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I. Introduction 

This paper examines the dynamics of an asset market when participants use relative 

valuations to make decisions. Relative valuation is the process by which analysts estimate how 

much an asset is worth by comparing it to its peers. The prevalence of relative valuation as a 

decision making tool has potentially large implications on the Efficient Market Hypothesis. On 

the one hand, by using relative valuations, investors and analysts must assume that the market 

provides correctly valued peer assets on which to base the assessment. On the other hand, if most 

participants are relying on this assumption, and few people are using fundamental analysis of 

firm value, it is unclear whether this assumption will remain valid. There is an extensive 

literature on the accuracy of relative valuation, but absent are explorations into the larger market 

dynamics that result from its use. 

Our theory can be applied in assessing the potential for market-wide departures from 

efficient valuation and informing analysts about the peril of a preferred technique. Damodaran 

(2002) estimates that ninety-percent of all equity research valuations use some form of relative 

valuation.  These valuations require less information gathering than, for example, Discounted 

Cash Flow (DCF) valuations. There are also fewer explicit assumptions that the analyst has to 

generate. And many papers1 have found evidence that relative valuation strategies are capable of 

producing excess returns.  

Under the costly information framework posited in Grossman and Stiglitz (1980), there is 

clearly available justification for a rational investor to utilize relative valuations to make 

                                                 
1 Zhi and Schaumburg (2011), Mînjina (2009), and Alford (1992) 
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decisions. This paper will explore whether those individually rational decisions can lead to 

undesirable market outcomes. 

 

II. The Model (Simple-Relative Valuation) 

The internet bubble of the late-90s shows us a possible example of relative valuation 

leading to negative outcomes.  The early market consisted of high-growth firms forging a 

completely new industry.  Implicit in the novelty of the market was an absence of historical data 

to make strong forecasts of performance.  Instead, investors had little on which to base decisions 

besides relative valuation. 

To perform relative valuation, an analyst must find firms that are similar to the firm in 

question and then identify the factor that accounts for the differing valuations between them. 

That factor can be anything from EBITDA to numbers of customers to operating income. If the 

firm in question seems to be undervalued relative to its peers, the analyst recommends his 

employer buy the firm (and vice- 

versa).  

The current multiple, Mf, of any given firm is calculated in a straightforward manner with 

(1), below. Pf is the price of the firm and If is the value of the selected indicator. 

(1) 𝑀𝑓 = 𝑃𝑓
𝐼𝑓

 

 

To perform a relative valuation, the analyst must ascertain which Mf would imply an 

appropriate value for the firm.  She does this by taking the average Mf of several similar firms, 

often members of the same sector. For an analysis with N compared firms, the formula for an 
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arithmetic average is described in equation (2a), below. Mc is the average multiple of the 

compared firms. 

(2a) 𝑀𝑐 =
∑ �𝑀𝑓�
𝑓=𝑁
𝑓=1

𝑁
 

 

While the arithmetic average is a valid way to calculate Mc, Beatty, Riffe and Thompson 

(1999) established that harmonic averaging yields more accurate predictions of price. (2b) shows 

Mc calculated via harmonic averaging. 

(2b) 𝑀𝑐 = 𝑁

∑ �
𝐼𝑓
𝑃𝑓
�𝑓=𝑁

𝑓=1

 

 

For the firm in question, a market participant compares Mc to its current Mf. If Mf is 

greater than Mc, the trader tries to sell the firm. If Mf is less than Mc, the trader tries to buy the 

firm. Assuming that enough investors are using the same relative-valuation metrics and so 

trading similarly, aggregate demand and supply will be significantly impacted. This will move Pf 

up or down, appropriately.  (3) shows the postulated market result from this decision-making 

framework, where t is time.  We denote price movement by C. 

(3)                                      𝑀𝑓𝑡+1 =

⎩
⎪
⎨

⎪
⎧𝑀𝑓𝑡 < 𝑀𝑐 : 

𝑃𝑓𝑡+𝐶

𝐼𝑓𝑡

𝑀𝑓𝑡 > 𝑀𝑐:
𝑃𝑓𝑡−𝐶

𝐼𝑓𝑡
𝑀𝑓𝑡 = 𝑀𝑐: 𝑀𝑓𝑡
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C is a function of the proportion of traders basing decisions on relative valuation, R, and 

the proportion of all other traders who make the same decisions as relative value traders, O.   

C(R,O) is proportional to the sum of R and O: C(R,O) ∝ R + O.   

If every investor were using the same framework and the same objective figures, there 

would be no buying or selling in time t+1, unless C were large enough to make Mf equal to Mc. 

There would be nobody to take the opposite side of the proposed trades. Given this reality, we 

can alternatively think of (3) as describing a bidding process, where, when the firm is 

undervalued, buyers offer Pf+C, and sellers holdout until Mf equals Mc, when they are indifferent 

between holding or selling the asset. 

From (3), it is apparent that Mf will converge to a fixed Mc iteratively, over time. If 

included in the calculated Mc are a few firms that have very large, speculative valuations (ie the 

early-90s dot-com industry), they will pull Mc upward. Since Mf of the firm being traded will 

converge to this elevated Mc, it will likely become overvalued. 

What is less apparent is what will happen if traders are applying relative valuations to all 

N firms at the same time. As all firms’ prices change, Mc will change. The amount that Mc will 

change is defined in (4): 

(4)  ∆𝑀𝑐 =
∑ ∆𝑀𝑓
𝑁=𝑓
𝑁=1

𝑁
 

 

If the sum of changes in Mf is greater in direction A than the sum of changes in direction 

B, Mc will move in direction A. Take a scenario where we have five firms, four of which have 

equal, low Mf’s and one of which has a high Mf.  All firms will move toward Mc, which will be 

somewhere between the group of high and low firms. There will be more firms moving up than 
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down, so Mc will usually also move up.2  While Mc starts nearer the majority of firms, relative 

valuation creates a situation where a minority of firms drag the overall market valuation in their 

direction.  

As firms’ valuations increase and decrease, there may be a stabilization where Mf’s for all 

firms are equal at some middle point. So while the market may not be valued correctly, it will at 

least not be continuously volatile. The same cannot be said when analysts perform more 

complex-relative valuations. 

III. Relative Valuation with Adjustments 

Damodaran (2006) discusses the common practice of adjusting an individual firm’s target 

Mf based on a qualitative perception of growth potential. For example, an analyst might decide 

that because a firm is expected to announce a new product line, its Mf ought to be ten-percent 

higher than Mc.  

If we denote the adjustment for firm f as Af (which would equal 1.1 in our above 

example), (5) shows the possible market outcomes in time t+1, below.  Each trader’s estimated 

adjustment will likely be different, but our market Af can be thought of as overall market 

sentiment surrounding a firm. 

(5) 𝑀𝑓𝑡+1 =

⎩
⎪
⎨

⎪
⎧
𝑀𝑓𝑡
𝐴𝑓

< 𝑀𝑐 : 
𝑃𝑓𝑡+𝐶

𝐼𝑓𝑡
𝑀𝑓𝑡
𝐴𝑓

> 𝑀𝑐:
𝑃𝑓𝑡−𝐶

𝐼𝑓𝑡
𝑀𝑓𝑡
𝐴𝑓

= 𝑀𝑐: 𝑀𝑓𝑡

 

 

                                                 
2 The only way that this would not be the case is if the Mf of the high firm moved much more quickly than those of the low firms.  In our 
example, the high Mf would have to move 4 times as quickly as the low Mf’s in order to leave Mc stable. We have no reason to believe this would 
often be the case, so for simplification, C is the same for all firms in our model. 
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From the analyst’s perspective, this more complex decision structure seems an 

improvement. They are able to account for more factors than a single If.  Unfortunately, the 

change may also induce even more market-wide misvaluation than does simple-relative 

valuation.  

When the analyst adjusts the target Mf by Af, they typically do not similarly adjust each 

measured Mf that is being used to calculate Mc. Doing so would negate the search cost 

advantages of relative valuation and present standardization difficulties.    

Let’s assume that we start at time t in a condition where Mf and Pf are equal for all firms. 

With a simple-relative valuation, the market would remain in equilibrium as all Mf’s would equal 

Mc. In a complex-relative valuation, firms with an Af greater than 1 would increase in value at 

time t+1. 

If analysts ascribed Af>1 to more firms than they did Af<1, Mc would increase in time t+1.  

If Af>1 firms are again undervalued when compared to the elevated Mc at time t+1, there is 

potential for this process to eventually pull up the valuations of even firms with Af <1. A 

runaway market very similar to what was observed in the dotcom bubble at the turn of the 

century could quickly occur.  The easiest way to study the dynamic is with simulation.  

IV. Simulations 

To extend this analysis beyond the initial starting conditions that we have already 

discussed, we need to utilize Monte Carlo simulation. Our simulations will start with a set of 

firms, assigned randomized initial values for Pf and If. We will conduct a total of four, ten-

thousand iteration simulations.  The rules applied to each are displayed in Table 1. 
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TABLE 1—SUMMARY OF SIMULATIONS AND RULES 

 Arithmetic Average Harmonic Average 

Simple-Relative Valuation 

 

Simulation 1: Equations (2a) 

+ (3) 

Simulation 3: Equations (2b) + 

(3) 

Complex-Relative Valuation 

 

Simulation 2: Equations (2a) 

+ (4) 

Simulation 4: Equations (2b) + 

(4) 

 

Our simulations will be set up as follows: 

i) 10 firms will be established.  This number is small enough so that when the starting 

conditions are randomly established, the distributions will be sufficiently varied to 

allow for study of which conditions impact results. 

ii) C, the amount Pf changes each iteration, will be assigned a value of 1. 

iii) Each firm will be assigned an If by sampling a random normal distribution with mean 

500 and standard deviation 100. The distribution will be created by the 

Math.random() function in Javascript and the Box-Muller transform. 

iv) Each firm’s If will be multiplied by a different uniformly distributed random variable, 

Mf, from 0-1 in order to calculate Pf. The random variable will be created by the 

Math.random() function in Javascript. 

v) (for complex-relative valuation simulations) Each firm will be assigned a random Af 

sampled from a uniform distribution between .9 and 1.1.  The random variable will be 

created by the Math.random() function in Javascript. 

vi) Each If will be unchanging throughout the Monte Carlo iteration and we assume that 

each firm is accurately valued at the beginning of the simulation. 
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Once the time t=0 market conditions are established, our simulations will 

deterministically iterate through the rules that we established for either simple or complex-

relative valuations. Our simulations will first calculate the initial market-wide Mc. Simulations 1 

and 2 will utilize (2a) to calculate Mc, while Simulations 3 and 4 will utilize (2b).  Each firm’s 

measured Mf (or Mf divided by Af for Simulations 2 and 4) will then be compared to an Mc that 

does not include itself. 

Pf will then change appropriately, based on the results of the comparison. After all firms 

have been evaluated using the appropriate relative valuation method, Mc will be recalculated and 

Equations 3 and 4 will applied again. This process will repeat 350 times per Monte Carlo 

iteration, which allows each iteration to develop into a steady state in all four simulations. 

To establish clarity around the inner workings of the simulation, we will explore vignettes from 

Simulations 1 and 2. 

 

A. Vignette 1 (Simple-Relative Valuation) 

Vignette 1, from Simulation 1, utilizes simple-relative valuation with arithmetic averaging. Its 

initial set of 10 Mf’s has a positive Fisher Skew of 0.711. Figure 1 shows the change in every Mf 

and the market Mc, over time. 
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FIGURE 1. SIMPLE-RELATIVE VALUATION: MF OVER TIME 

At the beginning of this simulation, there are 3 firms with Mf above the solid Mc line, and 

4 firms with Mf below Mc. The remaining 3 are approximately equal to Mc. Every Mf steadily 

converges to the Mc line. Since there are more upwardly changing Mf’s than downwardly, Mc 

moves upwards until equilibrium. And since we assumed that all firms were appropriately valued 

in time t=0, every firm is now misvalued at the end of the simulation. However, what is arguably 

most important from is whether the market as a whole is misvalued. And Figure 2 shows clearly 

that it is overvalued. 
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FIGURE 2. SIMPLE-RELATIVE VALUATION: AVERAGE PRICE OVER TIME 

 

We should note that while our market does appear to be about 25 percent overvalued, it 

eventually reaches an equilibrium at time t=127.  Vignette 2, which utilizes complex-relative 

valuation, will not share a similar result. 

 

B. Vignette 2 (Complex-Relative Valuation) 

In Vignette 2, the skew of our initial set of Mf’s is negative at -1.159. Given the theory that 

we have already built, we should expect this to tend to pull Mc and the market value downwards. 

However, eight out of ten Af values are greater than 1, which suggests a likely increase in value. 

To see how these competing factors play out, we must look to Figure 3: 
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FIGURE 3. COMPLEX-RELATIVE VALUATION MF OVER TIME 

 

The solid line that starts generally in the middle is Mc.  We can see that seven Mf’s start 

above Mc, while only three start below, yielding our negative skew. At the outset, this negative 

skew leads toward a steady decline in Mc. As each firm begins to coalesce around an 

equilibrium, though, the effect from our Af’s begins to dominate the process. After this point, Mc 

and every Mf begin a climb that will continue ad infinitum.  

The key difference between these two vignettes (and between simple-relative valuation 

and complex-relative valuation) is the nature of their equilibria. A market with analysts 

conducting simple-relative valuations, initiating in disequilibrium, will quickly move toward a 

steady equilibrium characterized by unchanging Mf’s and Pf’s, even if those values diverge from 

the firms’ true values. A market where analysts perform complex-relative valuations will move 

toward that stable equilibrium, but once it is nearly reached, the adjustments that analysts 

proscribe will dominate the process until we reach an equilibrium characterized by values 
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changing in a constant manner.  Both processes can easily lead to inaccurate valuations, but 

complex-relative valuation seems more capable of producing wildly inaccurate prices.  

V. Statistical Models and Hypotheses 

The fundamental questions we are trying to answer are which conditions lead to 

misvaluation of a market and which determine the direction of the misvaluation. To that end, we 

calculate two key variables from our Monte Carlo simulations to test as independent variables in 

linear regression: directional change in market valuation (MVd), and absolute change in market 

valuation (MVa).  We define MVd as the natural log of the average price at the final time period 

divided by the average price at t=1.  We define MVa as the absolute value of MVd.  (6) defines 

MVd where we simulate 350 time periods. 

(6)                                            𝑀𝑀𝑑 = ln �
∑ 𝑃𝑓350
𝑓=𝑁
𝑓=1

∑ 𝑃𝑓1
𝑓=𝑁
𝑓=1

� 

We hypothesize that the key determinants of these two independent variables will be the 

standard deviation, Fisher skewness, the absolute value of Fisher skewness, and the Fisher 

kurtosis of the initial set of Mf’s. For complex-relative valuation, we expect the proportion of Af’s 

will values over 1 will be very impactful.  And for all four simulations, we will test to see 

whether the correlation between the initial set of Pf ’s and If’s makes a difference.  Table 2 lists 

all variables along with descriptions. 
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TABLE 2—LIST OF VARIABLES 

Variable 

Symbol 

Independent/ 

Dependent 

Description 

MVd Independent The natural log of the average price at the end of the simulation 

divided by the average price at the beginning of the simulation 

MVa Independent The absolute value of MVd 

Stdev Dependent The standard deviation of the initial set of Mf’s 

Skew Dependent The Fisher Skewness of the initial set of Mf’s 

Skewa Dependent The absolute value of Skew 

Kurt Dependent The Fisher Kurtosis of the initial set of Mf’s 

AOO Dependent The proportion of Af’s over 1 

AOOa Dependent The absolute value of AOO minus .5 

Corr Dependent The correlation between the initial Pf’s and If’s 

 

A. Hypotheses: Simple-Relative Valuation 

The two regression we will perform on results from both Simulations 1 and 3 are below, 

where α is the intercept and εi is the error term: 

 

Regression 1: MVd = α + β1 * Skew + εi 

Regression 2: MVa = α + β1 * Skewa + β2 * Kurt + β3 * Corr + β4 * Stdev + εi 

 

We expect Regression 1 to indicate a positive value for β1.  The key expectation from our 

theory is that when the distribution is skewed in a particular direction, relative valuations will 

move toward that same direction.  

We expect Regression 2 to indicate positive values for β1 for the same reason as in 

Regression 1. We expect β2 to be positive because a distribution with a larger mass in one section 

and then a smaller, but further out tail, will produce both large Kurtosis values and large changes 
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in Mf, as we saw in Vignette 1. β3 should be negative because as indicators become better 

predictors of prices, prices ought to be more accurate. We should expect β4 to be positive because 

a higher Stdev should indicate a wider distribution with larger resulting changes in Mc.  

 

 

B. Hypotheses: Complex-Relative Valuation 

We will perform two more regressions each on data from Simulations 2 and 4: 

 

Regression 3: MVd = α + β1 * Skew + β2 * AOO + εi 

Regression 4: MVa = α + β1 * Skewa + β2 * Kurt + β3 * Corr + β4 * Stdev + β5 *      AOOa + εi 

 

We expect Regression 3 to indicate the same, positive value for β1 as in Regression 1. β2 

will likely be positive because firms with elevated adjustments should pull Mc up. More firms 

with elevated adjustments should strengthen the effect.  

For Regression 4, we expect the same values for all coefficients as in Regression 2, 

except for β5. β5 will likely be positive for the same reasons we expect β3 to be positive in 

Regression 3. 

These expectations are summarized in Table 3. 
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TABLE 3—VARIABLE COEFFICIENT EXPECTATIONS 

Variables Regression 1 + 3 Regression 2 + 4 

Stdev - Positive 

Skew Positive - 

Skewa - Positive 

Kurt - Positive 

AOO Positive (Regression 3 only) - 

AOOa - Positive (Regression 4 only) 

Corr - Negative 

 

 

C. Hypotheses: Arithmetic vs Harmonic 

We will qualitatively assess the difference in outcomes between arithmetic and harmonic 

simulations. Liu et al (2002) and several other papers indicate that we should expect more 

accurate valuations for harmonic simulations. This should translate to a lower MVa with 

harmonic simulations versus arithmetic simulations. 

VI. Results 

All four simulations produced results in line with our expectations, with a few notable 

exceptions. Chief among those exceptions was the effect of Kurtosis on MVa. Before we can 

adequately explain the unexpected results, we need to take a look at the distribution of MVd’s. 

For our simple, arithmetic simulation (Simulation 1), we saw a fairly normal, though flat, 

distribution of MVd’s.  It had a mean of 0.0063, standard deviation of 0.1419, and kurtosis of 

0.6907. Figure 4 shows the distribution of MVd’s for Simulation 1.  
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FIGURE 4. DISTRIBUTION OF SIMULATION 1 MVD’S (AFTER 350 TIME PERIODS) 

Taken in the context of Vignette 1, this result makes sense.  There was no runaway 

increase in Mc that would lead us to expect a tail-heavy distribution. And all coefficients for both 

regressions were in line with our expectations.  Our results for Regression 1, Simulation 1 are 

summarized in Table 4. 

TABLE 4—REGRESSION 1, SIMULATION 1 (INDEPENDENT VARIABLE IS MVD) 

Constant .00564 

(.00077) 

Skew .29541 

(.00191) 

R2 .7062 

Observations 10,000 

Standard Errors are reported in parentheses. 

All variables are significant at the 99% level 

Skew is positively correlated with MVd, as expected. The results for Regression 2, 

Simulation 1 are summarized in Table 5, which are also all in line with expectations. 
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TABLE 5—REGRESSION 2, SIMULATION 1 (INDEPENDENT VARIABLE IS MVA) 

Constant -0.06637 

(0.00661) 

Skewa 0.21593 

(0.00378) 

Kurt 0.02096 

(0.00230) 

Corr -0.02494 

(0.02055) 

Stdev 0.28571 

(0.01557) 

R2 .4745 

Observations 10,000 

Standard Errors are reported in parentheses. 

All variables are significant at the 99% level. 

The coefficient for Kurt is positive, as expected. A distribution with a clear center of 

mass that chases an outlier, will have a higher kurtosis and MVa. 

In the interest of brevity, we will not include the regressions for Simulation 2 or 

Simulation 4, as they are not significantly different from those of Simulation 1 or Simulation 3, 

respectively.  The results for Simulation 3, though, were far different than those of Simulation 1. 

Our distribution of MVd’s at iteration 350 of Simulation 3 was extremely tail heavy.  For 

Simulation 1, we used MVd to display the distribution, which takes the natural log of average 

price at the end of the simulation divided by the average price at the beginning.  For Simulation 

3, it is easier to visualize the result with the unlogged version, as shown in Figure 5. 
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FIGURE 5. DISTRIBUTION OF SIMULATION 3 UNLOGGED MVD’S (AFTER 350 TIME PERIODS) 

 

The two-tailed nature of the distribution suggests that our conclusions from observing 

Vignette 2 are generally correct.  Complex-relative valuation leads to extreme valuations that will 

move in one direction for as long as they are allowed to continue.  As Af’s across the market 

move to one direction, this effect becomes stronger.  We can see this in the results from 

Simulation 3’s Regression 3 and 4 in Table 6. 
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TABLE 6—REGRESSION 3, SIMULATION 3 (INDEPENDENT VARIABLE IS MVD) 

Constant -1.58278 

(0.01501) 

Skew 0.25776 

(0.01127) 

AOO 2.89873 

(0.02854) 

R2 .5184 

Observations 10,000 

Standard Errors are reported in parentheses. 

All variables are significant at the 99% level 

 

The skew still mattered, as in Simulation 1, but the percentage of firm’s with Af greater 

than 1 was by far the most predictive factor in which direction MVd moved, as indicated by t-

values.  This result was not surprising. What was surprising was the result from Regression 4 

(see Table 7): 

TABLE 7—REGRESSION 4, SIMULATION 3 (INDEPENDENT VARIABLE IS MVA) 

Constant 1.6069 

(0.03574) 

AOOa 0.87907 

(.03394) 

Skewa 0.12499 

(0.01967) 

Kurt -0.16522 

(0.01227) 

Corr -0.17558 

(0.01079) 

Stdev -3.11256 

(0.08390) 

R2 .1814 

Observations 10,000 
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Standard Errors are reported in parentheses. 

All variables are significant at the 99% level. 

Kurtosis and Standard Deviation have negative coefficients where we expected positive 

ones.  Figure 6 shows Kurtosis plotted against MVa. 

 

FIGURE 6. SIMULATION 3: KURTOSIS VS MVA (AFTER 350 TIME PERIODS) 

The inverse relationship between MVa and Kurtosis is apparent at the observable 

extremes in Figure 6.  But the straight line nature of the plot suggests that higher values for 

Kurtosis are just delaying the time period where Af’s dominate Mc movement.  In other words, as 

Kurtosis increases, Mc moves further (as we saw in Regression 1) and for longer.  But that 

movement becomes insignificant once the complex-relative valuation specific dynamics begin to 

drive price movement.  

Furthering this theory is Regression 5, a regression of Kurtosis and Standard Deviation 

against a new variable, “Time to Equilibrium.” TTE measures the number of time periods in a 

simple-relative valuation simulation it takes until the equilibrium value is reached to within one-

percent. 
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Regression 5: TTE = α + β1 * Kurt + β2 * Stdev + εi 

 The results of Regression 5 are displayed in Table 8. 

 

TABLE 8—REGRESSION 5, SIMULATION 1.1 (INDEPENDENT VARIABLE IS TTE) 

Constant -51.36907 

(5.92618) 

Kurt 31.41932 

(1.57016) 

Stdev 494.8026 

(15.13696) 

R2 .0996 

Observations 10,000 

Standard Errors are reported in parentheses. 

All variables are significant at the 99% level 

 

Kurtosis and Standard Deviation are both positively correlated with the length of time it 

takes until an equilibrium is reached.  This result further supports our explanation for the 

negative coefficients on Kurtosis and Standard Deviation in Regression 4. 

All OLS regressions contained significant levels of heteroscedasticity. To account for 

this, we reran all regressions re-specified as robust regressions, yielding no significant changes in 

p-values.   

The other surprising result was the performance of harmonic vs arithmetic averaging (see 

Table 9).  We found that arithmetic averaging leads to either equal or lesser amounts of 

misvaluation than harmonic averaging. Our two-sample t-test fails to reject the null hypothesis 

that arithmetic and harmonic averaging results are different in simple-relative valuation.  But for 

complex-relative valuation, arithmetic averaging results in higher MVd’s and lower MVa’s. The 

lower MVa for arithmetic averaging seems to contradict the literature’s consensus that harmonic 



22 
 

averaging provides more accurate estimations of value.  One potential explanation is that there is 

simply more use of harmonic averaging in the market. Most studies measure the accuracy of the 

technique by comparing its predictions to market prices.  If market prices are determined by 

harmonic averaging, then we should expect harmonic averaging to more accurately predict them. 

 

TABLE 9—ARITHMETIC VS HARMONIC AVERAGING 

Difference in Mean Results for Arithmetic vs 

Harmonic Averaging 

MVd 

Mean Standard Deviation P-Value* 

Simple Simulation 
Arithmetic 0.0063 0.1420 

0.1754   
Harmonic 0.0036 0.1398 

Complex Simulation 
Arithmetic -0.1309 0.6507 

0.0000 
Harmonic -0.2133 0.6758 

 

MVa 

Mean Standard Deviation P-Value* 

Simple Simulation 
Arithmetic 0.1108 0.0890 

0.2415    
Harmonic 0.1093 0.0872 

Complex Simulation 
Arithmetic 0.5498 0.3718 

0.0000 
Harmonic 0.5777 0.4104 

*P-Values are from independent t-test that a difference in means exists 

 

VII. Implications 

Our theory and simulation provide evidence that the relative valuation techniques 

employed by financial professionals are potentially flawed when used by a large proportion of 

market participants.  Depending on the distribution of valuation multiples present in a market 

sector, we might expect that market to become over or undervalued. It should be understood, 

though, that we have not explored the dynamics of a market where use of relative valuation 

methods that take into account many variables, instead of just one, are prevalent. Nor have we 
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tested to see what happens when firms experience heterogeneous (or proportional) volatilities.  

These are important topics for future research, along with empirically testing our theory with 

real-world and experimental data.   

Another important area of research to be explored is how relative-valuation fits into the 

evolutionary finance literature as surveyed by Evstigneev, Hens and Schenk-Hoppe (2009). No 

paper has formalized an agent-based simulation with traders pursuing relative-valuation as a 

strategy, and given its ubiquity in analyst reports, it is likely a strategy pursued by many.   

New industries, spawned by technological innovation, seem likely to be particularly 

vulnerable to overvaluation resulting from relative valuation.  The more poorly that an indicator 

correlates with true value, the more likely it is that market prices will diverge from true value. In 

a new industry, it seems probable that analysts will be more likely to choose poor indicators of 

value. And a few highly performing firms will establish a high market multiple for the mass of 

underperforming firms.  When these underperforming firms rise in price to match the market 

multiple, the multiple will increase further, and a bubble may result.  If the theory established in 

this paper is confirmed empirically, policymakers and market participants will need to take the 

distribution of key market multiples into account when determining whether a bubble is present 

or not.  Likewise, if a market contains a few firms whose price falls dramatically, the rest may 

follow the lowered market multiple down. 
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