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1 Introduction

Consider a panel of N units, with two non stationary variables, (say, Y and X) observed over
T time periods. In each unit of the panel the two variables are known to be linked by a linear
long-run equilibrium (cointegrating) relationship, so that the data generating process (DGP) is
the following:

yit = θi + βixit + uyit (1)

xit = xit−1 + uxit (2)

where i = 1, . . . , N, t = 1, . . . , T, and uxit and uyit are stationary noises. The estimation of (1)
when the covariance matrix of the noises is not diagonal, so that the units are dependent, is
still a largely unsettled problem. Empirical applications, ignoring efficiency gains, are typically
based on single-equation methods (see e.g., Kim, Oh and Jeong 2005, Herzer 2008, Westerlund
2008). This is not surprising, since system estimation with non-stationary variables is fraught
with difficulties. Full information maximum likelihood (FIML) methods (Groen and Kleibergen
2003) are feasible only when the number of time observations is much larger than the cross-
section observations, thus precluding many of the non-stationary panels available in economics
and finance. Seemingly Unrelated Regression (SUR) methods, namely Mark, Ogaki and Sul’s
(2005) Dynamic SUR (DSUR) and Moon’s (1999) Fully Modified SUR (FM-SUR) which are
respectively the sytem extensions of Dynamic OLS (DOLS) and Fully Modified OLS (FM-OLS)
are feasible with smaller T/N ratios. However, both require estimation the long-run covariance
matrix of the system, a considerably more difficult task (Mark et al. 2005, describe it as
”thorny”) than obtaining the contemporaneuos covariance matrix needed for the baseline SUR.
Moon and Perron (2004) claim that SUR estimators are nevertheless superior to single-equation
ones in a non-stationary set-up also. However, their simulation study considered a system
of very small cross-section size (at most four units with one right-hand side variable, or two
units with two variables) and large time dimension (T = 100, 300), thus very different from the
typical non-stationary panel1. This prompts two main questions. First, with empirically relevant
sample sizes how large are the efficiency gains (if any) actually delivered by SUR estimators
relative to single-equation methods? Should these gains be small, then the widespread use of
single-equation estimators would be largely legitimate. Our first goal is thus to compare the
estimation performances of single-equation (FM-OLS and DOLS) and SUR system estimators
(FM-SUR and DSUR) in panels with small to moderate cross-section dimension and moderate
time dimension, characterised by short-run dependence across units. The results will lead to
conclusions, hence, advice to practitioners, considerably different from Moon and Perron’s.

The second question requires taking a completely different perspective. Efficiency improvements,
such as those granted by SUR, are desired in order to have more accurate interval estimation and
more reliable tests. Can we reach these targets applying some alternative inference procedure,
such has the bootstrap, to standard single-equation estimators? The good simulation results
reported for bootstrap inference on FM-OLS (Psaradakis 2001, Fachin 2004) and for bootstrap
unit root and cointegration tests (see inter alia, Park 2003, and, for panel extensions, Chang
2004, Fachin 2007, Fuertes 2008) suggest this point is worth investigating.

We shall now first outline the set-up of the Monte Carlo experiment (section 2) and discuss
the results of the comparison between single-equation and SUR estimators (section 3). In sec-

1For instance, Coakley, Fuertes and Smith (2006) describe as typical for macroeconomic panels sample sizes
of 20 or 30 cross-section units with from 30 to 100 time observations, corresponding e.g., to about three decades
of observations at annual or quarterly frequency for the OECD countries
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tion 4 we first recall the procedures for bootstrap inference on FM-OLS and then report their
performances. Some conclusions are drawn in section 5.

2 Monte Carlo experiment: Design

The key point here is that the aim of our simulation design cannot be that of obtaining fully
general results, as there is a potentially infinite number of dependence structures among the
units and variables of a panel. Rather, as mentioned above, we first of all wish to check if the
results obtained by Moon and Perron (2004), hold for the sample sizes typical of non-stationary
panels. In designing our experiment we will thus follow closely Moon and Perron (2004). The
DGP is a simple generalisation of (1)-(2) to the case of K = 2 explanatory variables:

yit = θi + β1ix1it + β2ix2it + uyit, i = 1, . . . , N, t = 1, . . . , T ; (3)

xkit = xkit−1 + uxkit, k = 1, 2; i = 1, . . . , N, t = 1, . . . , T. (4)

where uxkit, u
y
it are I(0) noises, so that both the x′s and y are I(1). In the non-stationary panels

literature it is quite common (see, e.g., Pesaran 2006) to introduce some realism in the simu-
lation design through parameters heterogenous across units. Here we will follow this practice,
generating the regression coefficients respectively as θi ∼ U(2, 4) and as βki ∼ U(1, 3), where
k = 1, 2. The same set of coefficients has been used for all Monte Carlo replications. It should
be remarked that, provided the error variances are suitably controlled to keep the signal-noise
ratio constant, the use of heterogenous parameters instead of the homogenous ones used by
Moon and Perron (2004) has no consequences on the performances of estimators which allow
for heterogeneity2. Things are obviously different for pooled estimators, which are misspecified
under heterogeneity. Since this class of estimators will not be examined in our experiment the
point is irrelevant.

The errors of equations (3) and (4) are drawn from a Multivariate Normal distribution with non-
diagonal covariance matrix, so that there is short-run dependence across equations and units (the
case of long-run dependence is ruled out, as FM-SUR, which require the inversion of the long-
run covariance matrix would then not be feasible). More precisely, letting uxt = [ux′1tu

x′
2t . . .u

x′
Nt]
′,

where ux′it = [ux1itu
x
2it]
′ and uyt = [uy1tu

y
2t . . . u

y
Nt]
′, we have[

uyt
uxt

]
(N+2N)×1

∼ iidN

([
0
0

]
,

[
R ∆
∆′ Φ

]
(N+2N)×(N+2N)

)
, (5)

where R is a full N×N matrix governing the dependence across units in the uy′it s, ∆ is a N×2N
matrix governing the dependence between the ux and uy noises, and finally Φ is a 2N × 2N
matrix governing the dependence in the ux′s within and across units.

Since Moon and Perron report the performances of both FM-OLS and FM-SUR estimators to be
negatively affected by the degree of endogeneity of the X’s we decided to control this dimension
of the experiment accurately, imposing an homogeneous endogeneity parameter δ and running
two sets of experiments with δ = 0.2 and δ = 0.4. In both cases the ∆ matrix has a block form
ensuring that there is constant correlation between the noise of any X and that of the relevant

2The results of the simulations with homegenous parameters, not included here for the sake of brevity, is
obviously available on request.
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Y equation, and no correlation across units:

∆N×2N =


δ δ 0 0 . . . 0 0
0 0 δ δ . . . 0 0
...

...
...

. . .
...

0 0 0 0 . . . δ δ

 . (6)

We instead allow some heterogeneity across units in the dependence parameters, the elements
of the Φ matrix. Without loss of generality, we assume x1it and x2it to be incorrelated. Letting
φ

(ij)
lk = cov(uxli, u

x
kj) denote the covariance between the noise of the variable Xl in the ith unit

and that of the variable Xk in the jth unit, we have:

Φ2N×2N =



1 0 φ
(12)
11 φ

(12)
12 . . . φ

(1N)
11 φ

(1N)
12

0 1 φ
(12)
21 φ

(12)
22 . . . φ

(1N)
21 φ

(1N)
22

φ
(21)
11 φ

(21)
12 1 0 . . . φ

(2N)
11 φ

(2N)
12

φ
(21)
21 φ

(21)
22 0 1 . . . φ

(2N)
21 φ

(2N)
22

...
...

...
...

. . .
...

...
φ

(N1)
11 φ

(N1)
12 φ

(N2)
11 φ

(N2)
12 . . . 1 0

φ
(N1)
21 φ

(N1)
22 φ

(N2)
21 φ

(N2)
22 . . . 0 1


(7)

with φ
(ij)
lk ∼ U(0.3, 0.4). The off-diagonal elements of R, ρij , are also generated as U(0.3, 0.4),

while ρii = 1 ∀i. Again, the parameters thus generated have been kept fixed across the Monte
Carlo repetitions.

The time and cross-section sample sizes have been chosen trying to strike a balance between
empirical relevance (as mentioned above, most macroeconomic panels have N around 20 or 30
and T often much smaller than 100) and the requirements of the SUR estimator, which is feasible
only with rather large T/N ratios. We thus fixed N = 5, 10 and T = 50, 100. Finally, we set the
number of Monte Carlo simulations (M) to 1000.

3 Simulation results: comparison of single-equation and SUR
estimators

In tables 1 and 2 we report some summary statistics describing the results obtained estimating (3)
by single equation (FM-OLS and DOLS) and system (FM-SUR and DSUR) methods. To define
the expressions for these estimators we need some notation. Following Moon (1999), for the sim-
ple bivariate case (1)-(2) first of all define ωt = (uyt , u

x
t )′ and assume that 1√

T

∑[Tr]
t=1 ωt → B(r) .

The long-run covariance matrix of B(r) is Ω =
∑∞

h=−∞E(ω0ω
′
h), and the one-sided long-run

covariance matrix Ξ =
∑∞

h=0E(ω0ω
′
h), both partitioned in the usual way as

Ω =
[
Ωyy Ω

′
yx

Ωyx Ωxx

]
, Ξ =

[
Ξyy Ξ

′
yx

Ξyx Ξxx

]
where all blocks have dimension N×N. Further, let Xt = diag(x1t, . . . , xNt), Yt = (y1t, . . . , yNt)′,
Ωyy.x = (Ωyy − ΩyxΩ−1

xxΩxy) . Denoting by an hat a consistent estimate, then:

ŷ+
t = yt − Ω̂yxΩ̂−1

xx∆xt , Ỹ +
t = (ỹ+

1t, . . . , ỹ
+
Nt)
′
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ỹ+
it = yit − Ω̂ii

yx(Ω̂ii
xx)−1∆xit ,with i = 1, . . . , N.

Also,
ξ̂ = (ξ̂

′
1, . . . , ξ̂

′
n)′ , ξ̂i = Ξ̂iixy − Ω̂ii

yx(Ω̂ii
xx)−1Ξ̂iixx

π̂i = Ξ̂i.xx((Ω̂ii
yxΩ̂ii

xx)−1
i. )′ ,

and, finally,
ψ̂i = (Ξ̂i.xy(Ω̂

−1
yy.x)i.)′ − (ξ̂

i.

xx(Ω̂−1
yy.xΩ̂yxΩ̂−1

xx )i.)′

with ψ̂ = (ψ̂
′

1, . . . , ψ̂
′

N )′ .The estimators are then defined as follows:

β̂
FM−OLS =

(
T∑
t=1

XtXt
′

)−1( T∑
t=1

XtỸ
+
t − T ξ̂i

)

β̂
DOLS =

 T−p∑
t=p+1

XtX
′
t

−1 T−p∑
t=p+1

XtỸ
+
t


β̂

FM−SUR =

(
T∑
t=1

XtΩ̂−1
yy.xX

′
t

)−1( T∑
t=1

XtΩ̂−1
yy.xŶ

+
t − T ψ̂

)

β̂
DSUR =

 T−p∑
t=p+1

X−1
t Ω̂−1

yyX
′
t

−1 T−p∑
t=p+1

XtΩ̂−1
yy Yt


where β̂ = (β̂

′

1, . . . , β̂
′

N ), and β̂i = (θi, βi). Small sample point estimation performance of the
estimators is usually evaluted by simulation on the basis of the mean over the M simulations
of the relative bias, M−1

∑M
m=1(β̂m − β)β−1 . In a DGP such as (3)-(4), with N units and K

explanatory variables, we evaluate overall point estimation performance by the average over units
and parameters of the absolute value (so to avoid compensating errors in opposite directions) of
the bias of the estimates of each parameter:

bias = (KN)−1
K∑
k=1

N∑
i=1

|M−1
M∑
m=1

(β̂kim − βki)β−1
ki | (8)

Dispersion is analogously measured by the mean over the N units and K parameters of the

relative Monte Carlo standard error,
(√

M−1
∑M

m=1(β̂kim − β̂ki)2
)
β−1
ki :

s.e. = (KN)−1
K∑
k=1

N∑
i=1


√√√√M−1

M∑
m=1

(β̂kim − β̂ki)2

β−1
ki

 (9)

In our experiment we will also evaluate testing performances. Given the extremely different
size performances of the single-equation and system estimators, we will concentrate on Type I
errors. We thus tested the hypothesis H0 : βki = β

(0)
ki , k = 1, . . . ,K, i = 1, . . . , N, where β(0)

ki is
the value of the slope parameter used in the Monte Carlo DGP.
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The first remark in order is that the all estimators are indeed more biased in DGP’s with an
higher degree of endogeneity.

The second, very important, remark is that the SUR procedure turned out to be practically
unfeasible for T = 50 and N = 10. The covariance matrix, although not exactly singular, was
always so ill-conditioned that the estimators turned out highly numerically unstable even using
a generalised Moore-Penrose inversion routine3. Hence, we do not report results for this (T,N)
combination. Since these samples sizes are rather common in applied work on non-stationary
panels (with indeed the time sample often actually smaller than this one) this is an important
finding.

Let us now go into some detail, considering point estimation first. All estimators are essentially
unbiased even with the smaller time sample. However, from the first two columns of Table 1
we can appreciate that FM-OLS delivers a slightly better performance than DOLS, while the
ranking of the two SUR estimators is not obvious (considering also that DSUR, contrary to
FM-SUR, could be computed also for the T = 50, N = 10 combination). SUR estimators tend
to be somehow more biased than the OLS ones. For instance, when T = 50, N = 5 and δ = 0.2
(first raw of Tables 1 and 2) the average relative bias is essentially the same for FM-OLS, DOLS
and FM-SUR (respectively, 0.32%, 0.32% and 0.33%) and higher for DSUR (0.45%); when
T = 100, N = 10 and δ = 0.4 (last raw of Tables 1 and 2) the bias of FM-SUR is larger than
that of FM-OLS (0.51% against 0.16%), and DSUR (0.41%) which is even less biased than its
single-equation counterpart (0.46%).

The Monte Carlo variance is approximately the same for FM and Dynamic estimators, with
both SUR estimators always less precise than the OLS ones. As to be expected, the variance
falls with T and increases with N for given time sample.

Overall, FM-OLS dominates DOLS in terms of both bias and dispersion, while FM-SUR and
DSUR seems to be largely equivalent in the cases when the former could be computed. System
estimators are somehow more biased and less efficient than single-equation ones, but the differ-
ences are small (and not always in this direction). However, if we turn to hypothesis testing
(last two columns of Table 1 and 2) we discover that the performance of FM-OLS and DOLS,
although disappointing, is vastly superior to that of both FM-SUR and DSUR, with the former
simply disastrous. While the Type I errors of FM-OLS fall between 9% and 14%, those of FM-
SUR are about twice as large, falling between 19% (the two cases with T = 100, N = 5) and
over 40% (all the other T,N combinations). The DSUR estimator seems to be more robust,
with Type I errors sometimes close to those of DOLS and generally much smaller than those of
FM-SUR (for instance, when T = 100, N = 10, δ = 0.4, last raw of table 2, 12.96% for DSUR
and 43.87% for FM-SUR).

The reason for the extremely poor performance of FM-SUR is not obvious from the average
bias and Monte Carlo variability reported in Table 2. To shed some light on the problem we
need to examine in detail the estimation performances for each unit. In Table 3 we report bias
and variability statistics for each unit of the combination T = 50, N = 5, δ = 0.4; those for
other parameter combinations (N = 10, T = 100, δ = 0.4) are similar, and thus not reported
(as customary, they are available on request). The most important finding is that the standard
asymptotic formulas for the variance of the FM-SUR estimator always grossly underestimate
its actual variability: for instance, the Monte Carlo standard error (×100, but not normalised
on the coefficient value, differently from (9) used above) of the estimates of β1 is about 0.13

3It should be remarked that the problem here, estimating the long-run covariance matrix, is considerably more
difficult than the standard SUR problem examined by Foschi et al. (2003).
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in units 3, 4 and 5, but the asymptotic formulas yield in all three cases estimates less than
0.05; the average across units and coefficients of the Monte Carlo standard errors is about 0.08,
that of the asymptotic ones less than 0.03. Since asymptotic inference is based upon these
grossly underestimated variances its poor performance is not surprising. On the other hand,
the asymptotic estimates of the standard errors of the DSUR estimator (on average, 0.065)
are much closer to the Monte Carlo standard errors (on average, 0.088). This explains why
the performance of asymptotic hypothesis testing on DSUR, though generally rather poor, is
relatively better than that on FM-SUR.

Summing up, with small to moderate T/N ratios system estimators (i) may be even unfeasible,
(ii) when feasible, are generally more biased and less efficient than single-equation estimators,
and, finally, (iii) are associated with strongly oversized asymptotic tests.

The best option seems to be FM-OLS, which deliver the best results in terms of bias, efficiency
and Type I errors of asymptotic tests. The latter, however, are significantly higher than nominal
significance levels, which implies that gaussian confidence intervals will be deceivingly short and
have coverage smaller than nominal. Can we do any better? To this end, in the next section we
will recall some standard bootstrap procedures for inference on FM-OLS and present the results
of a small simulation experiment.

Table 1: Single-equation Estimation
Performance of Fully Modified and Dynamic OLS Estimators

bias s.e. α̂
δ T N FM D FM D FM D
0.2 50 5 0.32 0.32 3.37 3.59 13.23 12.71

10 0.24 0.59 4.54 4.62 14.19 19.61
100 5 0.10 0.15 1.87 1.94 9.18 11.31

10 0.10 0.23 1.89 1.98 9.51 14.52
0.4 50 5 0.65 0.67 3.36 3.64 13.42 13.33

10 0.47 1.21 4.48 4.35 14.11 19.88
100 5 0.19 0.32 1.86 1.96 9.49 11.65

10 0.16 0.46 1.87 1.98 9.42 15.25
FM : Fully Modified OLS; D: Dynamic OLS;

bias: see (8); values ×100;
s.e.: see (9); values ×100;
α̂: rejection rates (×100) of tests of nominal size 5%, H0 true;
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Table 2: System Estimation
Performance of Fully Modified and Dynamic SUR Estimators

bias s.e. α̂
δ T N FM D FM D FM D
0.2 50 5 0.33 0.45 4.03 4.54 45.78 16.35

10 - 0.56 - 5.87 - 23.93
100 5 0.14 0.16 1.94 2.16 18.69 10.57

10 0.24 0.20 2.15 2.21 41.67 12.38
0.4 50 5 0.49 0.57 4.08 4.46 47.46 54.95

10 - 1.14 - 5.90 - 24.63
100 5 0.31 0.32 1.95 2.16 19.80 23.30

10 0.51 0.41 2.17 2.22 43.87 12.96
-: not available (numerical overflow); all values ×100;
symbols and abbreviations: see Table 1

Table 3: FM-SUR and DSUR estimators - Bias and Variability for individual units
FM − SUR DSUR

Unit parameter bias MC s.e. σ̂ bias MC s.e. σ̂
1 β1 0.010 0.052 0.022 0.011 0.057 0.044

β2 0.013 0.081 0.030 0.011 0.072 0.053
2 β1 0.004 0.032 0.014 0.010 0.050 0.038

β2 0.014 0.068 0.027 0.016 0.067 0.050
3 β1 0.003 0.134 0.043 0.013 0.114 0.084

β2 0.009 0.065 0.023 0.003 0.061 0.045
4 β1 0.046 0.132 0.045 0.022 0.111 0.083

β2 0.003 0.046 0.017 0.009 0.059 0.044
5 β1 0.021 0.140 0.046 0.078 0.231 0.167

β2 0.019 0.052 0.021 0.004 0.055 0.043
mean 0.014 0.080 0.029 0.018 0.088 0.065

DGP : T = 50, δ = 0.4;
bias = M−1

∑M
m (β̂kim − βki), k = 1, 2, i = 1, . . . , 5.

MC s.e. = 100×
√
M−1

∑M
m (β̂kim − β̂ki)2;

σ̂ : average estimated asymptotic standard error ×100;
other symbols and details: see Table 1.

4 Bootstrap inference in cointegrating regressions

Although of rather recent introduction, bootstrap inference in regressions with I(1) variables is
now well established (see e.g., Herwartz and Neumann 2005, Chang, Park and Song 2006). Since
the details are beyond the scope of this paper we will now simply sketch the basic concepts in
order to establish notation.

For ease of exposition, consider the simple case of equations (1)-(2). Bootstrap inference involves
two key steps: first, constructing the pseudo-datasets; second, defining the test statistics or
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confidence intervals to be used. Let us examine them in turn.

Denoting by uy∗it the bootstrap noise, which we will discuss below, in the case of hypothesis
testing the systematic part of the bootstrap DGP is given by the null hypothesis to be tested
(say, H0: βi = β

(0)
i ):

y∗it = θ̂i + β
(0)
i xit + uy∗it (10)

while for interval estimation we use the unconstrained parameter estimates:

y∗it = θ̂i + β̂ixit + uy∗it (11)

The key point to take into account when generating the bootstrap noise uy∗it is the presence of
dependence both in the time series and in the cross-section dimensions. The former aspect has
been the subject of the vast debate, whose details are again beyond the scope of this paper;
for a review, see Politis (2003). Essentially, we can either follow a model-based (parametric)
approach or a non-parametric one. In the former case in a first step the data are filtered through
AR models, so to obtain white-noise residuals to be resampled. In the latter approach blocks
of observations of length proportional to the memory of the series and random starting point
are drawn with replacement from the dependent series. Here, as in Di Iorio and Fachin (2007)
we will follow the latter approach: a block bootstrap algorithm, the Stationary Bootstrap by
Politis and Romano (1994), will be applied to the unconstrained residuals delivered by FM-OLS
estimation of (3). In principle a critical point of block bootstrap methods is the choice of block
length. In our simulations we kept the block length always fixed at T/10, a value which give
good results in the simulations by Paparoditis and Politis (2003), where the issue is widely
discussed. In either case, to preserve the cross-unit dependence structure we simply need to
resample the entire T ×N matrix of residuals. In other terms, the resampling algorithm swaps
(blocks of) rows but keeps the columns fixed in their positions, so that in the bootstrap dataset
the dependence structure across the columns of the original dataset is reproduce exactly as it is.

As usual, the bootstrap estimate of the p-value of two-tailed tests will be p∗i = prop(|t∗ib| > ti), with
ti the usual t-statistic ti = s−1

βi
(β̂i − β

(0)
i ), t∗ib = s∗−1

βi
(β̂
∗
ib − β̂i), β̂

∗
ib the FM-OLS estimate of βi

computed on the bth pseudo-dataset (b = 1, . . . , B), sβi
and s∗βi

the estimated standard errors
of the estimators of the actual and bootstrap samples, respectively. One simple way to compute
confidence intervals is to take the desired quantiles of the distribution of the β̂

∗′
ibs. An α-level

confidence interval for βi may then simply be given by

[Qα/2(β̂
∗
i ), Q1−α/2(β̂

∗
i )] (12)

where β̂
∗
i =

[
β̂
∗
i1 . . . β̂

∗
iB

]
. In principle basing the interval on a pivotal quantity should deliver

better results. Psaradakis (2001) thus suggests the percentile-t interval

[β̂i −Q1−α/2(t∗b)sβi
, β̂i −Qα/2(t∗b)sβi

] (13)

where the Gaussian quantiles used in asymptotic inference are replaced by those of the bootstrap
distribution (empirical estimate of the unknown small sample distribution of the studentized
statistic). The superiority of the second type of interval depends entirely upon the quality of the
estimates of the standard errors (see e.g., Kilian 1999). Hence, in our study we shall compute
both type of intervals.

Let us now turn to the simulation results. We saw above that in our set-up gaussian inference on
FM-OLS results in confidence intervals with large size bias and coverage smaller than nominal;
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from Table 4 we can appreciate that both problems are partially solved applying rather standard
bootstrap methods. Although both bootstrap confidence intervals have coverage smaller than
nominal (between 89% and 92% for the simple interval and between 90% and 94% for the
studentised interval, instead of the desired 95%) and the test is undersized (Type I errors between
1% and 4% for a 5% test), both indicators are measures are markedly better than those of
gaussian inference (Type I errors between 9% and 14%, and, as a consequence, confidence
intervals with coverage between 86% and 91%; see Table 1).The question if we can further
improve on these performances (for instance, by fine-tuning the block size; see Politis and White,
2004) is beyond the scope of this paper. Here the point is simply that applying well-established
bootstrap methods to FM-OLS we can improve over standard gaussian inference in terms of
coverage and Type I errors, whereas moving to SUR system estimation all results worsen.

Table 4: Bootstrap inference on FM-OLS
δ = 0.2 δ = 0.4

T 50 100 50 100
N 5 10 5 10 5 10 5 10

simple 89.38 89.91 91.89 91.54 89.71 90.23 91.99 91.93
t 90.11 90.25 92.23 93.52 90.08 90.27 92.00 93.34
α̂ 2.36 3.51 0.88 3.81 2.78 3.36 0.78 3.51

simple: simple percentile 5% confidence interval, see (12);
t : studentised 5% confidence interval, see (13);
α̂: Type I error, nominal significance level 5%;
Bootstrap parameters: 1000 redrawings; block size T/10.

5 Conclusions

The Monte Carlo analysis conducted in this paper compares single equation (FM-OLS and
DOLS) and system (FM-SUR and DSUR) estimators of long-run relationships in panels under
more realistic time series and cross-section dimensions than previous studies. The Monte Carlo
results unambiguously suggest that single-equation FM-OLS alongside a block-bootstrap method
provides more accurate estimation and inference. These conclusions, in stark contrast to Moon
and Perron’s (2004), should not come as a surprise. As remarked by Mark et al. (2005), the
properties of SUR estimators depend critically upon the quality of the estimate of the covariance
matrix. This task may be easy in panels with a very small cross-section relative to the time-
series dimension, such as those examined by Moon and Perron (2004), but is typically difficult
in even slightly larger cross-section panels, such as those considered in our study.
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