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1 Introduction 

The most characteristic feature of the literature on the causal impact of the minimum wage on 

employment is the general lack of consensus. Neumark and Washer (2007) compile an 

extensive survey of previous research and conclude that the minimum wage exerts an adverse 

impact on employment of low-skilled workers and a non significant impact on total 

employment. However, other surveys on this issue, a meta-analysis by Card and Krueger (1995) 

and the subsequent extension by Doucouliagos and Stanley (2008), find that there is a wide 

range of results in the previous research, and that once the publication selection bias is 

accounted for the mean estimate is consistent with a non-significant impact of the minimum 

wage on employment. 

A possible reason for the wide range of findings is the fact that the results hinge dramatically on 

ad hoc assumptions about the parametric specification of the empirical model and on the 

definition of the control group in the analysis. This is corroborated in the highly insightful and 

interesting discussion in a series of papers by Allegretto et al. (2011, 2013), Dube et al. (2010), 

and Neumark et al. (2014) in a state-level panel analysis for the US. Dube et al. (2010) and 

Allegretto et al. (2011) suggest that it is essential to control for spatial heterogeneity in order to 

estimate the impact of the minimum wage in a panel data setting. In particular, they propose to 

include two types of local controls consisting of: (1) jurisdiction-specific linear time trends; and 

(2) interactions between time dummy variables for sets of neighboring states or neighboring 

counties so they could be used as controls to determine the impact of the minimum wages. 

Subsequently, Neumark et al. (2014) and Sabia et al. (2013) criticize these measures on the 

grounds that there are other non-linear ways of controlling for unobserved trends and that this 

approach excludes other potential controls apart from those for the neighboring regions. 

Crucially, the parametric form of the model appears to be the critical determinant of whether a 

significant or insignificant impact of minimum wage on state employment is obtained. 

Another potential problem of the minimum-wage literature mentioned above is the aggregation 

bias. This is because aggregate data might mask the real effect of minimum wage at the 
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individual level. Moreover, the analyses based on aggregate data could be affected by 

endogeneity as mimimum wage movements could be caused by regional or national 

macroeconomic variables (Baskaya and Rubinstein, 2011; Sabia, 2014). 

In this paper, we use the UK Labor Force Survey to estimate the causal impact of the UK 

national minimum wage (NMW) on employment using a non-parametric Bayesian modelling 

approach known as the Bayesian Additive Regression Trees (BART henceforth) that was 

originally developed by Chipman et al. (2010) and applied to the analysis of causal inference by 

Hill (2011). This procedure shares some similarities with standard matching estimation 

strategies, see for example Abadie and Imbens (2006), as it compares unemployment-to-

employment and employment-to-unemployment transitions of individuals affected by the NMW 

with a similar individuals whose salary are not affected but are sufficiently close to those in the 

treatment group. However, this procedure has important advantages over other more traditional 

parametric specifications. Among them, it does not require any type of hypotheses or priors 

over the covariates to be included in the model, it can consider a large number of regressors, and 

it can estimate any type of interactive effects between the treatment variable and any other 

variable. Thus, under the BART model, the definition of the closest untreated individual for 

each treated individual and the interactions between the different clusters of individuals and 

time or and any other relevant covariate is not constrained to follow any specific (and 

potentially ad-hoc) parametric function. Furthermore, and more importantly, it need not be 

specified a priori. 

Our paper is closely related to at least two previous works that estimate the impact of the UK 

NMW on employment at the individual level using micro-data: Stewart (2004) and Dickens and 

Draca (2005). Stewart (2004) analyzes how the introduction of the UK NMW in 1999 and its 

subsequent changes in 2000 and 2001 affected the employment-to-employment transition. 

Dickens and Draca (2005) follow a similar approach for the NMW increases in October 2003 

but they extend the analysis to consider the separate effect of the NMW on job entry and job 

exit decisions. Both study the impact of the NMW by applying the difference-in-difference 
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technique to the UK Labor Force Survey data, and find both that the NMW does not have a 

significant adverse effect on employment. Unlike these papers, we do not consider a specific 

year’s increase in the minimum wage but take into account all NMW changes since its 

introduction in 1999. Finally, our approach allows us to identify the interactions of the 

NMW effect with other relevant variables such as gender, age, qualifications and business 

cycle without the necessity of proposing a parametric specification. 

The contribution of our paper is twofold. First, we shed some new light on the relationship 

between the minimum wage and employment. In particular, we find that the NMW exerts a 

positive and significant impact on both the probability job entry and job exit. Although the 

magnitude of the effect on job entry is larger, the overall effect of NMW is ambiguous as there 

are a lot of more employed workers than the number of the unemployed. This could explain the 

insignificant effect found in the previous work based on aggregate macroeconomic estimations. 

We find also that the effect is stronger for younger workers and in high unemployment periods. 

On the other hand, gender and qualifications play little role in shaping the minimum wage 

effect. 

Second, we demonstrate the applicability of the BART approach to analyses of economic 

outcomes without imposing a specific parametric form a priori. While we chose the minimum 

wage effect on employment, this method could be applied to a broad range of other contexts 

equally well.  

In the next section, we present the data used. Sections 3 and 4 discuss methodological 

approaches used for analyzing the labor-market impact of the minimum wage and explain the 

main features of the BART model, respectively. Empirical results are shown and discussed in 

Section 5. The final section summarizes our findings and offers some conclusions.  

2 Data 

Our analysis is based on the UK Labor Force Survey (LFS). The LFS is a quarterly nationally-

representative survey of households across the UK. Each quarter, approximately 60 thousand 
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households and over 100 thousand individuals aged 16 and above are surveyed. Each household 

is retained in the survey for five consecutive quarters, with one-fifth of households replaced in 

each wave. The survey contains detailed demographic and socio-economic information on the 

respondents, including, importantly, their labor-market outcomes. Since the NMW was 

introduced in April 1999, we use all quarterly datasets available from April-June 1999 to 

October-December 2011, pooling all available LFS waves during this period. In order to have a 

sufficient number of observations, we include all individuals aged between 16 and 40.  

The UK NMW features three different age-dependent rates: the 16-17 years old rate, the youth 

rate (applying to those aged 18-21
1
), and the adult rate.

2
 Historically, the youth rate has 

remained some 35% higher than the 16-17 rate while the adult rate has exceeded the youth rate 

by around 20%. The LFS reports the date of birth of every respondent and also the date the 

survey was carried out. By comparing these two dates, we can determine the precise age of each 

respondent on the day of the survey.
3
 We therefore know whether a particular individual is 

below or above the age threshold at which they become eligible for a different (higher) NMW 

rate.  

3 Methodological Considerations 

We analyze the effect of the NMW increases on employment by going beyond standard 

regression and matching estimation methodologies traditionally used for this purpose. 

Regardless of the methodology, the analysis involves comparing the changes in labor-market 

outcomes (such as employment) after a NMW change for the treatment and control groups.
4
 

                                                      
1
 The upper limit for the youth rate has been lowered to 20 from October 2010. Where relevant, our 

analysis takes this change into account.  
2
 A fourth rate, for apprentice workers, was introduced in October 2010 (we do not consider those subject 

to this rate in our analysis). No minimum wage applies to those who belong to one of the few exemptions 

such as members of the armed forces, volunteers, students on work placements, workers living in the 

employers’ households, and (until 2010) apprentices. 
3
 The precise date of birth is not available in the publicly released LFS datasets. We are grateful to the 

Office for National Statistics for making the restricted release of the LFS available to us.  
4
 Note that our approach is similar in spirit to the difference-in-difference approach in Stewart (2004) and 

Dickens and Draca (2005) who compare the average change in the employment status before and after the 

introduction of a very specific minimum wage policy. Given that we consider a whole sample of 

minimum wage changes through thirteen years, our analysis is based on the estimation of the effect on the 
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Consider the impact of NMW on the probability of job loss. The treatment group comprises 

workers whose wages have to go up in the wake of an annual NMW increase because the new 

NMW rate is higher than their current wage. The wages of those in the control group should be 

close to but just above the new rate so as not to have to change.  

More specifically, the treatment group can be defined as the individuals whose wages meet the 

following condition:  

nmwt < wit < nmwt+1         (1) 

where nmwt is the (age-dependent) NMW rate in effect at time t while wit is the worker i’s 

wage. The control group is defined as the workers whose wage before the increase is greater 

than the new NMW rate but lower than some upper bound to ensure that we only consider 

workers earning just above the minimum wage, so that are likely to possess similar 

characteristics as those earning the minimum wage. If we set the upper bound as c above the 

new rate, the control group comprises workers meeting the following condition: 

nmwt+1 ≤ wit < nmwt+1 ∗ (1 + c)       (2) 

We can then estimate the following equation  

𝑃(𝑒𝑡+1 = 0|𝑒𝑡 = 1) = Φ(𝛼 ∗ 𝐷𝑖 + 𝛾 ∗ 𝑋𝑖𝑡)         (3) 

where the dependent variable is the probability that individual i is unemployed conditional on 

being employed in the preceding quarter, Φ(. ) is the standard normal cumulative distribution 

function, Di is a dummy variable denoting individuals belonging to the treatment group, 

included on its own and in interaction with the gap between individual i’s wage and the new 

NMW rate, and Xit collects all remaining covariates (individual socio-economic characteristics 

and time effects). An analogous equation can be estimated for the probability of remaining 

employed conditional on employment in the previous quarter. In line with the standard practice, 

                                                                                                                                                            

change in employment status, before and after the policy application, for the treatment and control 

groups.   
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equation (3), and in particular the coefficient estimate of the first term, is interpreted as 

capturing the differentiated effect of the minimum-wage increase on the probability of 

becoming unemployed for the treated individuals relative to those in the control group.  

A similar approach can be used to estimate the impact of NMW on the probability of job entry. 

In this case the equation to estimate is 

𝑃(𝑒𝑡+1 = 1|𝑒𝑡 = 0) = Φ(𝛼 ∗ 𝐷𝑖 + 𝛾 ∗ 𝑋)       (4) 

A particular problem presents itself here in the fact that we do not have any previous wage 

information for those who enter employment only after the NMW increase. In other words, we 

do not know whether those entering into employment after the increase would have earned more 

or less than the minimum wage before the increase. Dickens and Draca (2005) resolve this by 

defining the treatment group as those whose earnings are less than or equal to the (age-relevant) 

new NMW rate and the control group as those who earn up to c percent above the NMW:  

Treatment group: 𝑤𝑡+1 ≤ 𝑛𝑚𝑤𝑡+1       (5) 

Control group: 𝑛𝑚𝑤𝑡+1 < 𝑤𝑡+1 < 𝑛𝑚𝑤𝑡+1 ∗ (1 + 𝑐)     (6) 

A somewhat uncomfortable implication of this specification is that the treatment group now 

includes also those who earn less than the NMW (there are specific cases when this is allowed, 

for example for apprentices or for those who receive employer-provided accommodation or 

other in-kind payments). An alternative specification would entail constructing the treatment 

group as including only those who earn the minimum wage after the NMW increase. Using that 

specification yields very similar results.  

Note that our analysis could suffer from a potential endogeneity problem as in a non-

experimental sample, such as the Labor Force Survey, workers earning less than the new NMW 

rate are more likely to lose their jobs even if NMW does not change because they are likely to 
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be less productive than workers earning higher wages.
5
 Therefore, it is the characteristics 

associated with their lower wages (and not the minimum wage itself) that determine their higher 

probability of job loss compared to other individuals with above-NMW wages. In other words, 

if wages are not allocated randomly, the allocation of individuals into treatment and control 

groups is not random either but depends on their characteristics. In order to assume that the 

outcome is independent of the treatment, it is necessary to account for all possible conditioning 

factors by including a broad range of covariates, 𝑋. More specifically, the strong ignorability 

hypothesis with respect to the allocation of treatment states that 𝑌 is conditionally independent 

of D given 𝑋 and that the probability of treatment allocation is always positive regardless of the 

specific value of 𝑋. Under this hypothesis, the estimation of the marginal effects associated to 

the treatment variable can be considered in general as a consistent and unbiased estimation of 

the causal effect of NMW on the probability of job exit and job entry: including a relevant set of 

covariates in equations (3) and (4) is a sufficient condition to ensure an unbiased estimation. 

However, as argued by Morgan and Winship (2007), the regression approach can be subject to 

two important drawbacks. The first relates to the fact that the causal effect of NMW is not 

constant across individuals. In this case, the estimated causal effect represent a conditional 

variance weighted estimate of causal effects of individuals and the causal estimation is only 

unbiased and consistent for this particularly weighted average that is not usually the parameter 

of interest. The second problem relates to the fact that the strong ignorability condition does not 

necessarily imply that treatment is uncorrelated with the error term net of adjustment for 𝑋 as 

this error term depends on the specification of covariates, 𝑋. Therefore, in order to interpret the 

estimation of a regression strategy as a reliable causal effect, we require a fully flexible 

parameterization of 𝑋. 

An alternative approach that overcomes the drawbacks mentioned above is matching: 

comparing the labor outcomes of the treated individuals with those of similar individuals, with 

similarity determined based on the set of variables X. Let 𝑌𝑖 be the response, that is 𝑌𝑖 = 1 if job 

                                                      
5
 Note however that in expressions (2) and (6), small values of c would imply that the salary of the treated 

and control groups could be deemed to be very similar. 
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exit or job entry is observed and  𝑌𝑖 = 0 otherwise; and Di be an indicator of whether the 

individual belongs to the treated or control group. In order to compute the causal effect of Di on 

the response variable 𝑌, we would need to know the outcome of interest for the same individual 

if treated, 𝑌𝑖(1), and if not treated, 𝑌𝑖(0). However, this is impossible because only one of them 

can be observed at any given point in time. The counterfactual result, therefore, has to be 

estimated with a regression model. In this case, we estimate the response Y to a “hypothetical 

treatment” Di . 

There are two standard approaches to estimate this causal impact. One is to compare the 

outcome variable of a treated individual with that of one or several nonparticipants as similar as 

possible to the participant considering the values of covariates 𝑋𝑖𝑡. A second approach matches 

participants and nonparticipants based on their estimated propensity scores. However, the 

application of these methodologies is only possible if there is a region of common support 

between the treatment and control groups.  

Regardless of the approach used, the average treatment effect is defined as ATE =

E[Y(1) − Y(0)] , where the expected value is computed with respect to the probability 

distribution of Y for all individuals. We focus on the causal effect for a given set of individuals, 

for example those who have received the treatment, E[Y(1) − Y(0)|D = 1], that is, individuals 

affected by NMW increases. In this case, the expected value is estimated with respect to the 

conditional distribution of (Y|D = 1). Even more generally, if we have a set of covariates X we 

can estimate the causal effect conditional on them, that is, conditional on X = x. 

However, this is not always possible because matrix 𝑋 typically has a very high dimensionality 

and comprises a wide range of covariates, including qualitative and quantitative variables, and 

some standard approaches such as, for example, the propensity score, cannot be applied if the 

number of covariates is too high. This forces the analyst to consider a set of variables of lower 

dimension, putting the strong ignorability assumption in doubt.
6
 Besides, the specification of 

                                                      
6
 See Caliendo and Kopeining (2008) and references therein for a discussion on this issue. 
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regression models with many variables makes it not practical to consider all possible 

interactions among the variables. Again, this forces the analyst to consider only interactive 

effects among first or second order covariates or to use algorithms such as the forward or 

backward variable selection that may provide locally optimal models. Unfortunately, there is no 

theoretical justification, only empirical results, to guide us in assessing the scope of a local 

instead of a global optimum.    

Due to these drawbacks, we make use of a particular type of matching estimation based on the 

BART model for the estimation of causal impact of NMW increases. Being a non-parametric 

model, this frees us from being restricted by a given model specification. Furthermore, it allows 

us to estimate with a satisfactory precision the response of the variable of interest to NMW 

increases, and with that, the counterfactual result even for a high dimensional 𝑋.  An additional 

important advantage of this approach is that it allows for identification of the most significant 

interactive effects between the treatment variable and any of the covariates without being 

constrained to include these interactions in any parametric form. 

4 BART Model  

In the explanation of the model, we mainly follow the notation of Hill (2011) and references 

therein (see Chipman et al., 2010, for details of the statistical model, and Leonti et al., 2011, for 

an application of this model to the estimation of a causal effect of the use of medical plants). Let 

Ɗ𝑎𝑡𝑎 be the available data, that is the set 𝑌, 𝑋, 𝐷 observed for 𝑁 individuals and 𝜋(∙ | ∙) the 

probability distribution of the left argument conditional to the right argument. The aim of the 

analysis is to estimate the posterior probability distribution of the causal effect, that is 

𝜋(𝐴𝑇𝐸|Ɗ𝑎𝑡𝑎), or the posterior distribution conditional on some covariates, 𝜋(𝐴𝑇𝐸|Ɗ𝑎𝑡𝑎, 𝑋 =

𝑥). In order to do this we use a non parametric regression model. The novelty in these types of 

causal inference analyses is the use of a Bayesian regression model known as BART. As in all 

Bayesian models, we need a likelihood function defined for a set of parameters, θ ∈ Θ ∉ ℝ , and 

a prior distribution π(θ), θ ∈ Θ. The likelihood function, L(Y|X, D, θ) , is obtained from the 
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following additive regression model, where the mean of 𝑌 , 𝐸(𝑌) = 𝑃𝑖(𝑌 = 1) = 𝑃 , is 

determined from the sum of estimated models for the response variable: 

𝑃 = Φ[∑ 𝑔(𝑋, 𝐷; 𝑇𝑗, 𝑀𝑗)𝑚
𝑗=1 ]       (7) 

where  𝑔(𝑋, 𝐷; 𝑇𝑗, 𝑀𝑗) is a classification tree with the variables and split points represented by 

𝑇𝑗  and the terminal nodes denoted by 𝑀𝑗  and computed with respect to the values 𝑥, 𝐷  that 

belong to the individual whose response is 𝑌. Essentially, 𝑔 is a function that gives to each 

individual 𝑖 their expected value in the j
th
 tree, 𝜇𝑖𝑗 ∈ 𝑀𝑗. The final score estimated for the i

th
 

individual would correspond to the average of the m scores. It is well known that, in order to 

minimize the forecast error, classification trees tend to grow disproportionally until generating 

overfitting in the response and that in general an estimator obtained from many simple trees is 

more efficient than another one obtained from a single complex tree. Examples of these types of 

models are Boosting (Shapire and Singer, 1999) and Random Forest (Breiman, 2001). 

In order to achieve this, it is necessary to use a regularization prior on the size of the tree 

𝜋(𝑇, 𝑀) as specified in Chipman et al (2010). This regularization prior precludes the tree from 

growing too much and makes sure that each of the 𝜇𝑖𝑗  contributes in a marginal way to the 

estimation of the response function. As Chipman et al (2010) show, the hyper parameters of all 

prior distributions are specified in relation to the observed sample. It produces priors that are 

dependent on the sample. This procedure, which is not very orthodox from a Bayesian point of 

view, is part of the approaches known as empirical Bayes that are very popular and have been 

enhanced from a theoretical point of view by Petrone et al. (2013). As explained by Hill (2011), 

the results of this type of analysis are robust with respect to prior modifications. 

Using the priors specified above it is possible to simulate samples of the posterior distribution 

with a non-excessive computational effort using Markov Chain Monte Carlo (MCMC), more 

specifically using Metropolis Hastings. In particular, the distribution used to update the values 

of 𝑇𝑗 and 𝑀𝑗 consists of adding/dropping a terminal node and changing a split variable or a split 

point with the probabilities specified in Chipman et al. (2010). Once the posterior distribution of  
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𝜃 = (𝑇1, … , 𝑇𝑚, 𝑀1, … , 𝑀𝑚) has been obtained, the predictive distribution for the probability of 

job exit is: 

𝑚(𝑌𝑖|𝑥𝑖, 𝑧𝑖) = ∫ 𝐿(𝑌𝑖; 𝜃)𝑑𝜋(𝜃|𝜋(𝜃))
𝜃∈Θ

      (8) 

where 𝐿  is the likelihood function for 𝜃 ∈ Θ and 𝜋(𝜃) is the posterior. Integral (8) is practically 

estimated by generating values of 𝑃𝑖 = 𝑃𝑖(𝑌𝑖 = 1), using the normal distribution with the mean 

and variance for each value 𝜃 in the chain MCMC and the regression tress computed in 𝑥𝑖 and 

𝑧𝑖. In particular we use 𝑚=500 trees and 5000 MCMC steps after an initial burn-in of 1000 

steps. 

In this way, the distribution for each individual and the corresponding counterfactual response 

can be estimated simply by estimating the response in Di = 1 if the worker is affected by NMW 

and in Di = 0 otherwise. Once these predictive posterior distributions have been obtained, the 

difference between the factual and counterfactual responses are considered to obtain the 

distribution of the individual causal effect. Finally, π(ATE\) is estimated from the set of the 

differences for all the individuals. Then, the estimation of the conditional causal effect is 

required, this is obtained simply by considering the difference for the individuals that fulfill the 

condition X = x. 

5 Results 

As a first step, and to establish a benchmark to compare our  results against, we report the 

results of a probit model as specified in Equations (3) and (4), where job entry and job exit are 

functions of the dummy variable for the treatment along with and a set of covariates (Table 1).
7
 

In this regression, the parameter 𝑐 defined in the previous section is set to be 0.1 to ensure that 

treatment and control individuals are comparable in terms of wages but the results are 

qualitatively similar when we consider 𝑐 = 0.3, 𝑐 = 0.5 and 𝑐 = 1. The last row of Table 1 

                                                      
7
 Besides standard socio-economic characteristics, we also include an indicator to account for the fact that 

the age limit for the adult rate was lowered from 22 to 21 from October 2010. 
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indicates that the probabilities of job entry and job exit are both positively correlated with being 

in the treatment group.  

It is interesting to compare these results with those obtained with a standard matching procedure 

such as the propensity score. The estimation results are qualitatively, and even quantitatively, 

similar to those obtained from a regression probit model. More specifically, the estimated causal 

impact for job entry is 0.051 with standard deviation 0.013 while that for job exit is 0.03 with 

standard deviation 0.011.
8
 The fact that the two sets of results are very similar is not surprising 

as the matching estimation can be interpreted as being similar to a regression that puts more 

weight on the observations in the treatment and control groups that are very similar to each 

other.   

Table 1. Probability of job entry and job exit as a function of treatment and change.  

 Probit regression 

 Job entry Job exit 

LR Chi2   445.13 400.17 

Prob > chi2  0.0000 0.0000 

Number of obs  7792 6746 

Treatment  .0517764** 

(.00961) 

.024584** 

(.0086) 

Notes: Marginal effects evaluated at mean values.  

The Bayesian approach considered here is instead based on the estimation of the expected value 

of the treatment and control groups using the same explanatory variables in both cases. Figures 

1 and 2 report the estimated distribution of the total causal impact of increases in the minimum 

wage rate on job exit and job entry using the BART model with all workers aged 18-40. The 

results indicate that treatment has positive effects both on job entry and job exit, in a manner 

similar to the probit results reported above. More specifically, the NMW exerts a positive 

impact on job entry, and the mean value of this causal impact is 5% with a 95% confidence 

interval equal to [3.2%, 6.9%]. For job exit, the effect is positive with the mean value equal to 

2% and with a 95% confidence interval equal to [1%, 4%]. Note that although the estimated 

effect on job entry is larger than that for job exit, the overall effect of NMW is ambiguous as 

                                                      
8
 These results are available upon request.  
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there are many more employed workers (who are candidates for job exit) than unemployed 

individuals (candidates for job entry).  

Figure 1 Posterior distribution of the causal effect of job entry and job exit 

 

 

As discussed above, one of the most important advantages of the BART approach is that it 

allows for the simultaneous estimation of any kind of interaction between the treatment variable 

and any of the covariates. This is possible either at model estimation and at description level of 

obtained results. Here we consider the result description level by inspecting the interaction 

between covariates and the estimated causal effect. In particular, the interaction with continuous 

variables is evaluated trough boxplots, which include 95% percentile bootstrap confidence 
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intervals for median, while that with continuous covariates by local polynomial regression 

smoother (loess) along with their 95% confidence intervals (Cleveland et al., 1992, Chp. 8) . 

In Figure 2, we interact gender with the effect of NMW increases. Again, the previous finding 

of a greater effect of NMW increases on job exit than on job entry is reproduced. Although for 

job entry it is clear that the median values are significantly different, the whole distribution of 

the two effects are very similar which suggests that gender plays little role. In Figure 3, in turn, 

we consider the interaction with age (expressed in months rather than years). Here, the pattern is 

different for job exit and entry. While the causal impact of NMW is decreasing with age in both 

cases, that decline is much steeper for job entry. This is not surprising, given that young workers 

are more vulnerable to NMW increases. Besides, the interactive effect is clearly stronger for job 

entry. In Figure 4, we consider the interaction with the highest attained qualification. Again, 

although it is possible to observe significantly different mean values associated to the different 

qualifications, the whole distribution of the estimated causal effect indicates that this variable is 

not a relevant factor to explain differences in the causal impact of NMW either for job entry or 

job exit. Finally, Figure 5 presents the interaction with the regional business cycle – measured 

using the unemployment rate. Interestingly, this interaction effect is very different for the two 

labor-market flows: the minimum-wage effect on job exit is relatively low and depends little on 

the regional unemployment rate, whereas that for job entry is higher and positively related to 

regional unemployment. This implies that the effect of the minimum wage on job entry differs 

considerably between recessions and booms, whereas the business cycle has little bearing on 

how the minimum wage shapes job exits.  

Finally, so far we have been considering the effects of NMW changes for two similar groups, 

those affected by the change and those who are unaffected but are otherwise similar to the 

affected individuals both in terms of their wage and in terms of the other covariates used in the 

analysis. However, to test for the robustness of our results even further, we carry out a 

falsification experiment whereby we define the treatment and control groups as if the NMW 

were equal to the actual NMW plus 2£. The results of this experiment, shown in Figure 6, 
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indicate that the causal impact of the (false) NMW increase is significant at the 5% level for job 

entry but not for job exit. We find similar conclusions for other artificial NMW (results are 

available from the authors upon request). 

The fact that the falsification test is significant for job entry decisions could be due to spillover 

effects of the actual NMW increase: the NMW change can lead to ripple effects even for wage 

rates above the minimum wage. Importantly, the insignificant falsification test results for job 

exit give strong support to the finding that the employment of workers earning the minimum 

wage is adversely affected by NMW increases. 
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Figure 2 NMW Increases, Job Exit/Entry and Gender 
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Figure 3 NMW Increases, Job Exit/Entry and Age 

 

Note: Shadow area indicates the 95% confidence interval of the local polynomial regression 

estimator (loess). 
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Figure 4 NMW Increases, Job Exit/Entry and Qualifications 

 

Notes: 1 Degree or equivalent, 2 Higher education, 3 GCE A Level or equivalent, 4 GCSE 

grades A-C or equivalent, 5 Other qualifications, 6 No qualification, 7 Don’t know 
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Figure 5 NMW Increases, Job Exit/Entry and Business Cycle 

 

Notes: The horizontal axis measures the regional unemployment rate. Shadow area indicates the 

95% confidence interval of the local polynomial regression estimator (loess). 
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Figure 6 Falsification Test: NMW + £2 

 

Notes: The falsification test simulates the NMW being £2 higher than the actual value. 

 

6 Concluding remarks 

We estimate the causal impact of the NMW on the probability of job entry and job exit in the 

UK, applying a novel methodology to this context, the Bayesian Additive Regression Trees 

(BART). An important advantage of this procedure is that it allows the identification of the 

most important interactions between the treatment variable and other covariates in the model. 

We find that the NMW exerts a significantly positive effect both on job entry and job exit, with 

the impact on job entry being relatively stronger (given that there are fewer unemployed than 

employed workers, the absolute size of the flows cannot be readily compared). The causal effect 

of NMW is found to be higher for young workers and in periods of high unemployment; both of 

these interactions are more prominent for job entry than for job exit. However, no significant 

interactions were found with gender and worker qualification. Overall, the effect of NMW is 

stronger for job entry than for job exit.  
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Most importantly, our paper open new lines of research that can be explored in subsequent 

work. For example, this fully flexible approach could be adapted to deal with some recent issues 

in the literature about the importance of the econometric specification on estimating the effect of 

minimum wage using panel data models in US states. Also, it could be used to estimate the 

possible interactions between the federal minimum wage and the state minimum wages, as done 

by Baskaya and Rubinstein (2012), without the necessity of estimating two different models.  
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