy
≤ 1+(Qx−2)

Qx
. Together with

P y0 + P y1 + · · ·+ P yQy
= 1, we get P yQy

≥ 2
Qx

, which is an contradiction to P yQy
= 0.

The next lemma shows that the probability of bidding zero for player y is greater than zero.

Lemma 5. P y0 > 0.

Proof. We prove this by contradiction.
First, we show that if P y0 = 0, P y1 > 0 must hold.
If P y1 = 0, together with P y0 = 0, Lemma 4 and the complementary slackness condition suggests that

P x0 = P x1 = 0. Moreover, by Lemma 1, 1
2P

x
2 < Vx+2

Qy
, and P y2 = 0. Consequently, P x2 = 0.

Furthermore, by doing this repeatedly, we get P x0 = P x1 = · · · = P xQy−1 = 0 and P y0 = P y1 = · · · =
P yQy−1 = 0. Then P xQy

= P yQy
= 1, which is an contradiction to Vy ≥ 0.

When P y1 > 0, the complementary slackness condition suggests that P x1 =
2Vy+2
Qy

> 0. Combing with

P y0 = 0 , we have P y1 = 2Vx+2
Qx

. Based on Lemma 1, Vx = 0, and it contradicts Vx > 0.

Lemmas 4 and 5 suggest Vy = 0. Now we present the proof of Proposition 2 for Qy = 2n and
Qy = 2n+ 1 separately.

1. When Qy = 2n,

Proof. First, we show that P xQy
= 0.

If P xQy
> 0, by the complementary slackness condition, P yQy

= 0, which implies P yQy−1 > 0 and
Vx = Qx −Qy .

Furthermore, similar to the proof in Lemma 2, we have P y0 =
Qx−Qy

Qx
, P y1 = P y3 = · · · = P yQy−1 =

2
Qx

and P y2 = P y4 = · · · = P yQy
= 0.

Consequently, by the complementary slackness condition and Lemma 4, P x0 = P x2 = · · · = P xQy
= 0,

which is an contradiction to P xQy
> 0.

Conditional on Vy = 0 and P xQy
= 0, the matrix format (1) for player x becomes:

1
2 0 0 · · · · · · 0 P x1

1
Qy

1 1
2 0 · · · · · · 0 P x2 ≤ 2

Qy

...
...

...
...

...
...

...
...

1 1 1 · · · · · · 1
2 P xQy−1

Qy−1
Qy

(7)
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Second, we show that there is no strict inequality in (7) by the following steps.

(a) If P x0 + P x1 + · · · + 1
2P

x
Qy−1 <

Qy−1
Qy

, P xQy−1 >
2
Qy

, which is an contradiction to Lemma 1.

Therefore, P x0 + P x1 + · · ·+ 1
2P

x
Qy−1 =

Qy−1
Qy

and P xQy−1 = 2
Qy

.

(b) If P x0 +P x1 + · · ·+ 1
2P

x
Qy−2 <

Qy−2
Qy

, P xQy−2 > 0 and P yQy−2 = 0. Based on the complementary
slackness condition and Lemma 1, P yQy−1 = P yQy−3 = 2

Qx
.

Next, we show P yQy−4 = 0 by contradiction. If P yQy−4 > 0, the complementary slackness

condition and Lemma 1 imply that P xQy−3 = 2
Qy

and P x0 +P x1 + · · ·+ 1
2P

x
Qy−3 =

Qy−3
Qy

, which

contradict the assumption: P x0 + P x1 + · · ·+ 1
2P

x
Qy−2 <

Qy−2
Qy

. Therefore, P yQy−4 = 0. Based
on the complementary slackness condition and Lemma 1, PQy−5 = P yQy−1 = P yQy−3 = 2

Qx
.

Repeatedly, we get P yQy−1 = P yQy−3 = · · · = P y1 = 2
Qx

.

As P yQy−1 = P yQy−3 = · · · = P y1 = 2
Qx

, the complementary slackness condition implies that
P x0 + P x1 ≥ 2

Qy
, P x2 + P x3 ≥ 2

Qy
, · · · , P xQy−2 + P xQy−1 >

2
Qy

, which contradicts P x0 + P x1 +

· · ·+ P xQ−1 = 1.

(c) Similar to the prior two steps, we show that no strict inequality exists in (7).

Now we solve (7) and it yields P x0 = P x2 = · · · = P xQy
= 0, P x1 = P x3 = · · · = P xQy−1 = 2/Qy .

Additionally, P xQy−1 = 2/Qy > 0 implies Vx ≤ Qx −Qy + 1.

Furthermore, by the complementary slackness condition, the matrix format (1) for player y becomes:

1
2 0 0 · · · · · · 0 P y0 ≤ Vx

Qx

1 1
2 0 · · · · · · 0 P y1 = Vx+1

Qx

1 1 1
2 · · · · · · 0 P y2 ≤ Vx+2

Qx

...
...

...
...

...
...

...
...

1 1 1 · · · 1
2 0 P yQy−1 =

Vx+Qy−1
Qx

1 1 1 · · · 1 1
2 P yQy

≤ Vx+Qy

Qx

(8)

Since Qx − Qy > 1, it is easy to show that there exists at least one strict inequality. Therefore, the
equilibrium strategy for player y is determined by the linear system (8).

Furthermore, P y0 = (Vx + 1)/Qx, P yQy
= (Qx − Qy + 1 − Vx)/Qx, P y2 = · · · = P yQy−2 = 2/Qx,

P y1 = P y3 = · · · = P yQy−1 = 0 is a special solution of the linear system (8). The number of
free parameters is Qy/2, and the range of the parameters is determined by the inequality in (8). In
addition, the homogeneous solution yields P1 + 2P2 + · · ·+QyPQy

= 0.

2. When Qy = 2n+ 1,

Proof. First, we show that P yQy
= 0.

If P yQy
> 0, similar to the proof in Lemma 2, we get P x1 = P x3 = · · · = P xQy

= 0 and P x2 = P x4 =

· · · = P xQy−1 = 2
Qy

. However, it suggests P x0 = 1
Qy

, which contradicts Lemma 4.
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As P yQy
= 0, the matrix format (1) for player y becomes:

1
2 0 0 · · · · · · 0 P y0

Vx

Qx

1 1
2 0 · · · · · · 0 P y1 ≤ Vx+1

Qx

...
...

...
...

...
...

...
...

1 1 1 · · · · · · 1
2 P yQy−1

Vx+Qy−1
Qx

(9)

Second, we show that one and only one strict inequality exists in (9) by the following steps.

(a) If P y0 + P y1 + · · · + 1
2P

y
Qy−1 <

Vx+Qy−1
Qx

, P xQy−1 = 0. Similar to the proof in Lemma 2,
P x1 = P x3 = · · · = P xQy−2 = 2

Qy
and P xQy

= 1
Qy

. Consequently, Vx = Qx −Qy .

By inserting Vx = Qx − Qy into P y0 + P y1 + · · · + 1
2P

y
Qy−1 <

Vx+Qy−1
Qx

, P y0 + P y1 + · · · +
1
2P

y
Qy−1 <

Qx−1
Qx

, and it suggests P yQy−1 >
2
Qx

, which is an contradiction to Lemma 1.

Therefore, P y0 + P y1 + · · · + 1
2P

y
Qy−1 =

Vx+Qy−1
Qx

, which implies P yQy−1 =
2(Qx−Qy+1−Vx)

Qx
.

Furthermore, Lemma 1 implies that Vx ≥ Qx −Qy .

(b) If P y0 + P y1 + · · · + 1
2P

y
Qy−2 <

Vx+Qy−2
Qx

, P yQy−2 >
2(Qy−Qx+Vx)

Qx
≥ 0 and P xQy−2 = 0. By

Lemma 1, Vx < Qx −Qy + 1, which implies P yQy−1 > 0. Moreover, using the complementary
slack condition, we recursively get P x2 = · · · = P xQy−1 = 2

Qy
, and it implies P x0 = 1

Qy
, which

is an contradiction to Lemma 4.

(c) Similar to Steps 1 and 2, we can show that except 1
2P

y
0 ≤ Vx

Qx
, all “≤" in (9) must be “=".

Then solving (9) yields P y0 =
Qx−Qy+1

Qx
, P y1 = P y3 = · · · = P yQy−2 =

2(Qy−Qx+Vx)
Qx

and

P y2 = P y4 = · · · = P yQy−1 =
2(Qx−Qy+1−Vx)

Qx
.

(d) In Step 1, we have shown that Vx ≥ Qx − Qy . When Vx > Qx − Qy , P y1 = P y3 = · · · =
P yQy−2 =

2(Qy−Qx+Vx)
Qx

> 0. Based on the complementary slack condition and Lemma 4, we
can easily show that P x0 = P x2 = · · · = P xQy−1 = P xQy

= 0 and P x1 = P x3 = · · · = P xQy−2 =
2
Qy

, which contradicts P x0 + P x1 + · · ·+ P xQy
= 1.

As Vx = Qx −Qy and Qx > Qy + 1, 1
2P

y
0 =

Qx−Qy+1
2Qx

< Vx

Qx
.

Now we solve (9) and it yields P y1 = P y3 = · · · = P yQy−2 = 0 and P y2 = P y4 = · · · = P yQy−1 = 2
Qx

.

Furthermore, given the complementary slackness condition, the matrix format (1) for player x be-
comes:

1
2 0 0 · · · · · · 0 P x1 ≤ 1

Qy

1 1
2 0 · · · · · · 0 P x2 = 2

Qy

1 1 1
2 · · · · · · 0 P x3 ≤ 3

Qy

...
...

...
...

...
...

...
...

1 1 1 · · · 1
2 0 P xQy−1 =

Qy−1
Qy

1 1 1 · · · 1 1
2 P xQy

≤ Qy

Qy

(10)
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As Qy = 2n + 1, there exists at least one strict inequality. Therefore, the equilibrium strategy for
player x is determined by the linear system (10). Furthermore, P x0 = P x2 = · · · = P xQy−1 = 0,
P x1 = P x3 = · · · = P xQy−2 = 2/Qy and P xQy

= 1/Qy is a special solution of the linear system (10).
The number of free parameters is (Qy − 1)/2, and the range of the parameters is determined by the
inequality in (10). Additionally, the homogeneous solution yields P1 + 2P2 + · · ·+QyPQy

= 0.

C Proof of Proposition 3
As the equilibrium solution for Q = C + 1 is the same as that for no cap case, we focus on Q > C + 1 in
the following proof. The proof of Proposition 3 are contained in the following lemmas.

We first show that bidding C is not dominated by other strategies.

Lemma 6. P i0 + P i1 + · · ·+ 1
2P

i
C =

Vj+C
Q .

Proof. We discuss the following three different cases:

1. If P x0 + P x1 + · · · + 1
2P

x
C <

Vy+C
Q and P y0 + P y1 + · · · + 1

2P
y
C < Vx+C

Q , P xC = P yC = 0. Therefore,

P iC−1 ≥
2(Q−C+1−Vj)

Q , and Lemma 1 implies Vi ≥ Q− C > 1.

When Vx > 1, 1
2P

y
0 <

Vx

Q must hold. Otherwise, P y1 ≤ 2−2Vx

Q < 0. Conditional on 1
2P

y
0 <

Vx

Q , P y0 =

0. Combining P y0 = 0 with Lemma 1, we get 1
2P

y
1 < 1+Vx

Q , which implies P x1 = 0. Repeatedly, we
have P x0 = P x1 = · · · = P xC = 0.

2. If P x0 +P x1 + · · ·+ 1
2P

x
C =

Vy+C
Q and P y0 +P y1 + · · ·+ 1

2P
y
C < Vx+C

Q , P xC = 0. Combining P xC = 0

with P x0 + P x1 + · · ·+ P xC−1 = 1 and P x0 + P x1 + · · ·+ P xC−1 =
Vy+C
Q , we have Vy = Q− C > 1,

and it implies P y0 = 0.

Similar to the proof in Lemma 2, P xC−1 = P xC−3 = · · · = 2
Q , P xC = P xC−2 = · · · = 0 and P x0 > 0.

Together with P y0 = 0, Vx = 0 must hold.

When C = 2n, P yC−1 = 2
Q and P y0 +P y1 + · · ·+ 1

2P
y
C−1 = C−1

Q , which contradicts P y0 +P y1 + · · ·+
1
2P

y
C < C

Q .

When C = 2n+1, using the complementary slackness condition, we have P y0 +P y1 ≤ 2
Q , P y2 +P y3 ≤

2
Q , · · · , P yC−1 + P yC < 2

Q , which contradicts P x0 + P x1 + · · ·+ P xC = 1.

3. Similar to the previous case, we show that P x0 +P x1 + · · ·+ 1
2P

x
C <

Vy+C
Q and P y0 +P

y
1 + · · ·+ 1

2P
y
C =

Vx+C
Q can not hold.

In the following lemma, we show the boundary of Vx and Vy under the assumption of Q ≤ 2(C + 1).

Lemma 7. When Q ≤ 2(C + 1), Vx, Vy ∈ [0, 1].

Proof. Similarly, we discuss the following three different cases:

1. If Vx > 1 and Vy > 1, P x0 = P x1 = · · · = P xC−1 = 0 and P y0 = P y1 = · · · = P yC−1 = 0. However,
Vx = Vy = 1

2Q− C ≤ 1, which contradicts Vx > 1 and Vy > 1.

2. If Vx > 1 and Vy ∈ [0, 1], P x0 = 0.

First, we show that Vy = 0 by contradiction.

Assuming Vy > 0, given P x0 = 0, we have 1
2P

x
0 <

Vy

Q . Furthermore, the complementary slackness
condition suggests P y0 = 0.
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Next, Lemma 1 suggests that 1
2P

x
1 <

Vy+1
Q , which implies P y1 = 0. Consequently, P y0 + 1

2P
y
1 < Vx

Q ,
which suggests P x1 = 0.

Repeatedly, we get P xC = P yC = 1, which contradicts Vx > Vy .

Next, since Vy = 0, P xC = 2Q−2C
Q and P x0 +P x1 + · · ·+P xC−1 = 2C−Q

Q . Therefore, P x0 +P x1 + · · ·+
1
2P

x
2C−Q+1 <

2C−Q+1
Q , and it implies P y2C−Q+1 = 0.

Similarly, P y2C−Q+1 = P y2C−Q+2 = · · · = P yC−1 = 0. Combining it with P yC = 2Q−2C−2Vx

Q , we
have P y0 + P y1 + · · · + P y2C−Q = 2Vx+2C−Q

Q . However, P y0 + P y1 + · · · + P y2C−Q ≤
Vx+2C−Q+1

Q .
Altogether, they suggest Vx ≤ 1, which is an contradiction to Vx > 1.

3. Similar to the prior case, we show that Vx ∈ [0, 1] and Vy > 1 can not hold.

In the following lemma, we show that neither players bids 2C − Q + 1, 2C − Q + 2, · · · , C − 1 with
positive probability.

Lemma 8. P i2C−Q+1 = P i2C−Q+2 = · · · = P iC−1 = 0.

Proof. We separate the proof for the following two cases.

1. When Q ≤ 2(C + 1)

First, Lemma 6 suggests thatP iC =
2Q−2C−2Vj

Q , and consequentlyP i0+P
i
1+· · ·+P iC−1 =

2Vj+2C−Q
Q .

Combining it with Lemma 7, P i0 + P i1 + · · ·+ 1
2P

i
2C−Q+2 <

Vj+2C−Q+2
Q must hold, and it suggests

P j2C−Q+2 = 0.

Similarly, we have P i2C−Q+2 = · · · = P iC−1 = 0 .

Next, we show P i2C−Q+1 = 0 by contradiction.

If P i2C−Q+1 > 0, P j0 + P j1 + · · · + P j2C−Q+1 = 2Vi+2C−Q
Q and P j0 + P j1 + · · · + 1

2P
j
2C−Q+1 =

Vi+2C−Q+1
Q . They suggest P j2C−Q+1 = 2(Vi−1)

Q . Consequently, Vi = 1 and P j2C−Q+1 = 0 must
hold.

Similar to the proof in Lemma 2, we have P jC = 2Q−2C−2
Q , P j2C−Q = P j2C−Q−2 = · · · = 2

Q and

P j2C−Q−1 = P j2C−Q−3 = · · · = 0.

WhenQ = 2n, P j0 = 2
Q . Consequently, P i0 =

2Vj

Q , which implies P i1+P
i
2+· · ·+P i2C−Q+1 = 2C−Q

Q .

However, given the complementary slack condition, we have P i1 + P i2 ≥ 2
Q , P i3 + P i4 ≥ 2

Q , · · · ,
P i2C−Q−1 + P i2C−Q ≥ 2

Q . Consequently, P i1 + P i2 + · · · + P i2C−Q ≥
2C−Q
Q , which contradicts

P i2C−Q+1 > 0.

When Q = 2n + 1, P j0 = 1
Q < 2Vi

Q , and it suggests that P i0 = 0 and Vj = 0. Furthermore,
P i1 = P i3 = · · · = P i2C−Q = 2

Q and P iC = 2Q−2C
Q , which contradicts P i0 + P i1 + · · ·+ P iC = 1.

2. When Q > 2(C + 1)

In this case, the expected payoff for bidding C is at least 1
2Q−C > 1. Therefore Vx > 1 and Vy > 1.

Similar to the proof in Lemma 6, we have P x0 = P x1 = · · · = P xC−1 = 0 and P y0 = P y1 = · · · =
P yC−1 = 0.

Lemma 8 implies that when 2C −Q < 0, a unique Nash equilibrium exists, and both players bid C.
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When 2C −Q ≥ 0, the matrix format (1) becomes:

1
2 0 0 · · · · · · 0 P i0

Vj

Qj

1 1
2 0 · · · · · · 0 P i1

Vj+1
Qj

1 1 1
2 · · · · · · 0 P i2 ≤ Vj+2

Qj

...
...

...
...

...
...

...
...

1 1 1 · · · · · · 1
2 P i2C−Q

Vj+2C−Q
Qj

(11)

The next lemma shows that all “≤" in (11) must be “=".

Lemma 9. No strict inequality exists in (11) .

Proof. Lemma 3 suggests that when there is no cap, P i2C−Q+1+P
i
2C−Q+2+ · · ·+P iQ−1 = Q−1−2C+Q−1

2 ·
2
Q +

2−2Vj

Q =
2Q−2C−2Vj

Q . Therefore, by Lemma 3, when P i0 + P i1 + · · · + P i2C−Q = 1 − 2Q−2C−2Vj

Q ,
there is no strict inequality in

1
2 0 0 · · · · · · 0 P i0

Vj

Qj

1 1
2 0 · · · · · · 0 P i1

Vj+1
Qj

1 1 1
2 · · · · · · 0 P i2 ≤ Vj+2

Qj

...
...

...
...

...
...

...
...

1 1 1 · · · · · · 1
2 P i2C−Q

Vj+2C−Q
Qj

(12)

Because P iC =
2Q−2C−2Vj

Q , this is the same as (11).

By Lemma 9, we solve the matrix format (11) as follows:

P i0 = P i2 = · · · = 2Vj

Q ,

P i1 = P i3 = · · · = 2−2Vj

Q .

When Q = 2n, we have:

P i0 = P i2 = · · · = P i2C−Q =
2Vj

Q ,

P i1 = P i3 = · · · = P i2C−Q−1 =
2−2Vj

Q .

and P iC =
2Q−2C−2Vj

Q , where Vj ∈ [0, 1].
When Q = 2n + 1, Vi = Vj = 1/2 must hold to guarantee P i0 + P i1 + · · · + P iQ = 1. Therefore, we

have:
P i0 = P i1 = · · · = P i2C−Q = 1

Q .

and P iC = 2Q−2C−1
Q .
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D Proof of Proposition 4
As the proof is similar to Propositions 2 and 3, we only present the sketch of the proof and omit the details.
Without loss of generality, we assume C < Qy − 1, Qx −Qy > 1 and Qy ≤ 2C.

Proof. We prove it in the following steps.

1. Similar to the proof in Lemma 6, P i0 + P i1 + · · ·+ 1
2P

i
C =

Vj+C
Qj

.

2. Similar to the proof in Lemma 4, P x0 = 0.

3. Similar to the proof in Lemma 5, P y0 > 0 and Vy = 0 .

4. Similar to the proof in Lemma 8, P i2C−Qy+1 = P i2C−Qy+1 = · · · = P iC−1 = 0.

5. When Qy = 2n, we can solve the equilibrium strategy for player x:

P x0 = P x2 = · · · = P x2C−Qy
= 0,

P x1 = P x3 = · · · = P x2C−Qy−1 = 2/Qy,

P x2C−Qy+1 = P x2C−Qy+2 = · · · = P xC−1 = 0,

P xC = 2(Qy − C)/Qy.

The equilibrium strategy for player y is determined by a linear system with special solution: P y0 =
1+Vx

Qx
, P y1 = P y3 = · · · = P y2C−Qy−1 = 0, P y2 = P y4 = · · · = P y2C−Qy−2 = 2

Qx
, P y2C−Qy

=
Qy−Qx+1+Vx

Qx
, P yC = 2Qx−2C−2Vx

Qx
, Vx ∈ [Qx −Qy − 1, Qx −Qy + 1]. Additionally, the number of

free parameters is: 2C−Qy

2 .

6. When Qy = 2n+ 1, we can solve the equilibrium strategy for player y:

P y0 = (Qx −Qy + 1)/Qx,

P y1 = P y3 = · · · = P y2C−Qy
= 0,

P y2 = P y4 = · · · = P y2C−Qy−1 = 2/Qx,

P y2C−Qy+1 = P y2C−Qy+2 = · · · = P yC−1 = 0,

P yC = 2(Qy − C)/Qx.

The equilibrium strategy for player x is determined by a linear system with special solution: P x0 = 0,
P x2 = · · · = P x2C−Qy−1 = 2/Qy, P

x
3 = P x5 = · · · = P x2C−Qy

= 0, P xC = 2(Qy − C)/Qy.

Additionally, the number of free parameters is: 2C−Qy−1
2 .
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E Proof of Proposition 5
First, we define τ = min{Qx, Qy, C}. Since the tie-breaking rule favors player x, all equilibria are charac-
terized by the following matrix format:

0 0 0 · · · · · · 0 P x0
Vy

Qy

1 0 0 · · · · · · 0 P x1
Vy+1
Qy

1 1 0 · · · · · · 0 P x2 ≤ Vy+2
Qy

...
...

...
...

...
...

...
...

1 1 1 · · · · · · 0 P xτ
Vy+τ
Qy

(13)

1 0 0 · · · · · · 0 P y0
Vx

Qx

1 1 0 · · · · · · 0 P y1
Vx+1
Qx

1 1 1 · · · · · · 0 P y2 ≤ Vx+2
Qx

...
...

...
...

...
...

...
...

1 1 1 · · · · · · 1 P yτ
Vx+τ
Qx

(14)

The proof of Proposition 5 are contained in the following lemmas.
First, we show that ∀n ∈ {1, 2, . . . , τ − 1}, the upper bound of P xn is always 1

Qy
.

Lemma 10. P xn ≤ 1
Qy

.

Proof. We prove it by contradiction. If P xn > 1
Qy

, together with P x0 + P x1 + · · · + P xn ≤
Vy+n+1
Qy

, we get

P x0 + P x1 + · · · + P xn−1 <
Vy+n
Qy

, and it implies P yn = 0. Consequently, bidding n for player x is strictly
dominated by bidding n− 1, and consequently P xn = 0, which contradicts P xn >

1
Qy

.

The next lemma shows that all “≤" in (13) must be “=".

Lemma 11. No strict inequality exists in (13) .

Proof. We prove it in the following steps.

1. First, we show P x0 =
Vy+1
Qy

by contradiction.

Assuming P x0 <
Vy+1
Qy

, Lemma 10 suggests that P x0 +P
x
1 <

Vy+2
Qy

. By using Lemma 10 repeatedly, all
“≤" in (13) must be “<". Given the complementary slackness condition, P y1 = P y2 = · · · = P yτ = 0.
Furthermore, P x1 = P x2 = · · · = P xτ = 0. Altogether, P x0 = P y0 = 1. However, as Qy > 1,
P x0 = P y0 = 1 is not an equilibrium.

2. Next, we show P x0 + P x1 + · · ·+ P xn =
Vy+n+1
Qy

by induction.

First, we assume that ∀m ∈ {0, 1, . . . , n−1}, P x0 +P x1 +· · ·+P xn <
Vy+n+1
Qy

andP x0 +P
x
1 +· · ·+P xm =

Vy+m+1
Qy

.
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By using the complementary slackness condition and Lemma 10, we solve (13) and get:

P x0 =
1 + Vy
Qy

,

P x1 = P x2 = · · · = P xn−1 =
1

Qy
,

P xn =
Qy − n− Vy

Qy
.

When Vy > 0, P y0 = 0 must hold. Combining P y0 = 0 with P x0 > 0, we have Vx = 0.

In contrast, P yn+1 = P yn+2 = · · · = P yτ = 0 suggests that the expected payoff for player x for bidding
n is at least Qx − n > 0, and it contradicts Vx = 0.

Altogether, Vy = 0 and P xn =
Qy−n
Qy

. By Lemma 10, n = Qy − 1.

However, when n = Qy − 1, P x0 + P x1 + · · · + P xn = n+1
Q , which contradicts the assumption that

P x0 + P x1 + · · ·+ P xn <
Vy+n+1
Qy

.

By Lemma 11, we solve (13) and get:

P x0 =
1 + Vy
Qy

,

P x1 = P x2 = · · · = P xτ−1 =
1

Qy
,

P xτ =
Qy − τ − Vy

Qy
.

Next, we show Vy = 0 by contradiction.
If Vy > 0, P y0 = 0. Combining P y0 = 0 with P x0 > 0, we get Vx = 0. Furthermore, since the expected

payoff for player x to bid τ is at least Qx − τ , we have Qx = τ . However, as Qy ≤ Qx, Qx = τ suggests
that P xτ =

Qy−τ−Vy

Qy
< 0, which is an contradiction.

Altogether, the equilibrium strategy for player x is:

P x0 = P x1 = P x2 = · · · = P xτ−1 =
1

Qy
,

P xτ =
Qy − τ
Qy

.

Using the complementary slackness condition, we solve (14) and the equilibrium strategy for player y
is:

P y0 =
Vx
Qx

,

P y1 = P y2 = · · · = P yτ−1 =
1

Qx
,

P yτ =
Qx − τ + 1− Vx

Qx
.

Additionally, Vx ∈ [Qx − τ,Qx − τ + 1].
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