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1 Introduction

Macroeconomics reveals to be an expression of complexity [53, 55]. Although several
definitions of complex systems are available, it can be synthetically said that a complex
system is characterized by the notion of emergence, i.e., the spontaneous formation of
self-organized structures at a different layers of a hierarchical configuration, [40]. In a
complex system, then, the interaction among several individual parts generates aggregate
outcomes which qualitatively differ from the features of its constituents. One of the most
dramatic consequence of this, as Prigogine explained, [69], is that any prediction about the
timing of such emergent properties is only a waste of time. The theoretical consequences
of complexity in macroeconomics are substantial, both in terms of research perspectives
and of modeling tools, as discussed in relevant literature, [34, 50,51,78].

From a policy perspective, the recognition of such a complex nature of aggregate Eco-
nomics should induce to ground the policy design very differently. Indeed, important
suggestions may arise from the analysis of the effects produced by different individual
characteristics on the global dynamics. An example of such an approach can be found
in [14] where a study on some microstructural properties of the order book mechanism
provided intuitions on possible policies for market stabilization.

The motivation of this paper is to check the effects due to heterogenous risk aversion
and adaptive learning ability of traders on the stability of a financial market that operates
through a realistic order book. Thus, the main result is the provision of the macro effects
of micro features, which cannot act directly on the aggregate outcome but have a role
in influencing the interactions among individuals. As Mitchell suggests, [65], the order
book is a valid example of a complex system because its dynamics emerges as a global
result of local individual interactions among traders. Thus, this paper makes a step
forward in the direction of investigating how global extreme events, which characterize
the behavior of actual markets, are possibly determined by individual characteristics of
market participants determining how their orders are eventually managed and negotiated.

A vast literature on financial order book modeling exists. Crucial surveys can be
found in [18,68,75]. Some existing models can be labelled as trader-centric, because they
have been mainly based on frameworks aiming to derive fully rational optimal trading
strategies, as in [19, 38, 48, 49, 67, 71, 72]; some other contributions can be named facts-
centric, because they tended to study more the statistical features of the market as a
dynamic process than the individual characterization of investors, as in [4,15,30,32,37,64].

This paper is methodologically linked to a third stream of literature, which is inspired
by the computational approach of agent-based models (ABMs) in economics. Such models,
developed since the Nineties, have shown to be able to describe many aspects neglected by
the orthodox modeling, as explained in [78]. Examples are, among others, [16,17,20,21,33,
39, 50, 58–60]. The heterogeneity of individuals and the global properties emerging from
their interaction can be analyzed by means of specific statistical tools [63] and assume a
determinant descriptive role in models of financial markets, as in [51, 56], and in models
of order books, as in [22,23,27,41,70,77].

In some recent works, the individual risk aversion has been considered in agent-based
models to differentiate individual behavior. In particular, [74] adopts a model in which the
probability of default of countries is explained by means of a modified version of [79], in
which the risk aversion is negatively correlated with both default probability and income,
whereas [35] describes different evolution of civil violence among citizens with different risk
perceptions, and [46] show implications on flood risk analysis of different individual risk
aversion of households. Focused on the description of financial markets, [36] discuss the
effects of convex incentives on trading behavior of agents in a naive rational-investors-vs-
noise-traders model, by showing that the risk aversion (through the incentives) may affect
market dynamics. A broader approach is used by [3], who show how agents’ behavior varies
according to the combined effect of individual risk attributes and to learning abilities to
account for errors done in past predictions. Other recent contributions show the impact
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of self-correcting behavior. In [24, 25] an experiment is shown to report that agents use
adaptive expectations instead of rational ones and that this may lead to a form of collective
rationality (despite the absence of communication among participants), which consists in
a robust divergence of predictions from the fundamental value. In particular, as in [26],
traders systematically end up with an underestimation of the fundamental price. In [5] the
origin of bubbles and crashes is questioned in terms of prediction errors: presented results
of experiments in which non-optimal trend-following behaviors synchronize and reinforce
the positive feedbacks between expectations and realised prices, even in presence of high
trading heterogeneity. This exacerbates price oscillations and let optimism and pessimism
arise even in presence of a stable fundamental value. In [52] it is shown that by fitting a
genetic algorithms model of learning to laboratory experiments it is possible to get fruitful
intuitions on market features for suitable policies.

The agent-based model here presented enriches the existing literature on the topic
with regards to several aspects: first of all, heterogeneity is modeled not only in terms
of behavioral attitude (as usually happens between fundamentalists and chartists) and
with respect to individual informative sets (also within groups), but also in terms of risk
aversion (by means of individual risk profiles) and adaptive learning ability (by means of
the personal capability to remember past forecasting errors); secondly, orders (which can
have variable quantity) have a time validity and they can be canceled before execution;
third, the double auction mechanism governing the order-book results in a true contracts-
driven price formation, in such a way that the simulated price series is entirely generated
by the model and never added by any fictitious data, differently from [22, 23], among
others; fourth, the quantity management system, designed for market orders.

The paper is organized as follows: section two contains the model description and
validates the proposed framework by showing its compliance with the most acknowledged
stylized facts of true financial data; section three is dedicated to simulations addressing
the role played by individual features on market stability; section four will conclude.

2 The Market

Consider a fully connected network of heterogeneous agents as in [14]. In analogy with a
wide body of existing literature, traders are distinguished by their informative endowment,
as in [31, 42, 43, 54], among others. The present model embeds two usual and opposite
attitudes to market participation. However, a variable accuracy of the owned information
is added here. The two groups are named, as usual, fundamentalists and chartists: the
former form their opinions by looking at information regarding the economic activity of
the issuer and presume to know the “correct” value for the asset, i.e., the fundamental
value; the latter, refer to the past performance of the asset price and estimate a reference
value in order to infer the future trend.

2.1 Model Description

The heterogeneity of traders is detailed by giving each market participant a personal
coefficient of risk aversion, and an individual possibility to learn from the past. Such
features should be read in terms of informative qualifications of agents. Indeed, both are
designed in order to differentiate the consciousness of investors with regards to both the
past and the future. The execution of orders depends on a double auction mechanism,
which relies on an order book where investors posts their orders (both market and limit
orders), according to their heterogenous expectations. The effective registration of orders
and the accountancy of negotiations are operated by a realistic order book without trans-
action costs. The series of simulative steps, from the expectations formation to the final
execution of transactions, is marked by a sequence of phases within each cycle-run of the
model. Such a sequence is preceded just by the order-validity management routine, which
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identifies those traders who will actively participate to the successive steps and let the
others (with active orders still pending in the order book) inactive for the current round.
The steps are: 1) the expectations setting; 2) the strategy setting; 3) the order setting;
4) the order book management; 5) the trading. After each transaction, the price used for
the negotiation is registered and a new cycle-run starts.

2.1.1 Expectations setting

In this model, traders are heterogenous. The individual expectation on the price dynamics
of a fundamentalists is based on the fundamental value that she personally considers as
the long-run appropriate value of the asset, at each time step, FVt. In the model, the
fundamental value is an exogenous variable, whose dynamics is set by:

FVt = FVt−1 ±Θt (1)

where Θt is a bounded random variable, drawn with uniform distribution within the inter-
val [−σΘ, σΘ] and FV 0 is set at the beginning of simulations. Each fundamentalist have
her individual perception, possibly imperfect, of FVt. Eventually, the price expectation
of the fundamentalist i at time t is computed as:

i
F p

exp
t = FVt ± Φt (2)

where Φt is a bounded random variable, with uniform distribution in [−σF , σF ].
The individual price forecast of a chartist is, instead, built upon the inspection of past

prices. Similarly to the approach adopted in [?], each chartist chooses a time window of
a certain length and looks back to that portion of the past market prices series in order
to define her personal reference value, which is computed as:

iRV t =

t∑
j=(t−τ)

pj/τ (3)

By eq.3 the average of last τ = (τ0 + τi) prices, included in the chosen observational
time window (ranging between t − τ and t), is computed. Further, τ0 = 200 and τi is
an individual random variable with uniform distribution, in (0, δ). Then, the individual
expected price of chartist i is:

i
Cp

exp
t = pt +

pt −RV t

τ − 1
± Λt (4)

where pt is the current market price, Λt is a random variable with uniform distribution
in [−σC , σC ] so that two traders with same time-window length may still have different
expectations.

Eqs.(2) and (4) are widely acknowledged in related literature. Similar approaches can
be found in [1, 2, 60, 76]. In terms of the composition of the community of agents, this
configuration is conceptually different from the one used in other contributions, [22, 23],
where each trader was designed as a weighted average of three components - fundamen-
talist, chartist, and noisy, with weights drawn from Gaussian distributions.

2.1.2 Strategy setting

The strategy to choose the trading behavior is set according to the following simple rule:

- if trader i expects a future price greater than the current one, i.e. i
jp

exp
t > pt + ς,

she will post a bid order and she will be a bidder, Bi;

- if trader i expects a future price smaller than the current one, i.e. i
jp

exp
t < pt − ς,

she will post an ask order and she will be an asker, Ai;
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- in case of stationary expectations, i.e. pt − ς ≤i
j pexpt ≤ pt + ς, the trader will be a

holder, and the trading strategy will be neither buy, nor sell.

where j =F,C and ς is the indolence threshold, which measures the market nervousness:
if the price forecast is not “sufficiently” different from the current market price, the
investor will decide to wait without buying/selling.

2.1.3 Order setting

Orders details are price and quantity. They are decided without a utility function. The
price setting rule for bid orders is based on the willingness to pay of the agent bidder,
computed as a function of her expectations:

i
Bwt =

ipexpt − i
Aw

exp
t (5)

The term ipexpt is i’s asset price expectation and i
Aw

exp
t is i’s individual opinion about

the askers’ willingness to accept. Such an opinion is computed by weighting the reverted
individual price expectation iprevt = pt − (ipexpt − pt) = 2pt − ipexpt (i.e., by letting the
bidder form her hypothetical willingness to accept that she would have expressed in the
case she were an asker):

i
Aw

exp
t = iµα

iprevt

where iµα is an individual random variable, with uniform distribution, in (0, σµα).
Further, in analogy with [60,61], traders are able to perceive the market pressure deriv-

ing from demand/supply mismatch, ∆n = f(nA, nB), with nA and nB being, respectively,
the number of askers and the number of bidders. Then, a bidder i computes the price of
the order as:

i
Bpt =

i
Bwt +

iµβ[z1∆n+z2∆p] (6)

where: ∆p is the difference between the best quotes of the order book, which are computed
as explained below, and are visible to all traders, as in true markets; iµβ ∈ (0, σµβ

),
z1 ∈ (0, σz1), and z2 ∈ (0, σz2) are random variables with uniform distribution, which
measure the influential weight of the market environment perceived by trader i. More
details on ∆n and ∆p will be provided later.

The price setting rule for ask orders is symmetrically based on the willingness to accept
of the agent asker, computed as a function of her expectations:

i
Awt =

ipexpt + i
Bw

exp
t (7)

In this case, i’s individual opinion about the bidders’ willingness to pay, i
Bw

exp
t , is com-

puted in analogy with the previously described rationale, by weighting the reverted indi-
vidual price expectation iprevt = pt + (pt − ipexpt ) = 2pt − ipexpt (i.e. by letting the asker
form her hypothetical willingness to pay that she would have expressed in the case she
were a bidder):

i
Bw

exp
t = iµα

iprevt

Then, an asker i computes the price of the order as:

i
Apt =

i
A wt +

i µβ[z1∆n+z2∆p] (8)

Once the price of the order has been decided, the quantity to be ordered is chosen
according to the endowment of each trader i. Initially, the same endowment, iW , is
distributed to all agents, consisting in an amount of money im and a quantity of shares
ia. Such an endowment changes in time according to the negotiated transactions, but
short selling is not permitted. Thus, each investor trades a quantity drawn randomly
from a feasible interval. For bid (iqBt ) and ask (iqAt ) orders, quantities will be set as:

iqBt = ω and iqAt = η (9)
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where ω and η are uniformly distributed random variables with values drawn, respectively,
from the intervals [1,mt/pt] and [1, at]. It is easy to see that a bidder can decide to buy,
at most, the highest number of shares she can pay, and an asker can decide to sell, at
most, all shares she has.

2.1.4 Order book management

When an agent has completely decided her strategy and desired price and quantity, she
submit the order for it to be registered in the order book. As in true markets, two sections
of the book have been designed: one for bid orders (posted by bidders) and another for
ask orders (posted by askers). Each section is then ranked with respect to price of orders,
as depicted in Fig.(1):

Figure 1: Both sections of the order book are ranked by prices. The ask side is ordered increasingly,
so that the best ask is the first of the list; the bid side is ordered decreasingly, so that the best
bid is the first of the list.

- bid orders decreasingly,
in such a way that the highest bid price, named best bid (Bp

best
t ), is the first of the

list, and the trader who posted it, i.e. the best bidder, with the highest willingness
to pay, has the priority;

- ask orders increasingly,
in such a way that the lowest ask price, i.e. best ask (Ap

best
t ), is the first of the list,

and the trader who posted it, i.e. best asker, with the lowest willingness to accept,
has the priority.

In analogy with [23], the taxonomy of orders is restricted to just market and limit orders.
The distinction between such types of orders derives from the comparison between their
prices (Apt and Bpt) and the current counter-side best quotes:

A- An ask order, posted by a trader i, will be:

- a limit order, if i
Apt >B pbestt

- a market order, if i
Apt ≤B pbestt

B- A bid order, posted by a trader i, will be:

- a limit order, if i
Bpt <A pbestt

- a market order, if i
Bpt ≥A pbestt

Limit orders have a finite time validity, chosen by the trader who posts it in the book.
Once that period is expired, it is automatically cancelled. However, each investor may
always decide to cancel her active order at any time during its validity. Agents cannot have
simultaneous active limit orders. Similarly to the approach of [60, 61], it is assumed that
limit orders standing in the book implicitly express a signal on the “market sentiment”.
This induces the dynamic adjustment of the price settings rules, as above explained, by
means of ∆n and ∆p. In particular, the market pressure term, ∆n, is computed as:

∆n =

{
(nA/nB)− 1 if nA > nB

(nB/nA)− 1 if nB > nA
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The price pressure term is computed as the absolute value of the difference between the
two best quotes in the book, i.e. ∆p = |Apbestt −B pbestt |. Both terms concur in the
dynamical adjustment of individual price setting rules, as read in eqs.(6) and (8), at each
iteration, by means of [z1∆n+ z2∆p].

Market orders are immediately executed at the best price of the counter side of the
book. The following quantity-matching mechanism operates:

a) if qBt = qAt , the negotiation regulation is done by assigning to the bidder (respectively
to the asker) the corresponding increase (respectively decrease) in the owned asset
quantity, and the related decrease (respectively increase) in the quantity of money;

b) if qBt ̸= qAt , the traded quantity of the transaction will be the “shortest side of the
market” (i.e. the smallest ordered quantity between best ask and best bid). Money
and stocks owned by traders are correspondingly updated. However, the trader
who has remained partly unsatisfied, with the unmatched residual quantity, remains
queueing in the order book, waiting for a new counterpart. Instead, the trader who
has entirely negotiated her order is erased, and her side of the order book is updated.
The successive trader becomes the new best trader in the former one’s place (with a
new best price and order). The partially unsatisfied trader continues the transaction
with such a new counterpart, at the new best price. This process can be repeated
until either the unmatched quantity has been entirely negotiated, or the allowed
order book length (regulated by a parameter) is reached. The order book length
is defined as the maximum number of new counterparts that a trader is allowed to
match in a single turn of transactions. In Fig.2, the role of the order book length
parameter is shown.

2.1.5 Trading

Orders are finally negotiated according to their priority and validity. All the prices used
in transactions, in order of execution, are registered and constitute the simulated time
series. Thus, the order book registers all prices used to negotiate transactions of matching
orders between a bidder and an asker. In all cases when a counterpart is not found, the
order book does not register any transaction and the price list is not updated, as it would
happen in true markets.

2.2 Stylized Facts of Order Book Statistics

This section is devoted to the preliminary check of the model for its compliance to some
of the most known stylized facts, [29], regularly observed in financial markets and com-
prehensively reviewed in [18]. In particular, the simulated data will exhibit: 1- fat tails
of returns distribution, 2- lack of autocorrelation of returns, 3- volatility clustering.

All simulated series are made of 15000 entries, net of a transient of 2000 entries, which
has always been drop out. Returns have been obtained from the price series generated
by the model, according to the canonical definition: rt = (pt − pt−1)/pt−1. Parameters
settings can be read in the following table:

parameter value interval limits for:

σΘ 1 fundamental value variability
σF 1 fundamentalists’ heterogeneity
στ 1 chartists’ time window length
σC 1 chartists’ heterogeneity
σµα 1 weight of WTA/WTP estimates:
σµβ

1 weight of market pressure
σz1 0.9 weight of ∆n
σz2 0.7 weight of ∆p
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Figure 2: Market orders negotiations.
In the depicted example, the best bidder is demanding 5 shares and the best asker is offering 2
shares. Only the first 3 orders per side will be taken in account: the first transaction will be
matched between the best bidder and the best asker and executed for 2 units at the best ask.
Then, the best asker is erased. The matching for the remaining unsatisfied demanded quantity
will be executed with the next asker, who becomes the new best asker, with her order of 5 shares
and her ask price, which is the new best ask now (and it is higher than the previous one). The
second transaction is executed and the best bidder is completely satisfied. The mechanism does
not, of course, bounce back to the next bidder in order to satisfy the latter asker (whose order has
remained partially unmatched). Further counterparts are scheduled only to substitute the first
shortest side of the market. Notice, finally, that no more than 3 counterparts would have been
matched in any case.

The initial setting for the fundamental value is FV0 = 50; the indolence parameter is
set as ς = 0 (but it will be later modified).

The Fig.3 shows prices and returns series generated by the model in comparison with
those of four true financial assets (namely, BMW, Colgate, General Electric, and Uni-
credit), ranging from Jan 1st, 1973 to June 30th, 2016.

The first stylized fact of financial data is the fat tails of the returns probability density
functions. It has been firstly presented by Mandelbrot in [62], and more recently tested
in [44], among others. It shows that the probability to find values which are distant from
the average is greater than it would be in the Gaussian case. This is a strong regularity
in financial series, whose theoretical stochastic generator process would manifest infinite
variance [63]. One of the most relevant implications of this, is that no predictions can be
effectively done since errors in forecasts are not bounded in any standard deviation known
a priori. In Fig.4, returns distributions of, respectively, the true asset returns series and
the artificial price series generated by the model, are shown in log-linear plots. Simulated
data exhibit a fat tailed leptokurtic PDF of returns, which resemble true data very closely.

The second stylized fact is the lack of autocorrelation in the returns time series: this
naturally confirms the impossibility of any predictive exercise on data dynamics, as shown
in [28, 66]. The autocorrelation function has been computed, as shown in the top panel
of Fig.5, by reporting lag-time variation of the theoretical autocorrelation index ρ(k) for
up to 60 lags, in order to investigate the significance of past data in explaining the series
dynamics, as:

ρ(k) = corr(rt, rt−k) =
σrtrt−k

σrtσrt−k

(10)

The presented comparison shows that returns generated by the model behave well with
respect to this point.

The third stylized fact is the volatility clustering, firstly defined in [62]: periods with
high volatility are followed by periods with high volatility, whereas periods with low
volatility are followed by periods with low volatility. Thus, the absence of autocorrelation
does not imply per se that a time series is identically distributed. The existence of auto-
correlation in absolute values of returns, shows that a correlation is present, but that it is
not linear. The autocorrelation function of absolute values of returns has been computed,
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Figure 3: Prices and Returns Comparison

as shown in the bottom panel of Fig.5, in order to show that all series exhibit a posi-
tive and decreasing ACF. Among all series, simulated data show a slightly steeper slope.
Power-law regressions for all series, ρ|r|(k) = corr(|rt|, |rt−k|) ≃ ρ0k

−α, give estimates of
exponents 0 < |α| < 0.5 for all cases, giving evidence of long range dependence, [?], as
reported below:

series slope

BMW -0.16
COLGATE -0.12

GE -0.11
Unicredit -0.19
Simulated -0.21

Part of the literature refers alto to a fourth recurrent characteristic: the direct propor-
tionality between the number of transactions and the volatility of returns. For example,
in [73] it is shown that the variance of log-returns after a period of N trades in trade time,
is proportional to N . Other part of literature, as in [57], refers instead to the long memory
property of the traded volume. From a similar perspective, the analysis in [45], dealing
with transactions data of the largest 1000 stocks in three US stock markets, explains that
the distribution of the number of traded shares displayed a power law decay.

As it has been discussed earlier, such aspects cannot be tested with simulations of the
present model release, because the quantity of shares that traders decide to order, though
variable, is not a behavioral choice. Therefore, the model cannot give evidence of those
empirical regularities derived from individual decisions.

3 Micro Features and Macro Effects

Financial volatility affects the “efficient” allocation of capitals and can become harmful for
all market participants. Power law configurations of density functions of financial time
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Figure 4: Density functions of Returns Series of four true assets and of the simulated data.
Left Panel: comparison of fat tails in density functions; Right Panel: Decumulative Distribution
Function, defined as the probability to have a return higher of a certain value. Both panels show
that simulated data closely replicate the behavior of real financial data.

series show that the unpredictability of asset prices dynamics can be hardly managed.
This section presents a discussion of the effects caused by individual characteristics of
agents – namely, the risk aversion and the ability to learn from past prediction errors –
on the aggregate market dynamics.

3.1 Risk aversion and market dynamics

The first feature being tested is the risk aversion of traders. The above-shown baseline
model has been augmented with an individual behavioral attribute representing the risk
aversion. Given that traders have not been endowed with a utility function, such a personal
feature has not been treated as it usually does in related literature on the topic (see, for
example, [?]). Here, agents are defined either “risk-lover/neutral” or “risk-averse”, by
means of a binary parameter, randomly distributed at the beginning of simulations.

In particular, in comparison with the baseline model, each agent forms two expecta-
tions, one referred to the short run, and one to the long run. The short-run expectation,
pexpSR , is calculated as the expected price defined in eqs.(2) and (4). Instead, the long-run
expectation, pexpLR , is, respectively, the fundamental value for fundamentalists, and the
reference value for chartists, as defined in eqs.(1) and (3).

In this model a behavioral representation of the risk aversion is advanced. In fact,
traders have not a utility function. Thus, their perception of risk does not affect the
value of their happiness, nor the value of their portfolios. The point is, instead, that
the individual risk attitude matters on how investors decide about the future, provided
that they form expectations on the market dynamics for both a short-run and a long-run
perspective. Each trader sets the strategy according to her risk aversion, by means of a
cautionary cross-check on expectations referred to different temporal horizons. Table 1
shows the correspondence between personal attitudes and trading decision rules:

3.1.1 Simulation Results

Results show that the individual risk aversion can affect the market dynamics and, more
specifically, causes more instability. Such a result is surprising to a certain extent, because
one could quite naturally expect that if agent are “more scared” to invest, this should
dampen price variability and, in turn, returns volatility. This is as to say that fat tails are
expected to be reduced. Instead, results of simulations confirms the opposite view: risk
aversion slightly increases market instability and fat tails of the returns PDFs results to
be fatter. Fig.6 shows the increasing impact on market volatility of the percentage of risk-
averse traders. In the left panel, the log-linear plot of the density function of simulated
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Figure 5: Autocorrelation and Volatility Clustering. In the top panel, all series appear to be
uncorrelated with themselves. In the bottom panel, the positive decaying autocorrelation of
absolute values of returns, shows the volatility clustering phenomenon: high volatility is followed
by high volatility; low volatility is followed by low volatility.

returns is depicted and it shows the leptokurtic fat-tailed distribution of returns; in the
right panel, instead, the decumulative distribution function (i.e., the probability to have
a return higher of a certain value) of returns has been reported. In both panels fat tails
become fatter as the percentage of risk-averse traders increases.

Figure 6: Risk-aversion and market volatility

The rationale of such an evidence is not strange: the behavioral risk aversion here
introduced, i.e. the attitude of being particularly cautious, eventually induces a trader
to follow the market in just a half of the cases. In all other situations, the risk-averse
agent either trades against the market or simply holds on. Therefore, compared with the
baseline model, the market overreacts to trend reversion and volatility increases. Further,
the double-check mechanism used to validate expectations causes a sort of fragmenta-
tion in the flexibility of market dynamics. It operates similarly to putting thresholds in
decision rules and implicitly creates “classes” of traders, whose strategies are eventually
triggered by common (or very similar) trading rules. This result confirms that any form
of behavioral homogeneity, specially in cases when it is a widespread opinion, generates
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Table 1: Two-steps validation process for trading strategy setting

Short-Term Long-Term Cross-Check Risk Aversion Chosen Strategy

pexpLR ≥ pexpSR - all buy
pexpLR > pt all buy

pexpSR > pt pexpLR < pexpSR

pexpLR = pt
lover/neutral buy

averse hold

pexpLR < pt
lover/neutral hold

averse sell

pexpLR > pexpSR

- lover/neutral buy

pexpSR = pt

- averse hold
pexpLR = pexpSR - all hold

pexpLR < pexpSR

- lover/neutral hold
- averse sell

pexpLR > pt
lover/neutral buy

pexpLR > pexpSR

averse hold

pexpSR < pt pexpLR = pt
lover/neutral hold

averse sell
pexpLR < pt all sell

pexpLR ≤ pexpSR - all sell

instability and fatter tails of returns PDFs, as confirmed by tests done in [14].

3.2 Individual learning

The second feature being tested is the learning ability of agents with respect to the
misalignments of their past predictions with respect to occurred values. The learning to
forecast hypothesis stands for the fact that people observe realized prices and, individually,
know their errors in forecasting while ignoring the history of other individuals’ predictions.
Thus, each trader may adopt an adjusting mechanism that considers, time after time, past
errors in creating the new expectations. Here, similarly to [24, 25], agents are designed
to settle their expectations by means of a simplified version of the rule presented in [47].
Specifically, each trader i forms her expected price as:

i
jp

expLtF

t =i
j p

exp
t + α(pt −i

j p
exp
t−1) + β(pt−1 −i

j p
exp
t−2) (11)

where; i
jp

exp
t is the expectation computed in t, according to the agent type j = F,C, as

in eqs.(2) and (4); LPE = (pt −i
j p

exp
t−1) and PPE = (pt−1 −i

j p
exp
t−2) are the last and the

past prediction errors (i.e., the misalignments between the trader’s expectations and the
occurred values, respectively, in t− 1 and in t− 2), and coefficients α and β represent the
weights of each error on future expectations.

In order to compare the efficacy of the correction mechanism, α and β are defined
following two different hypotheses in averaging past misalignments:

1) fixed, by considering the relevance of either a short, or a long, or both kind of
memories, as shown in the following table

2) variable, in such a way that each error counts for its relative weight with respect to
a sort of measure of the total prediction errors, updated at each time step, i.e.,

α =
|LPE|

|LPE|+ |PPE|
β =

|PPE|
|LPE|+ |PPE|

(12)

12



Table 2: Memory length and weights of prediction errors

short long both

α β α β α β
Scenario 1 0.1 0 0 0.1 0.3 0.5

Scenario 2 0.3 0 0 0.3 0.5 0.3

Scenario 3 0.5 0 0 0.5 0.5 0.5

Figure 7: Learning-to-Forecast and market stability

3.2.1 Simulation Results

Results show that the learning plays a role in stabilizing the market dynamics. If traders
account for their errors done in past predictions when setting new expectations, the final
outcome is that the market variability is dampened.

The model adopted a two-periods-based learning, in order to put an emphasis on the
combined synergy of both correction mechanisms. Simulations showed that when correct-
ing with respect both periods, best results are obtained when weights are different from
each other and, in particular, when the most recent prediction errors counts more. Both
panels of Fig.7 shows exactly that when both errors are weighted the same, a cumulate
and perverse destabilizing effect emerges. In the left panel, fat tails are effectively damp-
ened when weights are asymmetric. The right panel shows that the probability to incur
in more volatile fluctuations increases when both weights are set to 0.5.

Consistently, Fig.8 reports results of simulations in which only one prediction error
has been used to set expectations.

In both cases, if the used weight is too high, the use of the correction reveals to be
harmful, with respect to the overall market dynamics. There is a small, though recog-
nizable, difference in results obtained with weights set to 0.1 and 0.3. Instead, fat tails
unambiguously increase when half of the error is considered in setting new expectations.
The rationale is that if agents assign too weight to past errors, they risk to amplify past
dynamics as in a dangerous loop which exacerbates market instability, which resembles
what happens when a microphone is put too close to a speaker.

Finally, simulation results show that the configuration with variable weights, updated
at each time step, is less effective in reducing fat tails than with fixed ones. This means
that the weights calculated as a relative proportion of the overall predictive inability act
more dramatically on price variability, as reported in Fig.9. The left panel clearly puts
in evidence that bad effect of the combined action of both corrections acts even worse
than in the fixed weights case. When weights are variable, their computation reflects the
relative magnitude of each error with respect to the overall misalignment, computed as
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Figure 8: Learning-to-Forecast: last vs past prediction error.

in eq.(12). Such a result is consistent with above-shown Fig.7: indeed, in the variable
setting, both weights can frequently be greater than 0.3, and this ends up in fatter tails.

Figure 9: Learning-to-Forecast: variable vs fixed weights.

Moreover, since Fig.9 has been drawn by comparing the most effective results of each
test done for learning, it shows the overall effects on market dynamics of different hy-
potheses. Consistently with what has been previously illustrated, when considering just
one correction, LPE performs better than PPE. To consider both is better, but it reveals
to be important to set a greater weight to LPE and a lower one to PPE.
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4 Conclusive Remarks

In this paper, a new model of financial order book has been presented. A peculiar ad-
vantage of this model, compared to notorious existing models, is that simulated data is
exclusively generated by transactions among traders. In order to assess the reliability of
the model, its compliance with some of the most relevant stylized facts of true financial
time series has been shown.

The main discussion has been oriented to underline the role played by individual fea-
tures – namely the risk aversion of investors and the learning capacity from past prediction
errors – on the aggregate dynamics of the market. Results of simulations showed that
such features cause two opposite effects.

In particular, when risk aversion is considered as a behavioral ingredient of trading
decisions, it exhibited a counterintuitive effect, by exacerbating fat tails of density func-
tions of returns. The rationale for such a surprising outcome is that the double-check
mechanism adopted to simulate a more cautionary approach to trading, causes a sort of
fragmentation in the flexibility of market dynamics. It operates similarly to thresholds in
decision rules and implicitly creates “classes” of traders, whose strategies are triggered by
common rules. This result confirms that any form of behavioral homogeneity, specially
in cases when it is a widespread opinion, generates instability and fatter tails of returns
PDFs, as confirmed by tests done in [14].

Learning attitude showed, instead, a stabilizing effect, provided that some conditions
are met. When agents learn from their past errors, and adopt correction mechanisms
to account for past deviations of their forecasts from correct values, market oscillations
can be dampened, i.e., fat tails of returns PDFs can be reduced. The rationale of such an
evidence is that, apart from the purely theoretical hypothesis of always-perfectly informed
agents, an adaptive correction scheme reveals to be very useful from the aggregate point
of view, as confirmed by experiments done in related literature (see [?,?] among others).

The policy implications emerging from obtained results are oriented to favor a climate
where investors can develop differentiated perceptions of risk, i.e., to reduce the credibility
of informative sources about presumed levels of risk and volatility and to encourage the
individual understanding of the market activity. In other words, a higher level of financial
awareness of traders can be helpful in reducing waves of optimism and pessimism, which
induce wide price fluctuations.

Expectations and risk perceptions must be different enough, which is as to say that
herding effects in information must be fought very strongly, in order to allow a sufficiently
differentiated behavior of traders and a fluid market dynamics.
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Please note: 

You are most sincerely encouraged to participate in the open assessment of this 
discussion paper. You can do so by either recommending the paper or by posting your 
comments. 

 

Please go to: 

http://www.economics-ejournal.org/economics/discussionpapers/2017-104 
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