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Abstract
In this paper, the dynamics of Standard and Poor's 500 (S&P 500) stock price index is analysed
within a time-frequency framework over a monthly period 1791:08–2015:05. Using the Empirical
Mode Decomposition technique, the S&P 500 stock price index is divided into different frequencies
known as intrinsic mode functions (IMFs) and one residual. The IMFs and the residual are then
reconstructed into high frequency, low frequency and trend components using the hierarchical
clustering method. Using different measures, it is shown that the low frequency and trend
components of stock prices are relatively important drivers of the S&P 500 index. These results
are also robust across various subsamples identified based on structural break tests. Therefore, US
stock prices have been driven mostly by fundamental laws rooted in economic growth and long-
term returns on investment.
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1. Introduction 

In recent years, analyses of stock prices within the time-frequency framework have attracted 

a lot of attention from academicians and market practitioners. The intrinsic complexities of 

the stock markets have made them least worthy of analysis using the conventional time-

domain tools. The obvious reason for this is that stock prices are determined by traders, who 

deal at different frequencies. While institutional investors and central banks constitute the 

low-frequency traders, speculators and market makers fall into the category of high-

frequency traders in stock markets. Price formation in the stock markets can be attributed to 

trading by heterogeneous traders within different frequencies. Therefore, some appealing 

events may remain hidden under different frequencies when stock prices are analysed within 

the time-domain framework.  

In the literature of financial economics, a number of frequency-based approaches have been 

used to unravel the hidden characteristics of financial time series. Zhang et al. (2008) used 

the Empirical Mode Decomposition (EMD) to unravel the price characteristics of crude oil at 

different frequencies. Zhu et al. (2015) analysed price formation in the carbon markets by 

using the EMD. Using wavelet-based approaches, studies like Tiwari et al. (2012, 2013), and 

Chang et al. (2015), and references cited therein, used wavelet decompositions to study the 

behaviour of financial variables like oil prices, exchange rates, inflation and stock prices at 

different frequencies. Nevertheless, EMDs have not to date been used to study the behaviour 

of stock prices.  

Therefore, for this paper we conducted, for the first time, a time-frequency analysis using 

EMDs for Standard & Poor's 500 (S&P 500) index, covering the long monthly sample of 

1791:08-2015:05. This allowed us to determine the various frequency components that have 

driven stock prices in the US over a prolonged historical sample. EMDs have an advantage 

over wavelets because their decompositions are based on local characteristic time scales, and 

have the characteristic of being self-adapting. We attempted to identify the frequencies that 

have a substantial impact on stock prices. The Ensemble EMD (EEMD), introduced by 

Huang et al. (1998), was used to decompose the stock price data into different intrinsic 

modes. The IMFs and the residual extracted were then reconstructed into high-frequency, 

low-frequency and trend components using the hierarchical clustering method. Different 

measures were then used to assess the importance of each frequency for the overall stock 

price series. 
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The rest of the scheme according to which this paper is organized is as follows. Section 2 

provides the information about the methodology followed in the paper. Section 3 provides a 

discussion on the data and results, and section 4 concludes, with the main findings. 

 
 

2. Methodology1 
 
An EMD algorithm for extracting Intrinsic Mode Functions (IMFs) was followed as:  

In the first step, the minima and maxima of a time series x(t) were identified. Then with the 

cubic spline interpolation upper e min (t) and lower e max (t) envelopes were generated. In the 

third step, the point-by-point mean (m(t)) was calculated from the lower and upper envelopes 

as: m (t) = (e min (t) + emax (t)) / 2. The mean form time series was calculated in step 4, and d (t) 

as the difference of x (t) and m (t) was calculated as d (t) = x (t) – m (t). The properties of d 

(t) were checked in step 5. If, for example, it was an IMF, the ith IMF was denoted by d (t). 

The x (t) was replaced by the residual, given as: r (t) = x (t) – d (t). Often the ith IMF was 

denoted by ci (t), where I was interpreted as index. If d (t) was not an IMF, it was replaced by 

d (t). These five steps were repeated until the residuals satisfied some conditions known as 

stopping criteria.2 

Contrary to the EMD, the Ensemble EMD proposed by Wu and Huang (2009) avoids the 

limitation of the mode mixing associated with EMD. The procedure involves an additional 

step of adding white noise series to targeted data, followed by the decomposition to generate 

the IMFs. The procedure was repeated by adding different white noise series each time to 

generate the Ensemble IMFs from the decompositions as an end product.  

 

3. Results and Discussion 

Our analysis is based on a historical data set of US stock prices. The monthly data on the 

S&P 500, covering the period 1791:08 to 2015:05 was obtained from the Global Financial 

Database (GFD). The natural logarithmic values of the data have been plotted in Figure A1, 

in the Appendix. 

Through EEMD, four data samples of the US stock prices were decomposed into (IMFs) and 

residuals. The data sets include the full sample ranging from 1791:08 to 2015:05, and three 

subsamples ranging from 1791:08 to 1862:12, 1863:01 to 1940:04 and 1940:05 to 2015:05. 

The subsamples were identified by applying the Bai and Perron (2003) test of structural 

                                                           
1For more on this methodology, please refer to Zhu et al. (2015). 
2 For the stopping criteria, please refer to Zhang et al. (2008). 
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breaks in both mean and trend to the natural logarithms of the S&P 500 stock index. The 

division of the data into three subsamples gives a better idea of how the dynamics of the US 

stock market have evolved over time, and added to the robustness of the results. The IMFs 

along with the residual are shown in Figures A2, A3, A4 and A5, in the Appendix. The IMFs 

were generated in the order of highest to lowest frequency. The IMFs were then analysed by 

three measures. First, the mean period of each IMF – defined as the value extracted by 

dividing the total number of points by the number of peaks in the dataset – was calculated. 

Second, the pairwise correlation between the original data series and the IMFs was estimated 

by using a Pearson and Kendall rank correlation. Third, the variance and variance percentage 

of each IMF were calculated. These results are shown in Tables 1, 2, 3 and 4.  

 

Both the Pearson and Kendall coefficients between the original and high-frequency IMFs are 

low. However, the correlation is higher between the low-frequency IMFs and the original 

series. It can also be seen that the variances between lower (higher) frequencies contribute 

substantially (less) to the total variability. 

 

Table 1. Measures of IMFs and residuals with the full sample, 1791:08-2015:05 

  Mean  Pearson  Kendall Variance 
Variance as % 
of observed Variance as % of ΣIMFs + residual 

Original 
Series 2.630   3.9060 

  IMF1 -0.00 0.0004 0.00095 0.0096 0.2467 0.2775 
IMF2 -0.000 -0.001 0.00028 0.003 0.0875 0.0984 
IMF3 -8.76E-05 0.011 0.01366 0.0022 0.0585 0.0658 
IMF4 -0.000 0.032* 0.04*** 0.0030 0.0784 0.0882 
IMF5 0.0028 0.091*** 0.07*** 0.0055 0.1432 0.1610 
IMF6 -0.002 -0.05*** 0.03*** 0.0067 0.17328 0.1948 
IMF7 0.0115 0.267*** 0.13*** 0.025 0.64185 0.7218 
IMF8 0.0197 0.543*** 0.22*** 0.0167 0.42926 0.4827 
IMF9 -0.033 0.613*** 0.24*** 0.0204 0.52310 0.5882 
IMF10 -0.016 -0.59*** -0.55*** 0.0029 0.07659 0.0861 
Residual 2.649 0.98*** 0.84*** 3.3771 86.46059 97.234 
SUM         88.9192 100 
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Table 2. Measures of IMFs and residuals for the subsample 1791:08-1862:12 

  Mean  Pearson  Kendall Variance 
Variance as % of 
observed 

Variance as % of ΣIMFs  
+ residual 

Original 
Series 0.9094 1 1 2.74E-02 

  IMF1 6.09E-
05 0.073** 0.042* 0.000312 1.135786 1.763126 

IMF2 0.0003 0.137*** 0.072*** 0.000327 1.19354 1.85278 
IMF3 -0.002 0.342*** 0.198*** 0.001429 5.208142 8.084805 
IMF4 0.0001 0.287*** 0.1938*** 0.001237 4.508703 6.999039 
IMF5 0.0014 0.535*** 0.313*** 2.97E-03 10.83975 16.82697 

IMF6 -6.35E-
05 0.722*** 0.4495** 0.006696 24.40875 37.89066 

IMF7 0.0030 0.442*** 0.3627** 0.001552 5.655753 8.77965 
IMF8 0.0003 0.477*** 0.340*** 6.47E-05 0.235886 0.366176 
Residual 0.906 0.527*** 0.337*** 0.003081 11.23259 17.43679 
SUM         64.41889 100 

 
Table 3. Measures of IMFs and residuals for the subsample 1863:01-1940:04 

  Mean  Pearson  Kendall Variance 
Variance as % of 
observed 

Variance as % of ΣIMFs + 
residual 

Original 
Series 1.924267 1 1 0.219461 

  IMF1 -3.04E-06 0.0545* 0.0311 0.001021 0.465262 0.532097 

IMF2 0.000412 0.0971** 0.0534** 0.000933 0.425158 0.486232 

IMF3 1.76E-05 0.1496*** 0.0902*** 0.001964 0.894929 1.023486 

IMF4 0.003251 0.3278*** 0.2018*** 0.006409 2.920237 3.339731 

IMF5 0.008768 0.2621*** 0.1285*** 0.014668 6.683416 7.643492 

IMF6 -0.00663 0.162*** 0.1695*** 0.013013 5.92947 6.781241 

IMF7 -0.00093 0.1528*** 0.1376*** 0.004185 1.907059 2.181009 

IMF8 -0.01321 0.7345 0.4504 0.003302 1.504771 1.720932 

Residual 1.932461 0.8578 0.6827 0.146401 66.709 76.29178 

SUM         87.4393 100 

 
 
Table 4. Measures of IMFs and residuals for the subsample 1940:05-2015:05 

  Mean  Pearson  Kendall Variance 
Variance as  % of 
observed 

Variance as % of (ΣIMFs 
 + residual) 

Original 
Series 5.022752 1 1 2.402625 

  IMF1 -0.00118 -0.0168 -0.008 0.006386 0.265791 0.273297 

IMF2 0.001165 0.0185 0.0059 0.002049 0.085274 0.087682 

IMF3 -0.00149 -0.029 -0.014 0.001729 0.071971 0.074003 

IMF4 0.002962 0.095*** 0.082*** 0.002563 0.106674 0.109687 

IMF5 -0.00268 0.1187*** 0.106*** 0.005094 0.212012 0.217999 

IMF6 -0.00681 -0.205*** -0.122*** 0.007476 0.311159 0.319946 

IMF7 0.052445 0.369*** 0.220*** 0.054572 2.27136 2.335505 

IMF8 0.002928 -0.66*** -0.469*** 0.000204 0.008507 0.008747 

Residual 4.979491 0.983*** 0.916*** 2.256563 93.92072 96.57313 

SUM         97.25347 100 
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Within these decompositions, however, the residues are the dominant modes. Their 

contribution to the total variability is highest, and the correlation with the original data series 

is also highest. The residue referred to as the deterministic long-term trend by Huang et al. 

(1998) indicates a very high correlation and accounts for a very high variability in the 

original series. A noteworthy observation here is that the correlation of the long-term trend 

with the data and the variability contribution increases for the more recent samples. Since the 

continuing increasing trend of the US stock market is consistent with the development of the 

US economy over the decades, it can be said that the long-term price behaviour of US stocks 

has been determined by the long-term growth of the US.  

We then used a hierarchical clustering analysis, and subsequently the Euclidean distance to 

group the IMFs and residuals into their high-frequency, low-frequency and trend 

components.3 The extracted components for all the time series are shown in Figure 1.  

 
 
Full sample: 1791:08-2015:05     1791:08-1862:12 
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Figure 1.Three components of the S&P 500 
 

                                                           
3We have followed Zhu et al. (2013) to extract the different time series components. For the sake of brevity, we 
do not show the results here; however, they can be produced on request. 
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Each component in these diagrams shows the distinct features. For example, the residuals 

show the slow variation around the long-term trend. Hence, it is considered as a long-term 

trend of a time series. The effect of medium to high frequencies was captured by two other 

frequencies, with the high frequency components reflecting the effect of short-term market 

fluctuations. For the moment of observed stock price series, the most important components 

are the low-frequency component and the trend. The Pearson and Kendall correlation 

between the different frequency components and the original series shown in Table 5 vary 

between samples. For example, they are comparatively higher for the lower frequency and 

trend components of a time series, especially during the recent periods. This holds for the 

variance contribution too. The variance contribution is relatively greater from the low 

frequency and trend components of the time series. This is especially true for the more recent 

periods. The results obtained are robust to the subsamples. In nutshell, we did not find any 

evidence of US stock prices having been driven by short-term irrational behaviour. Our 

results support the view that the US stock market is driven mostly by fundamentals, which, in 

turn, are most likely rooted in economic growth and long-term returns on investment (Rapach 

and Zhou, 2013). 

  

4. Conclusion 
 
In this paper, the data of the S&P 500 index was decomposed into a number of IMFs and 

residuals, using the EEMD. The monthly data sets include the full sample ranging from 

1791:08 to 2015:05 and three subsamples for the US stock prices: 1791:08 to 1862:12, 

1863:01 to 1940:04 and 1940:05 to 2015:05. The division of the data into three subsamples 

gave a better idea of how the dynamics of the US stock market evolved over time, as well as 

the robustness of the results. The IMFs were generated in the order of highest to lowest 

frequency. The IMFs were analysed by three measures: mean, correlation with the original 

series and the contribution to the variability of the original series. It is shown that the 

residuals and low frequency IMFs indicate a very high correlation and account for very high 

variability in the original series. Also, it was found that the correlation of the long-term trend 

with the data and the variability contribution increased for the more recent samples. The 

IMFs and residuals were reconstructed into their high-frequency, low-frequency and trend 

components for the same full and subsamples. Again, it was found that the Pearson and 

Kendall correlation is comparatively higher for the lower-frequency and trend components of 

a time series, especially during the recent periods. The variance contribution was also found  
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Table 5. Correlation and variance of components for the S&P 500 index 
 
Full Sample: 1791:08-2015:05 
 

   Mean 
Pearson 
Correlation 

Kendall 
Correlation Variance Variance as % of 

observed 
Variance as % of 
ΣIMFs + residual 

ORIGINAL_SERIES 2.63 
  

3.901 
  HFRQ 0.009 0.180*** 0.109*** 0.067 1.7168 0.904 

LFRQ -0.01 0.630*** 0.282*** 0.062 1.61 0.848 
RESIDUAL 2.6499 0.983*** 0.840*** 3.377 86.48 45.556 
 
 
1791:08-1862:12 

  
Pearson 
correlation 

Kendall 
correlation Mean Variance Variance as % of 

observed 
Variance as % of 
ΣIMFs + residual 

ORIGINAL_SERIES 
 

0.909 0.0274 

  
HFRQ 0.94159*** 0.7575*** 0.003 0.0209 76.5 38.44 
LFRQ 0.52703*** 0.3373*** 0.906 0.003 11.2325 5.645 
RESIDUAL 0.52705*** 0.3373*** 0.906 0.003 11.232 5.645 

 
 
1863:01-1940:04 

 
 
1940:05-2015:05 
 

  
Pearson 
correlation 

Kendall 
correlation  Mean Variance Variance as % 

of observed 
Variance as % of 
ΣIMFs + residual 

ORIGINAL_SERIES 
 

5.022 2.402 
  HFRQ -0.035 -0.002 -0.003 0.029 1.22 0.41 

LFRQ 0.99597*** 0.9180*** 5.034 2.431 101.36 34.18 
RESIDUAL 0.9835*** 0.91596*** 4.979 2.256 93.92 31.67 
 
 
to be relatively greater from the low-frequency and trend components of the time series. The 

subsample results were found to corroborate the full-sample results. Therefore, it is 

concluded that, in general, US stock prices are not driven by the short-term irrational 

behaviour of investors, but seem to be driven mostly by fundamentals; though, it is true that 

there have been episodes of bubbles, as indicated by Phillips et al. (2015).  

 

  
Pearson 
correlation 

Kendall 
correlation 

 
Mean Variance Variance as % of 

observed 
Variance as % of 
ΣIMFs + residual 

ORIGINAL_SERIES 
 

1.92 0.2194 
  HFRQ 0.3340*** 0.2219*** 0.003 0.0126 5.766 2.202 

LFRQ 0.9724*** 0.853*** 1.92 0.196 89.312 34.11 
RESIDUAL 0.8577*** 0.6826*** 1.932 0.1464 66.708 25.48 
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Appendix 
 

 
Figure A1: Natural Logarithms of S&P 500 Index (1791:08-2015:05) 

 
Figure A2. IMFs for the Full-Sample (1791:08-2015:05) 
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Figure A3. IMFs for the period 1791:05-1862:12 
 

 
Figure A4. IMFs for the 1863:01-1940:04 
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Figure A5. IMFs for the period 1940:05-2015:05 
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Please note: 

You are most sincerely encouraged to participate in the open assessment of this 
discussion paper. You can do so by either recommending the paper or by posting your 
comments. 

 

Please go to: 

http://www.economics-ejournal.org/economics/discussionpapers/2016-9 

 

The Editor 
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