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Abstract
This paper demonstrates that unit root tests can suffer from inflated Type I error rates when data
are cointegrated. Results from Monte Carlo simulations show that three commonly used unit root
tests – the ADF, Phillips–Perron, and DF-GLS tests – frequently overreject the true null of a unit
root for at least one of the cointegrated variables. The reason for this overrejection is that unit root
tests, designed for random walk data, are often misspecified when data are cointegrated. While
the addition of lagged differenced (LD) terms can eliminate the size distortion, this “success” is
spurious, driven by collinearity between the lagged dependent variable and the LD explanatory
variables. Accordingly, standard diagnostics such as (i) testing for serial correlation in the residuals
and (ii) using information criteria to select among different lag specifications are futile. The
implication of these results is that researchers should be conservative in the weight they attach to
individual unit root tests when determining whether data are cointegrated.
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I.  INTRODUCTION 

When estimating relationships among time series data, it is standard practice to first test for 

unit roots in the individual series.  If the data are integrated, one then moves to testing 

whether the variables are cointegrated.  This paper points out that unit root tests are likely to 

suffer from size distortions precisely because the data are cointegrated.  These size distortions 

are often substantial.   

 I illustrate this using a simple autoregressive, distributed lag (ARDL) system of two 

variables.  The ARDL framework has a number of features which make it attractive for 

modelling dynamic relationships.  It allows for interactions between variables, and 

incorporates both endogeneity and own and cross-lagged effects.  These features capture 

likely behaviors of real economic time series.  The ARDL framework can be solved to 

identify parameter values that cause the two variables to be cointegrated.  Furthermore, the 

ARDL framework is easily transformed to an error correction specification, which facilitates 

interpretation of dynamic relationships.   

 TABLE 1 illustrates the problem with size.  X and Y are two simulated data series 

where the parameter values for the data generating process (DGP) have been chosen to ensure 

that they are cointegrated.  Because the series are cointegrated,  each of the series must have a 

unit root.  I subject each series to three unit root tests:  the augmented Dickey-Fuller test 

(ADF), the Phillips-Perron test, and the DF-GLS test.  10,000 simulations of sample sizes 100 

were conducted.  Significance levels were set equal to 0.05.  The table reports the associated 

Type I error rates.  All simulations were done using Stata, Version 14.1 

 While the ADF and DF-GLS tests produce Type I error rates for X close to 0.05, the 

Phillips-Perron test produces an error rate over 0.40.  For Y, the results are much worse.  

Type I error rates are 0.206, 1.000, and 0.685 for the ADF, Phillips-Perron, and DF-GLS 

                                                      
1 All programs used to produce the results for this paper are available from the author. 
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tests, respectively.2  The ADF regressions show good diagnostics, with little serial correlation 

evident in the residuals.  As I show below, unit root test results such as these are quite easy to 

produce with cointegrated data. 

 I proceed as follows.  Section II presents the theory that motivates the simulation 

work.  Section III presents additional Monte Carlo evidence of size distortions for 

cointegrated data.  Section IV provides an explanation for my results.  Section V concludes 

by discussing the implication of these findings for estimation of error correction models.   

 
II.  THEORY 
 
Consider the following ARDL(1,1) model.   

 
  𝑦𝑡 = 𝛽10 + 𝛽12𝑥𝑡 + 𝛾11𝑦𝑡−1 + 𝛾12𝑥𝑡−1 + 𝜀𝑦𝑡  , 𝜀𝑦𝑡~𝑁𝐼𝐷(0,1)  ,  
1) 
  𝑥𝑡 = 𝛽20 + 𝛽21𝑦𝑡 + 𝛾21𝑦𝑡−1 + 𝛾22𝑥𝑡−1 + 𝜀𝑥𝑡  , 𝜀𝑥𝑡~𝑁𝐼𝐷(0,1)  , 
 
𝑡 = 1,2, … ,𝑇.  This can be rewritten in VAR form as: 
 
(2)   �

𝑦𝑡
𝑥𝑡� = �

𝑎10
𝑎20� + �

𝑎11 𝑎12
𝑎21 𝑎22� �

𝑦𝑡−1
𝑥𝑡−1� + �

𝑎13 𝑎14
𝑎23 𝑎24� �

𝜀𝑦𝑡
𝜀𝑥𝑡�. 

 
where the parameters 𝑎𝑖𝑗, i=1,2, j=1,2,3,4 are each functions of the 𝛽 and 𝛾 terms of 

Equation (1).   

 Define 𝐴 = �
𝑎11 𝑎12
𝑎21 𝑎22�.   The determinant of the matrix 

(𝐴 − 𝜆𝐼) = �𝑎11 − 𝜆 𝑎12
𝑎21 𝑎22 − 𝜆�  is the characteristic equation of 𝐴, and the values of 𝜆 that 

set this equation equal to zero are the associated characteristic roots, or eigenvalues: 

(3) 𝜆2 + (−𝑎11 − 𝑎22)𝜆 + (𝑎11𝑎22 − 𝑎12𝑎21) = 0 . 

A necessary condition for 𝑦𝑡 and 𝑥𝑡 to be CI(1,1) is that the corresponding solutions to (3) be 

given by 𝜆1 = 1, |𝜆2| < 1. 

                                                      
2 Lag lengths for the Phillips-Perron and DF-GLS tests were chosen using the default options supplied by Stata.   
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 The following conditions on 𝑎11,𝑎12,𝑎21 and 𝑎22 are sufficient to ensure that 

𝜆1 = 1, |𝜆2| < 1. 3 

(4a) 0 < 𝑎22 < 1 

(4b) 0 < 𝑎12𝑎21 <  1 − 𝑎22 

(4c) 𝑎11 = 1 −  
𝑎12𝑎21
1−𝑎22

.   

We can work backwards from (4a) – (4c) to obtain 𝛽 and 𝛾 values consistent with 𝜆1 = 1,

|𝜆2| < 1. 

 Let 𝛽12 and 𝛽21 take any values such that 𝛽12𝛽21 ≠ 1.  Then  

(5a) 𝛾21 =  𝑎21 − 𝑎11𝛽21  

(5b) 𝛾11 = 𝑎11(1− 𝛽12𝛽21)− 𝛽12𝛾21 

(5c) 𝛾22 =  𝑎22 − 𝑎12𝛽21  

(5d) 𝛾12 = 𝑎12(1− 𝛽12𝛽21)− 𝛽12𝛾22 

will produce 𝑎11,𝑎12,𝑎21 and 𝑎22 values such that 𝜆1 = 1, |𝜆2| < 1. 

 Equation (2) can be arranged in vector error correction (VEC) model form as: 

    ∆𝑦𝑡 = 𝑎10 + 𝛿𝑦(𝑦𝑡−1 + 𝜃𝑥𝑡−1) + 𝜖𝑦𝑡  ,  
6) 
   ∆𝑥𝑡 = 𝑎20 + 𝛿𝑥(𝑦𝑡−1 + 𝜃𝑥𝑡−1) + 𝜖𝑥𝑡  , 

where the coefficients 𝜃,  𝛿𝑦, and 𝛿𝑥, as well as the error terms 𝜖𝑦𝑡 and 𝜖𝑥𝑡, are functions of 

the 𝑎𝑖𝑗 terms, i=1,2, j=1,2,3,4.  This allows the long-run equilibrium relationship between 𝑦𝑡 

and 𝑥𝑡, represented by the parameter 𝜃; and the speed-of-adjustment parameters 𝛿𝑦 and 𝛿𝑥, to 

all be expressed as functions of 𝑎11,𝑎12,𝑎21 and 𝑎22. 

7a) 𝜃 =  
𝑎22−1
𝑎21

 

7b) 𝛿𝑦 =  − 
𝑎12𝑎21
1−𝑎22

 

                                                      
3 These conditions are taken from Enders (2010, page 369).  I have made the conditions more restrictive to make 
sure that the speed of adjustment parameters have the correct sign and size. 
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7c) 𝛿𝑥 =  𝑎21. 

The parameter values chosen in this way will ensure that (i)  −1 < 𝛿𝑦 < 0,  and (ii)  −1 <

𝛿𝑥𝜃 < 0, so that the VEC model is well-behaved.   

 
III.  RESULTS  

This section reports results from ten additional cases that highlight the problem with size 

distortions.  The first two columns of TABLE 2 describe the model parameters and time 

series characteristics associated with the data generating processes (DGPs) for each case.   I 

have chosen cases that cover a wide range of behaviours.  The cases are sorted in ascending 

order of 𝛿𝑦, the speed of adjustment coefficient for the Y  series.  𝛿𝑦 ranges from a low of  

-0.16 to a high of -0.90.  The last column reports the characteristic roots associated with the 

respective model parameters.  In all cases, 𝜆1 = 1, |𝜆2| < 1. 

 TABLE 3 reports more simulation findings demonstrating that the results from 

TABLE 1 are not isolated outcomes.  The ten panels of TABLE 3 correspond to the ten cases 

of TABLE 2.  The top panel reports Monte Carlo results using the parameter values from 

Case 1:  

 𝛽10 = 0,  𝛽12 = 2, 𝛾11 = 1.24,  𝛾12 = −1.70,  𝛽20 = 0,  𝛽21 = 5,  𝛾21 = −4.40, 𝛾22 = 1.75. 

 
The fact that both 𝛽12 and  𝛽21 are nonzero implies that if one of the series is I(1), the other 

must be as well (cf. Equation 1).  These values generate a VEC model with long-run 

equilibrium and speed of adjustment parameters  𝜃 = 1.25 , 𝛿𝑦 = −0.16, and 𝜃𝛿𝑥 = −0.25. 

This implies that the long-run relationship between Y and X is given by 𝑦𝑡 = −1.25𝑥𝑡.  A 

one-unit increase in 𝑦𝑡 from its equilibrium value causes the next period’s value of Y to 

decrease by 0.16 units.  A one-unit increase in 𝑥𝑡 from its equilibrium value causes the next 

period’s value of X to decrease by 0.25 units (=𝛿𝑥𝜃).  As in TABLE 1, the Monte Carlo 

results are based on 10,000 simulations of sample sizes 100.  As a point of comparison, 
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TABLE 3 also reports the results of unit root tests for a random walk variable, 𝑧𝑡 = 𝑧𝑡−1 +

𝜀𝑧𝑡.  𝜀𝑧𝑡~𝑁𝐼𝐷(0,1)  The Z column is useful for illustrating the range of deviations that can be 

expected from sampling error.   

 The results for the X variable demonstrate that the size distortions associated with 

each of the tests can be quite substantial.  The Type I error rates for the ADF, Phillips-Perron,  

and DF-GLS tests are 53.6, 87.6, and 64.0 percent, respectively.   Thus, given sample data 

from this DGP and applying any of the three tests supplied in Stata, a researcher would 

incorrectly conclude that the X variable was stationary over half the time. The results for Y 

also show size distortions, but of a smaller degree.  These results are to be compared to those 

reported for the Z variable, which is a pure random walk process.  All three unit root tests 

produce Type I error rates for Z that are close to 5 percent.   

 As is well-known, results from unit root tests can differ substantially depending on the 

number of lagged differenced (LD) terms included in the unit root specification.  Stata 

automatically selects the number of LD terms for the Phillips-Perron and DF-GLS tests.  The 

ADF test requires the user to supply the number of lags.  For the ADF tests, I chose lag 

orders that were sufficient to generate white noise behaviour in the residuals.4  The last row 

of the panel reports the results of a Breusch-Godfrey test where the null hypothesis is no 

serial correlation.  The test results for the X and Y variables are close to the value of 0.05 that 

one would expect were there no serial correlation.  These are virtually identical to those for 

the random walk Z variable which has no serial correlation by construction.  Based on these 

results, a researcher would conclude that the ADF test was correctly specified. 

 The next nine panels report more unit root test results.  I have highlighted the results 

that show substantial size distortions.  In the second panel, unit root tests for both the X and Y 

variables reveal Type I error rates well above 5 percent for all three tests.  For the ADF test, 

                                                      
4 Lag lengths for Cases 1 to 10 are 2, 2, 4, 3, 6, 2, 3, 4, 4, and 5, respectively. 
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Type I error rates are 0.390 and 0.309, respectively.  The Breusch-Godfrey test results 

indicate that sufficient lags have been included in the ADF specification.  For the Phillips-

Perron and DF-GLS tests, the Type I error rates are 0.770 and 0.655, and 0.492 and 0.394, 

respectively.  The results for the X and Y variables contrast with the results for the benchmark 

Z variable, which are approximately 5 percent across all three tests. The results from this 

second panel indicate that a researcher would frequently conclude that both X and Y were 

both stationary, and hence not cointegrated.   

 The highlighted areas in the subsequent panels accumulate further evidence that unit 

root tests of cointegrated data are frequently characterized by substantial size distortions.  An 

egregious example is Case 6, where the Type I error rates for the Y variable are 0.921, 1.000, 

and 0.931.  A researcher would incorrectly classify the order of integration for this variable 

over 90 percent of the time using any of the three unit root tests provided by Stata. 

 It turns out that the size distortions for the ADF test can be eliminated by adding 

sufficient lagged differenced (LD) terms to the ADF specification.  However, knowing the 

correct number of LD terms to add is impossible in practice.  Two common methods for 

determining the number of LD terms are (i) testing the residuals for serial correlation; and (ii) 

using information criteria such as the AIC and SIC to select the LD specification with the 

lowest AIC/SIC value (Harris, 1992). 

 TABLE 4 reports the results of an analysis where these two methods are employed to 

determine the appropriate number of LD terms to add to the ADF specification.  The X and Y 

data for TABLE 4 are generated using the DGP for Case 1.  As before, the Z data are pure 

random walk data and are included as a benchmark.  One to ten LD terms are successively 

added to the ADF specification.  Breusch-Godfrey tests for each LD specification are 

reported in the top panel of TABLE 4.  Average AIC and SIC values for each LD 

specification are reported in the subsequent two panels.    
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 TABLE 4 is designed to address this thought experiment:  based on the results from 

the first three panels, how many LD terms would a researcher think is the “correct” number 

of terms to add?  For example, when LAGS = 1, the null hypothesis of no serial correlation is 

rejected approximately 6.0 and 5.7 percent of the time for the X and Y series.  For LAGS = 2, 

rejection rates are 5.6  and 5.5 percent.5  The average AIC values for the X and Y series when 

LAGS = 1 are 168.96 and 41.51.  These successively increase as additional LD terms are 

added.  Likewise, the average SIC values for the X and Y series achieve their minimum when 

LAGS = 1. Using the diagnostics from these three panels, a researcher might conclude that 

the “correct” number of LD terms to add was 1 or 2.   

 The fourth panel of TABLE 4 reports the ADF Type I error rates for each LD 

specification.  When LAGS = 1, the Type I error rates for the X and Y variables are 0.734 and 

0.148.  When LAGS = 2, they are 0.546 and 0.106, respectively.  In other words, using 

commonly accepted methods for determining the appropriate number of LD terms, a 

researcher would likely conclude that one, or at most two, LD terms was sufficient to control 

for serial correlation in the ADF specification.  Either strategy would result in the researcher 

concluding that the X variable was stationary over half the time.  In fact, it would take ten or 

more LD terms to reduce the size of the ADF test to 5 percent.  The diagnostic tests are 

unable to identify the appropriate number of LD terms.  

 Similar results are obtained for the remaining cases (the Appendix reports the results 

of following the same procedure for Case 2).  In all cases, the information criteria select a 

single LD term.  Tests for serial correlation generally indicate that more than one LD term 

should be included, but not so many as to eliminate the size distortion.  The next section 

explains that this inability of the diagnostic tests is because the apparent “success” from 

adding LD terms to the ADF specification is spurious.  

                                                      
5 In practice, a researcher only has a single test for serial correlation to go on, so that it is likely that that he/she 
would find a single LD term to be sufficient in this case. 
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IV.  DISCUSSION 

The explanation for the poor size performance of unit root tests with cointegrated data can be 

linked to how critical values are determined in the Dickey-Fuller framework.  Given Monte 

Carlo simulation of the random walk process,  

𝑧𝑡 = 𝑧𝑡−1 + 𝜀𝑡,  

repeated OLS estimation of the DF specification below 

∆𝑧𝑡 = 𝛾 + 𝜌𝑧𝑡−1 + 𝑒𝑟𝑟𝑜𝑟𝑧𝑡. 

produces an empirical distribution of  t values, 𝑡 = 𝜌�
𝑠.𝑒.(𝜌�)

, associated with testing the null 

hypothesis: 𝐻0:𝜌 = 0, which is true given the random walk process. 

 In my simulations of the ARDL(1,1) data, the DGP is given by  

 𝑦𝑡 = 𝛽10 + 𝛽12𝑥𝑡 + 𝛾11𝑦𝑡−1 + 𝛾12𝑥𝑡−1 + 𝜀𝑦𝑡  ,  

 𝑥𝑡 = 𝛽20 + 𝛽21𝑦𝑡 + 𝛾21𝑦𝑡−1 + 𝛾22𝑥𝑡−1 + 𝜀𝑥𝑡  ,  

and the corresponding differenced specifications are given by 

∆𝑦𝑡 = 𝛽10 + 𝜌𝑦𝑦𝑡−1 + 𝑒𝑟𝑟𝑜𝑟𝑦𝑡   

∆𝑥𝑡 = 𝛽20 + 𝜌𝑥𝑥𝑡−1 + 𝑒𝑟𝑟𝑜𝑟𝑥𝑡  ,  

where 𝜌𝑦 = 𝛿𝑦, 𝜌𝑥 = 𝛿𝑥𝜃, 𝑒𝑟𝑟𝑜𝑟𝑦𝑡 = 𝛿𝑦𝜃𝑥𝑡−1 + 𝜖𝑦𝑡 , and 𝑒𝑟𝑟𝑜𝑟𝑥𝑡 =  𝛿𝑥𝑦𝑡−1 + 𝜖𝑥𝑡 (cf. 

Equation 6).  For cointegrated data, either 𝛿𝑦 < 0, or 𝛿𝑥𝜃 < 0, or both.  This implies that the 

unit roots are misspecified, because they test 𝐻0:𝜌𝑦,𝜌𝑥 = 0.   While this is appropriate for 

random walk data, it is not correct when the data are cointegrated.   

V. CONCLUSION 

This paper demonstrates that unit root tests can suffer from inflated Type I error rates when 

data are cointegrated.  This should be of interest to researchers who are interested in 

estimating relationships between nonstationary variables.  Standard procedure calls for 

testing variables for unit roots before proceeding to the estimation of error correction models.  
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The results of this study demonstrate that the very fact that the data are cointegrated can 

render unit root tests unreliable.  This suggests that researchers should be conservative in the 

weight they attach to individual unit root tests, opting for a more holistic approach when 

determining whether data are cointegrated. 
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TABLE 1 

Example of Unit Root Test Results Using Cointegrated Data 
 

UNIT ROOT TEST X Y 

ADF 0.051 0.206 

Phillips-Perron 0.410 1.000 

DF-GLS 0.087 0.685 

 
 NOTE:  Values in the table are Type I error rates associated with the null 

hypothesis that the data series have a unit root.  The underlying DGP is the 
ARDL framework represented by Equation 1 in the text, with the following 
parameter values: 

 

 𝛽10 = 0,𝛽12 = 3, 𝛾11 = 1,  𝛾12 = −3,  𝛽20 = 0,  𝛽21 = −1,  𝛾21 = −0.2, 𝛾22 = 0.2    
  

 The corresponding long-run equilibrium and speed of adjustment parameters (see 
Equations 7a)-7c) are given by: 𝜃 = −0.1, 𝛿𝑦 = −0.5, 𝛿𝑥 = 1,𝜃𝛿𝑥 = −0.1. 
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TABLE 2 
DESCRIPTION OF CASES 

 

CASE MODEL PARAMETERS 
(1) 

TIME SERIES CHARACTERISTICS 
(2) 

CHARACTERISTIC ROOTS 
(3) 

1 
 𝛽12 = 2.00, 𝛾11 = 1.24,  𝛾12 = −1.70, 

 𝛽21 = 5.00,  𝛾21 = −4.40, 𝛾22 = 1.75 
𝛿𝑦 = −0.16, 𝛿𝑥 = −0.20,𝜃𝛿𝑥 = −0.25,𝜃 = 1.25 𝜆1 = 1, 𝜆2 = 0.59 

2 
  𝛽12 = 2.00, 𝛾11 = 1.80,  𝛾12 = −1.60, 

 𝛽21 = 5.00,  𝛾21 = −4.50, 𝛾22 = 1.25 
𝛿𝑦 = −0.20, 𝛿𝑥 = −0.50,𝜃𝛿𝑥 = −0.25,𝜃 = 0.50 𝜆1 = 1, 𝜆2 = 0.55 

3 
𝛽12 = 2.00, 𝛾11 = 0.35,  𝛾12 = 0.60, 

    𝛽21 = 3.00,  𝛾21 = −2.05, 𝛾22 = −2.80 
𝛿𝑦 = −0.25, 𝛿𝑥 = 0.20,𝜃𝛿𝑥 = −0.80,𝜃 = −4.00 𝜆1 = 1, 𝜆2 = −0.05 

4 
 𝛽12 = 1.00, 𝛾11 = 1.45,  𝛾12 = −0.90, 

 𝛽21 = 5.00,  𝛾21 = −3.65, 𝛾22 = 1.30 
𝛿𝑦 = −0.45, 𝛿𝑥 = −0.90,𝜃𝛿𝑥 = −0.20,𝜃 = 0.22 𝜆1 = 1, 𝜆2 = 0.35 

5 
  𝛽12 = 0.50, 𝛾11 = 0.72,  𝛾12 = −0.85, 

 𝛽21 = 1.00,  𝛾21 = −0.92, 𝛾22 = 1.10 
𝛿𝑦 = −0.48, 𝛿𝑥 = −0.40,𝜃𝛿𝑥 = −0.50,𝜃 = 1.25 𝜆1 = 1, 𝜆2 = 0.02 

6 
 𝛽12 = 3.00, 𝛾11 = 1.00,  𝛾12 = −3.00, 

 𝛽21 = −1.00,  𝛾21 = −0.20, 𝛾22 = 0.20 
𝛿𝑦 = −0.50, 𝛿𝑥 = −1.00,𝜃𝛿𝑥 = −0.10,𝜃 = 0.10 𝜆1 = 1, 𝜆2 = 0.40 

7 
  𝛽12 = 2.00, 𝛾11 = 2.20,  𝛾12 = −1.80, 

 𝛽21 = 5.00,  𝛾21 = −2.90, 𝛾22 = 1.35 
𝛿𝑦 = −0.60, 𝛿𝑥 = −0.90,𝜃𝛿𝑥 = −0.15,𝜃 = 0.17 𝜆1 = 1, 𝜆2 = 0.25 

8 
 𝛽12 = 0.80, 𝛾11 = 0.72,  𝛾12 = −1.08, 

 𝛽21 = 0.60,  𝛾21 = −0.64, 𝛾22 = 0.96 
𝛿𝑦 = −0.60, 𝛿𝑥 = −0.40,𝜃𝛿𝑥 = −0.40,𝜃 = 1.00 𝜆1 = 1, 𝜆2 = 0 
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CASE MODEL PARAMETERS 
(1) 

TIME SERIES CHARACTERISTICS 
(2) 

CHARACTERISTIC ROOTS 
(3) 

9 
  𝛽12 = 0.80, 𝛾11 = 0.52,  𝛾12 = −1.16, 

 𝛽21 = 0.60,  𝛾21 = −0.52, 𝛾22 = 1.06 
𝛿𝑦 = −0.80, 𝛿𝑥 = −0.40,𝜃𝛿𝑥 = −0.30,𝜃 = 0.75 𝜆1 = 1, 𝜆2 = −0.1 

10 
  𝛽12 = 2.00, 𝛾11 = 1.90,  𝛾12 = −1.90, 

 𝛽21 = 5.00,  𝛾21 = −1.40, 𝛾22 = 1.40 
𝛿𝑦 = −0.90, 𝛿𝑥 = −0.90,𝜃𝛿𝑥 = −0.10,𝜃 = 0.11 𝜆1 = 1, 𝜆2 = 0 

 
 
 NOTE:  Each of the cases above is based on the ARDL framework of Equation (1), with associated parameter values given in Column 

(1).  The values of the characteristics 𝛿𝑦, 𝛿𝑥, and 𝜃 reported in Column (2) are, respectively, the values of the speed of adjustment 
parameters and the long-run relationship parameter between Y and X in the error correction models of Equation (6) that correspond to the 
values of the model parameters for that case.   𝜃𝛿𝑥 identifies the systematic change in ∆𝑥𝑡 corresponding to a one-unit change in 𝑥𝑡.  
Necessary conditions for the series to be well-behaved are (i)  −1 < 𝛿𝑦 < 0,  and (ii)  −1 < 𝛿𝑥𝜃 < 0.  The last column reports the values 
of the characteristic roots in the VAR specification of Equation (2) for that case.  A necessary condition for the series to be cointegrated 
is that 𝜆1 = 1, |𝜆2| < 1. 
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TABLE 3 

More Examples of Unit Root Test Results Using Cointegrated Data 
 

CASE TEST X Y Z 

1 

ADF 0.536 0.100 0.055 
Phillips-Perron 0.876 0.203 0.062 

DF-GLS 0.640 0.121 0.045 
BREUSCH-GODFREY TEST: 0.056 0.058 0.059 

2 

ADF 0.390 0.309 0.055 
Phillips-Perron 0.770 0.655 0.062 

DF-GLS 0.492 0.394 0.045 
BREUSCH-GODFREY TEST 0.059 0.057 0.059 

3 

ADF 0.113 0.048 0.049 
Phillips-Perron 0.970 0.029 0.062 

DF-GLS 0.429 0.066 0.045 
BREUSCH-GODFREY TEST 0.056 0.063 0.062 

4 

ADF 0.200 0.403 0.053 
Phillips-Perron 0.787 0.963 0.062 

DF-GLS 0.419 0.680 0.045 
BREUSCH-GODFREY TEST 0.063 0.069 0.057 

5 

ADF 0.159 0.106 0.045 
Phillips-Perron 1.000 1.000 0.062 

DF-GLS 0.756 0.639 0.045 
BREUSCH-GODFREY TEST 0.053 0.063 0.063 

6 

ADF 0.051 0.921 0.055 
Phillips-Perron 0.024 1.000 0.062 

DF-GLS 0.038 0.931 0.045 
BREUSCH-GODFREY TEST 0.061 0.056 0.059 

7 

ADF 0.083 0.578 0.053 
Phillips-Perron 0.452 0.998 0.062 

DF-GLS 0.170 0.808 0.045 
BREUSCH-GODFREY TEST 0.057 0.066 0.057 

8 

ADF 0.266 0.405 0.049 
Phillips-Perron 0.999 1.000 0.062 

DF-GLS 0.677 0.782 0.045 
BREUSCH-GODFREY TEST 0.062 0.062 0.062 
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CASE TEST X Y Z 

9 

ADF 0.087 0.311 0.049 
Phillips-Perron 0.952 1.000 0.062 

DF-GLS 0.354 0.696 0.045 
BREUSCH-GODFREY TEST 0.055 0.061 0.062 

10 

ADF 0.050 0.347 0.048 
Phillips-Perron 0.316 1.000 0.062 

DF-GLS 0.085 0.826 0.045 
BREUSCH-GODFREY TEST 0.059 0.063 0.060 

 
 
NOTE:  The values in the table are the rejection rates of the respective null hypothesis.  For 
the unit root tests (ADF, Phillips-Perron, and DF-GLS), the null hypothesis is that the series 
has a unit root.  For the Breusch-Godfrey tests, the null hypothesis is that the residuals 
associated with the ADF test are not serially correlated.   
 



16 
 

TABLE 4 
The Effect of Adding Lagged Differenced Terms to the  
Dickey-Fuller Unit Root Regression Equation: Case 1 

 

 X Y Z 

 
BREUSCH-GODFREY TESTS:    

LAGS = 1 0.060 0.057 0.057 
LAGS = 2 0.056 0.055 0.063 
LAGS = 3 0.062 0.056 0.060 
LAGS = 4 0.056 0.054 0.059 
LAGS = 5 0.059 0.059 0.060 
LAGS = 6 0.060 0.060 0.062 
LAGS = 7 0.059 0.061 0.061 
LAGS = 8 0.067 0.058 0.063 
LAGS = 9 0.056 0.064 0.065 
LAGS = 10 0.060 0.061 0.064 

 
AIC VALUES:    

LAGS = 1 168.96 41.51 279.67 
LAGS = 2 169.93 42.39 280.44 
LAGS = 3 170.91 43.55 281.41 
LAGS = 4 171.84 44.49 282.39 
LAGS = 5 172.91 45.38 283.40 
LAGS = 6 173.65 46.40 284.03 
LAGS = 7 174.65 47.31 284.93 
LAGS = 8 175.51 48.31 285.79 
LAGS = 9 176.73 49.25 286.81 
LAGS = 10 177.49 50.05 287.48 

 
SIC VALUES:    

LAGS = 1 179.34 51.89 290.05 
LAGS = 2 182.90 55.37 293.42 
LAGS = 3 186.48 59.12 296.98 
LAGS = 4 190.00 62.66 300.56 
LAGS = 5 193.67 66.14 304.16 
LAGS = 6 197.01 69.75 307.39 
LAGS = 7 200.60 73.26 310.88 
LAGS = 8 204.06 76.86 314.33 
LAGS = 9 207.87 80.39 317.95 
LAGS = 10 211.23 83.78 321.22 
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TABLE 4 (continued) 

 
 X Y Z 
 
ADF UNIT ROOT TESTS:    

LAGS = 1 0.734 0.148 0.054 

LAGS = 2 0.546 0.106 0.050 

LAGS = 3 0.405 0.085 0.055 

LAGS = 4 0.291 0.068 0.054 

LAGS = 5 0.222 0.063 0.047 

LAGS = 6 0.166 0.054 0.048 

LAGS = 7 0.143 0.054 0.043 

LAGS = 8 0.116 0.046 0.042 

LAGS = 9 0.092 0.051 0.045 

LAGS = 10 0.082 0.046 0.044 
 
 
NOTE:  The values in the top panel (“Breusch-Godfrey Tests”) are the rejection rates 
associated with the null hypothesis of no serial correlation for alternative specifications of 
lagged differenced (LD) terms in the ADF specification.  The values in the next two panels 
(“AIC Values” and “SIC Values”) are the average information criteria values associated with 
the respective LD specifications.  The number of observations are held constant across the 
different specifications.  The values in the bottom panel (“ADF Unit Root Tests”) are the 
Type I error rates associated with the null hypothesis of a unit root using the ADF test with 
the designated number of lagged, differenced terms.   
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APPENDIX 
The Effect of Adding Lagged Differenced Terms to the  
Dickey-Fuller Unit Root Regression Equation: Case 2 

 
 X Y Z 
 
BREUSCH-GODFREY TESTS:    

LAGS = 1 0.069 0.069 0.057 
LAGS = 2 0.060 0.060 0.063 
LAGS = 3 0.063 0.059 0.060 
LAGS = 4 0.056 0.057 0.059 
LAGS = 5 0.062 0.056 0.060 
LAGS = 6 0.059 0.058 0.062 
LAGS = 7 0.059 0.061 0.061 
LAGS = 8 0.065 0.056 0.063 
LAGS = 9 0.060 0.060 0.065 
LAGS = 10 0.063 0.064 0.064 

 
AIC VALUES:    

LAGS = 1 179.18 14.35 279.67 
LAGS = 2 179.93 15.04 280.44 
LAGS = 3 181.00 16.15 281.41 
LAGS = 4 181.89 16.95 282.39 
LAGS = 5 182.89 17.86 283.40 
LAGS = 6 183.62 18.93 284.03 
LAGS = 7 184.67 19.96 284.93 
LAGS = 8 185.51 20.94 285.79 
LAGS = 9 186.71 21.91 286.81 
LAGS = 10 187.58 22.78 287.48 

 
SIC VALUES:    

LAGS = 1 189.56 24.73 290.05 
LAGS = 2 192.90 28.02 293.42 
LAGS = 3 196.57 31.72 296.98 
LAGS = 4 200.06 35.12 300.56 
LAGS = 5 203.65 38.62 304.16 
LAGS = 6 206.97 42.28 307.39 
LAGS = 7 210.62 45.91 310.88 
LAGS = 8 214.06 49.49 314.33 
LAGS = 9 217.85 53.05 317.95 
LAGS = 10 221.32 56.52 321.22 
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APPENDIX (continued) 
 
 X Y Z 
 
ADF UNIT ROOT TESTS:    

LAGS = 1 0.592 0.477 0.054 

LAGS = 2 0.411 0.324 0.050 

LAGS = 3 0.287 0.218 0.055 

LAGS = 4 0.202 0.163 0.054 

LAGS = 5 0.145 0.123 0.047 

LAGS = 6 0.113 0.094 0.048 

LAGS = 7 0.098 0.083 0.043 

LAGS = 8 0.079 0.065 0.042 

LAGS = 9 0.067 0.056 0.045 

LAGS = 10 0.059 0.052 0.044 
 
 
NOTE:  Values in the top panel (“Breusch-Godfrey Tests”) are the rejection rates associated 
with the null hypothesis of no serial correlation.  Values in the next two panels (“AIC 
Values” and “SIC Values”) are the average information criteria values associated with the 
respective lag specifications.  The number of observations are held constant across the 
different specifications.  The values in the bottom panel (“ADF Unit Root Tests”) are the 
Type I error rates associated with the null hypothesis of a unit root using the ADF test with 
the designated number of lagged, differenced terms.   
 
 
 
 
 
 
 
 



 

 

 

 

 

 

 

Please note: 

You are most sincerely encouraged to participate in the open assessment of this 
discussion paper. You can do so by either recommending the paper or by posting your 
comments. 
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