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1 Introduction

The ability to accurately estimate the extent to which the failure of a bank
disrupts the financial system is very valuable for regulators of the finan-
cial system. This paper develops a robust measure based on absorbing
Markov chains, SinkRank, that accurately predicts the magnitude of dis-
ruption caused by the failure of a bank in an interbank payment system and
identifies banks most affected by the failure.

Interbank payment systems provide the backbone for all financial transac-
tions. Virtually all economic activity is facilitated by transfers of claims by
financial institutions. In turn, these claim transfers generate payments be-
tween banks whenever they are not settled across the books of a single bank.
These payments are settled in interbank payment systems. In 2010, the an-
nual value of interbank payments made e.g. in the Pan-European system
TARGET2 was $839 trillion. In the corresponding US system Fedwire, the
amount was $608 trillion - over 40 times its annual GDP ([BIS, 2010]). Due
to the sheer size of the transfers, and their pivotal role in the functioning
of financial markets and the implementation of monetary policy, payment
systems are central for policymakers and regulators.

Systemic risk in payment systems has been studied since [Humphrey, 1986]
who found significant risk in the U.S. Fedwire system in the mid 1980s.
Subsequent studies by [Angelini et al., 1996], [Bech and Soramäki, 2002] and
[Galos and Soramäki, 2005] found the risks to be limited. Since then, how-
ever, most payment systems have switched from net settlement to real-time
gross settlement ([Bech et al., 2008]) – transforming credit risk into liquidity
risk as gross settlement eliminates the former but at the cost of the lat-
ter. Various works have since used simulations to study risks and liquidity
needs in real-time gross settlement systems, either by creating entirely sim-
ulated systems or introducing changes in data from real payment systems.
A growing body of work ([Schulz, 2011]; [Grat-Osinka and Pawliszyn, 2007];
[Arjani, 2006]) uses simulation to study the relationship between liquidity
requirements and delays in payment systems. Simulations of failures in
payment systems generally focus on system-wide risks and liquidity effects
([Glaser and Haene, 2009]; [McAndrews and Wasilyew, 2005]; [Ledrut, 2007];
[Ball and Engert, 2007]; [Docherty and Wang, 2010]). [Schmitz and Puhr, 2009]
studied network structure in payment systems with induced shocks, but
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found that network properties were of limited use for stability analysis. Here
we use network methods to develop a metric that not only identifies system-
ically important banks but can also predict the banks most affected by a
failure, and validate the metric using simulated payment systems.

The paper is organized as follows. In the next section we discuss existing
measures of centrality in the network theory and introduce SinkRank. Sec-
tion 3 describes the model that is used to simulate bank failures for testing
SinkRank and Section 4 presents simulation results that evaluate the accu-
racy of SinkRank for forecasting the impact of failures and the banks most
affected. Section 5 concludes.

Technical details and computer code for reproducing all calculations pre-
sented in this paper are given in the Annexes. Interactive versions of the
charts are available in www.fna.fi/sinkrank.

2 Centrality in Network Theory

In the past decade, significant progress towards understanding the structure
and functioning of complex networks has been made within the fields of
statistical mechanics and social network analysis (SNA).

A multitude of centrality measures has been developed – each with an ex-
plicit or implicit network process in mind. [Borgatti, 2005] identifies several
stylized processes. According to his typology, a process can progress in the
network through geodesic paths, paths, trails or walks. Processes that travel
via geodesic (shortest) paths are, for example, problems of the type “travel-
ing salesman”, i.e. they always take the shortest route between two nodes.
Processes that travel via paths need not necessarily use the shortest one, but
do not visit any node more than once. These can be, for example, viral in-
fections (a person becomes immune once infected) or the routing of internet
traffic.

Processes that travel along trails do not visit any given link more than once.
Such a process is for example the spread of gossip where a person may forward
it to several other people or hear the same news from several different people
- but a normal person will not learn about new information twice. Processes
that are characterized as walks are not restricted in their behavior. An
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example of such are the money flows studied here, where everyone can pay
everyone multiple times.

Further on, Borgatti characterizes the process in the dimensions of paral-
lel duplication, serial duplication and transfers. In parallel duplication the
process spreads at the same time from a node to all its neighbors. In serial
duplication it duplicates one link at a time. An example of the former is an
e-mail broadcast and of the latter viral infection. Instead, in transfer the
process moves something in the network. When it is moved, it leaves the
originating node and is now possessed by the receiving node. This is the case
with payments.

The most commonly used centrality measures are Degree, Closeness and
Betweenness proposed by [Freeman, 1978] and different variations of Eigen-
vector centrality which was pioneered by [Katz, 1953] and [Bonacich, 1972],
[Bonacich, 1987].

Degree centrality (or simply Degree) counts the number of neighbors of each
node. It is a local measure that only takes the immediate neighborhood of
the node into account. It can count neighbors with incoming links, outgoing
links or either, and can be weighted by link properties; for example, the
weighted out-degree is referred to as out-strength.

The insight underlying Closeness centrality is that nodes which have shorter
geodesic paths to other nodes are more central. It is generally calculated as
the average length of geodesic paths from a node to each other node in the
network. Betweenness centrality defines nodes through which a high share of
geodesic paths pass as central.

What is known today as Eigenvector centrality encapsulates the idea that
the centrality of a node depends directly on the centrality of the nodes that
link to it (or that it links to). Eigenvector centrality measures assume par-
allel duplication along walks. A famous commercialization of Eigenvector
centrality is Google’s PageRank algorithm ([Page et al., 1999]), which adds
a random jump probability for ‘dangling’ nodes and thus allows the measure
to be calculated for all types of networks. PageRank and Eigenvector cen-
trality can be thought of as the proportion of time spent visiting each node
in an infinite random walk through the network. For calculating Eigenvec-
tor centrality, the network must be strongly connected (i.e. the underlying
transition matrix must be nonsingular).
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In payment networks banks (nodes) transfer payments related to customer
requests or their own trading along directed links of the network. When a
payment is made the money is no longer available to the sender, and the
receiver of the funds can make a payment to any other bank in the system.
Using terminology in [Borgatti, 2005], the transfer process takes place along
walks in the network as any bank can pay other multiple times without
constraints (assuming the paying bank has sufficient funds or credit).

Payment networks are accompanied with liquidity and risk-management con-
straints and exhibit feedback loops. Banks may not have enough liquidity
to settle a payment or may decide to postpone a payment due to liquidity
and risk management concerns. These decisions again depend on the state
of the system at that time, and also influence the state of the system. Tra-
ditional measures of centrality that have been developed with other types of
processes in mind (e.g. processes transmitted along geodesic paths or trails
or processes based on duplications instead of transfer) and may not be able
to accurately identify central nodes in payment systems.

Liquidity constraints may make banks unable to make payments and may
alter the unconstrained process significantly. When the constraints are hard,
the system may become very unpredictable and be governed by a congestion
and cascades process. When liquidity is scarce, the settlement process loses
correlation with the process of payments that would need to be settled. These
dynamics are described in [Beyeler et al., 2007].

The new centrality measure proposed here, SinkRank, is based on absorb-
ing Markov chains which are well-suited to model transfers along walks. A
Markov system is a system that can be in one of several states, and can pass
from one state to another at each time step according to fixed probabilities.
If a Markov system is in state i, there is a fixed probability, pij, of its going
into state j at the next time step; pij is called a transition probability.

An absorbing random walk is a random walk that starts from a node and
terminates at an absorbing node. In terms of centrality our interest is the
expected number of steps that are taken before termination when the walk
starts from a random other node. Absorbing nodes that require a smaller
expected number of steps are considered more central than absorbing nodes
that require a large number of steps.

Any network can be represented as a matrix and such a matrix can be turned

5



into a transition matrix. The transition matrix for M = [sij]n×n is defined by

dividing each element by the row sum, P =
[

sij∑
j
sij

]
n×n

, where the transition

probabilities for a random walk are defined by the link weights sij.

An absorbing state is a state from which there is a zero probability of exiting.
An absorbing Markov system is a Markov system that contains at least one
absorbing state, and is such that it is possible to get from each non-absorbing
state to each other non-absorbing state and to some absorbing state in one
or more time-steps (i.e. the network is strongly connected except for the
absorbing states). An absorbing Markov system reflects the process taking
place when a bank fails in a payment system: Any payments sent to the
failing bank remain in the failing bank’s account and don’t exit until recovery.

In analyzing an absorbing system, we first number the states so that the
absorbing states come last in the matrix. The transition matrix P of an
absorbing system is:

P =

[
S T
0 I

]

where I is an m×m identity matrix (m = the number of absorbing states),
S is a square (n − m) × (n − m) matrix (n = total number of states, so
n −m = the number of non-absorbing states), 0 is a zero matrix and T is
an (n − m) × m matrix. We consider only single failures, i.e. m = 1, but
as detailed above, the measure can easily be extended to analyze multiple
simultaneous failures as well.

The matrix S gives the transition probabilities for movement among the non-
absorbing states. To obtain information about the time to absorption in an
absorbing Markov system, we first calculate the fundamental matrix Q.

Q = (I − S)−1

The i, jth entry of Q defines the number of times, starting in state i, a
process is expected to visit state j before absorption. The total number of
steps expected before absorption equals the total number of visits a process
expects to make to all the non-absorbing states. This is the sum of all the
entries in the ith row of Q. We call this the ‘Distance to Sink’ of the node.

In calculating SinkRank, we calculate the Distance to Sink of each non-
absorbing node and take an average. The measure is analogous to distances
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along paths except that the process is based on number of steps in walks
defined by the transition matrix and ending at the absorbing node. Thus,
our measure of SinkRank is defined by:

SinkRank =

∑
i

∑
j qij

n−m
.

SinkRank is an intuitively meaningful metric in a payment system as it can
measure how close a failing bank is to the other banks in the system via
payment flows. We expect failures to be more disruptive when they occur in
banks that are more central, i.e. have lower SinkRank. The SinkRank of a
node denotes the average number of payments that need to be made for a
unit of liquidity anywhere in the network to reach the node. The minimum
possible SinkRank is 1, in the case of the center node of a star network.
Payments made by the spokes of the star reach the center in one step. There
is no theoretical upper bound for the SinkRank of a node.

3 Simulation model of payment system

Because bank failures are rare and the data is not generally publicly available,
we test the SinkRank metric by simulating payment networks and induc-
ing failures in them. The simulation model incorporates both liquidity con-
straints and a queuing mechanism for payments that cannot be settled due to
the liquidity constraint. For the simulations we use the FNA payment simula-
tor1 which has previously been used inter alia in [Berge and Christophersen, 2012]
and [McLafferty and Denbee, 2012]. Properties of the BA network used in
the simulations are summarized in Table 12.

The payment data used in the simulation is randomly generated as detailed in
the Annexes. The generating process is able to produce payment flows with
close resemblance to the Fedwire payment network in the United States.

Visualizations of the BA network are shown in Figures 1 and 2; each node
(circle) represents a bank and the arcs between them represent payments.

1See www.fna.fi/interbank
2Fedwire network as described in [Soramäki et al., 2007]. Model network is one real-

ization.
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Value in
simulated BA

Property network
Number of nodes 100
Number of links 1220
Connectivity 0.123
Reciprocity 0.317
Degree (k) 24.4
Max (k-in) 57
Max(k-out) 56
Number of payments 5000
Value paid (‘1000) 604

Table 1: Properties of BA network topology

Figure 1 shows the entire network. Node sizes are scaled by Out-strength
(that is, larger nodes represent banks that make more total payments), and
arc width is scaled by the number of payments (that is, thicker arcs represent
more payments made). The network is characterized by a few large well-
connected banks with high centrality and many more small banks, as is
typical in scale-free networks.

Figure 2 shows the maximally connected subgraph of the BA network; that
is, the largest subgraph that contains a link between each pair of nodes. The
maximally connected subgraph has 17 nodes, which represent the core of the
network.

In the simulation model, banks start the day with a given amount of opening
balances. Payments are tested for settlement as they are fetched from the
file of generated payments. If the value of the payment is larger than the
available balance of the sending bank, the payment is put in the sending
bank’s queue of pending payments. If the value is smaller than the available
balance, the payment is settled and the account of the sending bank is debited
and the account of the receiving bank is credited.

The bank whose account was credited may now be able to settle some of its
previously queued payments. Queued payments are released on a ‘First-in-
First-Out’ (FIFO) basis. If a payment from the queue can be settled, the
recipient of the newly released payment may now be able to release its first
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Figure 1: BA network visualization, entire network

queued payment - i.e. a single payment can cause the release of many queued
payments in a cascade. At the aggregate level this creates a process where
the system gets randomly congested, manifesting as an increase in queued
payments, and occasionally queued payments are settled in cascades when
payments that can be settled due to incoming funds from previously settled
payments are released to others. The behavior of such a system is described
in detail in [Beyeler et al., 2007].

In the failure simulations we set each bank in turn to be unable to send any
payments during the day; that is, we set each bank in turn to be an absorbing
state. The failing bank continues, however, to receive payments and will
therefore trap some of the total liquidity on its account. As a consequence
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Figure 2: BA network visualization, maximally connected subgraph

other banks will run short of liquidity and queues will build, first causing
existing liquidity buffers to be used more and eventually causing payments
to be delayed. The FNA code to replicate these simulations can be found in
Annex II.

We calculate duration of delays in the system aggregated over all banks
(’Congestion’) and the average reduction in available funds of the other banks
due to the failing bank, (‘Liquidity Dislocation’); their duration-weighted
sum is used as a measure of the extent of the disruption caused by the failing
bank (‘Disruption’).

The magnitude of the disruption is dependent on the level of liquidity in
the system. If other banks have enough liquidity to offset the funds that
did not arrive from the failing bank, no delays will occur. In the trivial
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case of unlimited liquidity, no Congestion would ever occur and each bank’s
Liquidity Dislocation would be equal to the amount of payments not received
from the failing bank.

In the simulations we set the initial balance of each bank at the minimum
level that allows all banks to process all payments immediately when no bank
failure is present. Thus, when a failure occurs, Congestion will be caused by
lack of sufficient liquidity in at least some banks - which in turn will cause
Liquidity Dislocation and/or Congestion at other banks.

Figure 3 summarizes the two disruption measures considered and the rela-
tionship between them. Each point represents a single failed bank and shows
the Liquidity Dislocation and Congestion calculated for all other banks in the
network. All bank failures cause at least some Liquidity Dislocation, whereas
Congestion only occurs in about half (62 / 100) of the bank failures; if all
banks affected by a failure have enough liquidity to make their payments, no
delay will occur. The relationship between Liquidity Dislocation and Con-
gestion is convex as theoretically shown in [Galbiati and Soramäki, 2011]. As
more liquidity is dislocated, more delays occur that dislocate more liquidity.
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Figure 3: Network-level disruption measures
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4 SinkRank and Failure Distance

We calculate for each bank in the network its SinkRank (as described in
Section 2), Out-Strength (that is, the sum of all its outgoing payments a
measure of the size of the bank), and PageRank. These centrality mea-
sures are related to the disruption experienced in the simulation. Figure 4
shows that SinkRank, Out-strength, and PageRank are all very strongly re-
lated (r > 0.99) to disruption in BA networks. Note that banks with high
centrality have low SinkRank and high Out-strength and PageRank, so the
correlations have opposite signs.
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Figure 4: Relationship between disruption and centrality measures in BA
networks

Figure 5 shows that the relationship between centrality and disruption in
other types of payment network. We consider random and complete networks
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of the same size (number of links) as the BA network, with link weights
assigned randomly and payments generated as in Annex I, but with linear
scaling of payment values to ensure that the total value is approximately the
same across networks. SinkRank and PageRank are both strongly related
to disruption in all three networks, whereas the relationship between Out-
strength and disruption appears to hold only in the BA network which has
strong correlations with strength and degree of nodes.
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Figure 5: Relationship between disruption and centrality measures in BA,
complete, and random networks

The results in Figures 4 and 5 are for aggregate network properties: A bank’s
centrality is strongly related to the overall disruption seen in the system if
that bank fails. We can further utilize the SinkRank technology to identify
which individual banks are most susceptible to disruption in the case of a
bank failure. We define the Failure Distance as the Distance to Sink from
a failing bank to any other bank. Banks with small Failure Distances are
close to the failing bank and downstream from it in the payment chain,
and so should be most disrupted by the failure. Figure 6 shows the Failure
Distances and disruptions when the bank with the lowest SinkRank (that is,
the most central bank) fails. Banks with smaller Failure Distances indeed
exhibit larger disruptions, and the relationship is quite strong (r < −0.85).
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Figure 6: Relationship between Failure Distance and Disruption when the
most central bank fails

5 Conclusions

This paper developed a new metric (SinkRank) based on absorbing Markov
chains and evaluated its accuracy by comparing it with results from simu-
lated failure scenarios in payment systems modeled after the Fedwire system.
SinkRank was shown to be predictive of network-level disruption in the case
of a bank failure, and the related metric Failure Distance was shown to be
predictive of disruption in individual banks.

Several possibilities exist for extending the work. First, a more robust anal-
ysis with regression models to investigate the explanatory power of different
metrics or combined metrics could be carried out. A longer time series of
different realizations of the networks and failure simulations would also make
the results more robust.

More simulations on alternative network topologies with longer path lengths
and different correlations among network topology and link values could pro-
vide better information on the relative merits of the different metrics across
network topologies. These networks could be artificial (lattice, random, etc.)
or constructed from real payment data.
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Finally, this initial analysis showed that it is possible to accurately rank
banks on the basis of metrics calculated from network topology to estimate
the potential disruption their failure would cause in the payment system. The
new metric introduced, SinkRank, has conceptually the right underpinnings
and did well in identifying banks with capabilities for various magnitudes of
disruption. It is possible to further improve it also by taking into account
the liquidity distribution at the time of failure.

Annex I: Algorithm for generating payment

data

Payment networks exhibit complex properties. We take as a starting point
the Fedwire network which consists of almost 8000 banks processing over
411.000 payments on an average day. The network is described in detail in
[Soramäki et al., 2007]. Due to the highly confidential nature of the data, it
is rarely available for research outside central banks and therefore artificial
data needs to be used.

There are three main aspects in describing the payment network: the struc-
ture of the links, link weight distributions, and individual payment distribu-
tions; in other words, who pays whom, how often, and how much. Both link
weights and payment values have also correlations with each other. Gen-
erating a mechanism that produces all desired aspects of the data is thus
challenging.

The main structural characteristic of the network is a power law degree dis-
tribution. This means that a few very large banks connect to a large number
of very small banks. The in and out -degrees correlate strongly, i.e. banks
that receive payments from many different banks also send payments to many
different banks, and vice versa. The largest degree in the Fedwire network
on an average day is 1922 for incoming links and 2097 for outgoing links.
The network also has a very low connectivity. Only 0.3% of all possible links
are present on an average day. In addition, the links have a very high reci-
procity of 0.22. This means that 22% of relationships between two nodes are
bidirectional if a link exists from A to B, then a link also exists from B to
A. Reciprocity in a random network is on average equal to its connectivity,
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i.e. over 70 times smaller in this case.

The link weights (number of payments) also follow a power law distribution
and have a very high positive correlation with the degree of the node. This
means that large banks have both more links and that these links transmit
more payments than links of smaller banks. The number of payments in
reciprocal links also has a high correlation, denoting strong bi-directional
business relationships between banks.

The payment values have a lognormal distribution, and again their value
depends on the size of the banks measured as the number of counterparties
or the total value sent (i.e. out- or in- strength).

We develop a simple payment generation process extending the BA model by
Barabsi and Albert (1999) for generating random scale-free networks. The
BA model is based on two processes, growth and preferential attachment.
Growth in the model means that initially the network only has a few nodes
and nodes are gradually added to the system. Preferential attachment means
that the more connected a node is, the more likely it is to receive new links.
Newly added nodes are therefore more likely to connect to nodes with many
existing links.

The model developed here aims at reproducing the main statistical properties
described for the Fedwire network above. The model applies growth and
preferential attachment as the main drivers of the generation process, but
instead of adding links, it adds payments. A link is formed when the first
payment is drawn from a bank to another. Additional payments between
banks with existing payments add to the weight of the link.

We start with an initial number of nodes n0. We then draw new payments
one by one, m payments for each new node, until we have the desired number
of nodes, n. We use a vector H[hi]i=1,...,n to track the amount of preferential
attachment strength that has been allocated to each bank (node) i and a
matrix M = [sij]n×n to track the number of payments created to and from
each bank. The matrix M can also be interpreted as a weighted adjacency
matrix of the payment network, where the weight is the number of payments.

The other main difference from the BA model is the addition of a parameter
α that denotes the “strength of preferential attachment”, i.e. how much is
added to h when a payment is sent or received. In the BA model, α = 1;
because the number of payments here is vastly higher than the number of
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links to draw, the addition to the preferential attachment must be smaller
so as not to skew the degree distribution too much. The pseudo-code for the
algorithm is given below.

FOR i = 1, . . . , n0 (add initial banks/nodes)

SET hi = 1

FOR k = n0 + 1, . . . , n (banks)

FOR l = 1, . . . ,m (average number of payments per bank)

SELECT random sender i∗ such that bank i has the proba-
bility hi∑

hi
of being selected as a sender

SET h∗i = h∗i + α (update preferential attachment strength)

WHILE i∗ 6= j∗ (exclude loops, payments to oneself)

SELECT random receiver j∗ such that bank j has the
probability of hj∑

hj
of being selected as recipient of the

payment

SET h∗j = h∗j + α (update preferential attachment strength)

SET sij = sij + 1 (create payment/link)

SET hm0+k = 1 (create new bank/node)

Table 2 summarizes the comparison.3 The model seems to be able to repro-
duce the main characteristics of the Fedwire topology very well with n0 = 10
and α = 0.1. The parameter n0 determines the number of core banks, and
α the slope of the power law co-efficient in the degree distribution. Both
the real and the generated network are sparse, with power law degree distri-
butions and high clustering and reciprocity. In and out degrees are highly
correlated and the degrees of the largest bank are very similar.

The next step after creating the interaction topology and the number of
payments each bank sends to each other is to add time of submission and
value to each payment. The time for each payment is drawn from a uniform

3Fedwire network as described in [Soramäki et al., 2007]. Model network is one real-
ization.
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Fedwire Model

nodes 5066 5066
links 75397 70710
connectivity 0.003 0.003
reciprocity 0.215 0.213
degree (k) 14.9 14.0
max (k-in) 2097 2210
max (k-out) 1922 2215
payments (‘1000) 411 411

Table 2: Properties of BA network topology

distribution between 08:00 and 18:00 (opening hours of the simulated pay-
ment system) and the value is drawn from a normal distribution with a mean
of 1 and standard deviation of 0.2. As the individual payment values were
log-normally distributed in the real data, we then exponentiate the drawn
values. In addition, larger banks interchange larger payments with each other
than do smaller banks. We achieve this by scaling the payment values by
Min(ksender, kreceiver).

In the robustness analysis we also consider random networks and complete
networks whose link weights (number of payments) are assigned randomly
and whose payments are generated as detailed above, but with linear scal-
ing of payment values to ensure that the total value is approximately the
same across the different network types. FNA commands for generating the
networks are given below.

Annex II: FNA Commands for Reproducing

Results

Generating Networks

# Generate Barabasi-Albert (BA) network with link weights showing
# number of payments from each node to the other
ba -nv 100 -m 50 -v0 10 -alpha 0.1 -preserve false -seed 123
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# Generate Random network and assign each link with a weight
# drawn from a uniform distribution between 1 and 7
random -nv 100 -na 1200 -preserve false -seed 123
calcap -e [?random:uniform:1,7:123?] -saveas number

# Generate Complete network and assign each link with a weight
# drawn from a uniform distribution between 1 and 7
complete -v 34 -directed -preserve false
calcap -e [?random:uniform:1,7:123?] -saveas number

#
# Creating payment files (one for each of the above networks)
#
# Create one day (8h - 17h = 28800 - 61200 in seconds) of payments
# Log payments have mean 1 and sd 0.2
createpayments -number number -open 28800 -close 61200
-mean 1 -stdev 0.2 -saveas network.csv -seed 123

Calculating Network Metrics

# Calculate SinkRank of each node, weighted by
# number of payments
sinkrank -ap number

# Calculate weighted out-degree (Out-strength)
degree -p value -direction out -saveas value

# Calculate number of nodes and links in each network
order -saveas numnodes
size -saveas numlinks

# Calculate connectivity and reciprocity
connectivity
reciprocity

# Calculate average reciprocity of each node
avgvforn -p reciprocity -saveas reciprocity

# Calculate degree and average degree in network
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degree -direction both -saveas degree
avgvforn -p degree -saveas degree

# Calculate in-degree and average in-degree in network
degree -direction in -saveas indegree
maxvforn -p indegree -saveas maxindegree

# Calculate out-degree and average out-degree in network
degree -direction out -saveas outdegree
maxvforn -p outdegree -saveas maxoutdegree

# Calculate number of payments in each network
sumaforn -p number -saveas numpayments

# Calculate value of payments in each network
sumaforn -p value -saveas value

Simulating Payments

# Simulate Payment system without failure
rtgs -paymentsfile network_BA.csv[skiplines=1]
-fundsfile funds_BA.csv[skiplines=1]
-openingtime 080000 -closingtime 170000
-outrecords out_records -outbanks out_banks_BA_success
-dateformat yyyyMMdd

# Simulate Payments system where Bank ID 00000 Fails
# (Repeated for each bank in the network)
rtgs -paymentsfile network_BA.csv[skiplines=1]
-overdraftsfile overdrafts_BA.csv[skiplines=1]
-openingtime 080000 -closingtime 170000
-outrecords out_records -outbanks out_banks_BA00000
-dateformat yyyyMMdd -strickenbank 00000 -capacity 1e-04
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