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Abstract   The paper considers some of the problems emerging from discrete wavelet 
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and the frequency-dependent time delay. The approach taken here, introduced by 
Whitcher and Craigmile (2004), is based on the maximal overlap discrete Hilbert 
wavelet transform (MODHWT). Firstly, we point at a deficiency in the implementation 
of the MODHWT and suggest using a modified implementation scheme resembling the 
one applied in the context of the dual-tree complex wavelet transform of Kingsbury 
(see Selesnick et al., 2005). Secondly, via a broad set of simulation experiments we 
examine small and large sample properties of two wavelet estimators of the scale-
dependent time delay. The estimators are: the wavelet cross-correlator and the wavelet 
phase angle-based estimator. Our results provide some practical guidelines for 
empirical examination of short- and medium-term lead-lag relations for octave 
frequency bands. Besides, we show how the MODHWT-based wavelet quantities can 
serve to approximate the Fourier bivariate spectra and discuss certain issues connected 
with building confidence intervals for them. The discrete wavelet analysis of coherence 
and phase angle is illustrated with a scale-dependent examination of business cycle 
synchronization between 11 euro zone member countries. The study is supplemented 
with wavelet analysis of variance and covariance of the euro zone business cycles. The 
empirical examination underlines good localization properties and high computational 
efficiency of the wavelet transformations applied, and provides new arguments in 
favour of the endogeneity hypothesis of the optimum currency area criteria as well as a 
wavelet evidence on dating the Great Moderation in the euro zone. 
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1. Introduction 

 

Wavelet analysis is a kind of frequency studies that enables to examine local signal properties 

efficiently. It is a relatively new mathematical concept with a broad range of applications in statistics, 

data compression and image processing. But this approach found also its place in a modern time series 

analysis as it makes it possible to analyze time series that are subject to structural breaks, local trends, 

changing cyclical patterns, outliers or show other transient characteristics. The distinguishing feature 

of this technique among other time-frequency methods is an endogenously varying time window, i.e. 

the ability to analyze short oscillations with narrow time windows and longer cycles with wider 

windows. Due to this, wavelet methodology is thought to constitute the next logical step in spectral 

analysis, one that elaborates on time localization properties of frequency methods. The methodology is 

known to have a significant impact in, e.g., geophysics, oceanography and medicine. However, with 

social sciences it is much less popular with business cycle studies becoming probably one of the most 

pronounced exceptions (see, among others, Jagrič, Ovin, 2004, Crowley, Lee, 2005, Raihan et al., 

2005, Crowley et al., 2006, Gallegati, Gallegati, 2007, Yogo, 2008, Aguiar-Conraria, Soares, 2009, 

2010).1  

In the paper we try to answer some of the questions arising from discrete wavelet analysis of 

popular bivariate spectral quantities like the amplitude, phase and coherence spectra and the 

frequency-dependent time delay. The approach, introduced by Whitcher and Craigmile (2004), is 

based on a non-decimated version of the dual-tree wavelet transform of Kingsbury (1998, 2001). 

Following e.g. Percival and Walden (2000) we concentrate exclusively on the discrete wavelet 

transform (DWT) regarding it as a more natural way of handling discrete time series, especially in 

economics, where we often operate on frequency bands instead of a single frequency like for example 

in the case of a business cycle examination. In the theoretical considerations firstly, we point at a need 

to modify the implementation scheme of the MODHWT in a way similar to the implementation of the 

dual-tree complex wavelet transformation of Kingsbury (see Selesnick et al., 2005). Secondly, via a 

broad set of simulation experiments we examine small and large sample properties of two estimators 

of the wavelet time delay – a quantity measuring a causal distance between time series on a scale by 

scale basis. The estimators are: the wavelet cross-correlator and the wavelet phase angle-based 

estimator. Our results provide some practical guidelines for empirical examination of short-term lead-

lag relations for octave frequency bands, pointing at a better small sample performance of the wavelet 

phase angle-based estimator for the first several decomposition stages and low signal-to-noise ratios. 

Further, we show how the wavelet quantities can serve to approximate the Fourier cross-spectrum and 

discuss issues connected with constructing confidence intervals for estimators of the wavelet bivariate 

                                                 
1 Another promising area of applications arises in finance and includes examining comovements between 
financial time series, risk management as well as forecasting (see, e.g., Gençay et al., 2002, Wong et al., 2003, 
Fernandez, 2008, Rua, Nunes, 2009). 
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spectra. In our empirical analysis of business cycle variability and synchronization in the euro zone 

two ‘continuous discrete’ wavelet transformations are applied: the MODWT (the maximal overlap 

discrete wavelet transform) and MODHWT (the maximal overlap discrete Hilbert wavelet transform). 

The characteristic feature of the two transformations is that they are continuous in time and discrete in 

frequency (scales) in the sense that all time units and only octave frequency bands are considered in 

the analysis. From the point of view of an economist willing to study business cycles the MODWT 

and MODHWT offer the following: 

- a model-free (nonparametric) approach to examining frequency characteristics of time series, 

i.e. short-, medium- and long-run features in the series; In particular, due to their 

nonparametric nature, wavelets enable to examine nonlinear processes without loss of 

information; 

- good time-frequency resolution, and due to this, efficiency in terms of computations needed to 

extract the features; This enables precise examination of a time-varying frequency content of 

time series in an efficient way; 

- decomposition of variance and covariance of stationary processes according to octave 

frequency bands2; In particular, the wavelet variance gives a simplified alternative to the 

spectral density function, which uses just one value per octave frequency band; The same is 

true for the wavelet co- and quadrature spectra, which give piecewise constant approximations 

to the appropriate Fourier cross-spectra on a scale by scale basis (see section 2.4); 

- precise timing of shocks causing and influencing business cycles; 

- low computational complexity3; 

- examination of trended, seasonal and integrated time series without prior transformations; In 

particular, we do not need to deseasonalize the data, as seasonal components are left 

automatically in lower decomposition levels, unless one is interested in examining very short 

cycles less than two years in length; Besides, there is no need of any prior elimination of 

deterministic and stochastic trends due to the fact that wavelet filtering usually embeds 

enough differencing operations; 

- efficient estimation of short-term lead-lag relations for different frequency bands; 

- global and local (short-term) measures of association for business cycle components like the 

wavelet correlations and cross-correlations, the wavelet coherence and the wavelet phase 

angle. 

 

                                                 
2 See Percival (1995) for the variance. The covariance case is examined by Whitcher (1998) (see also Whitcher 
et al., 2000). 
3 The conventional DWT can be computed with an algorithm that is faster than the well known fast Fourier 
transform (FFT) – the Mallat’s pyramid algorithm based on a mirror filters cascade and downsampling by 2, 
which requires only O(N) multiplications. On the other hand, the computational complexity of the MODWT is 
O(Nlog2N) and is exactly the same as the FFT – see Percival, Walden (2000), p. 159 – while the MODHWT 
consumes twice more operations. 
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Recent studies on business cycle synchronization within the euro zone (see, e.g., de Haan et 

al., 2008, Gonçalves et al., 2009, and references therein) usually provide evidence in favour of the 

endogeneity hypothesis of the optimum currency area criteria as stated in Frankel and Rose (1998), 

according to which (intra-industry) trade intensification and monetary integration lead to more 

correlated business cycles. Our empirical examination covering 11 euro zone member countries tries 

to contribute to the debate by looking at synchronization patterns alone, decomposed on a scale by 

scale basis. The study documents a rise in synchronization between business cycles after the first steps 

towards European integration were taken in the second half of the 1980s. Besides, changes in business 

cycle variation are examined providing a new wavelet piece of evidence on dating the Great 

Moderation (comp. Aguiar-Conraria, Soares, 2010) and staying in agreement with the hypothesis 

about an early start of the process (see Blanchard, Simon, 2001).  

The structure of the paper is as follows. In the next section we shortly introduce the wavelet 

transform in its conventional and non-decimated (maximal overlap) versions as well as the wavelet 

analysis of variance and covariance. Next, we present the maximal overlap discrete Hilbert wavelet 

transform based on the dual-tree wavelet transformation and discuss more deeply the bivariate wavelet 

spectral analysis, its connections with the Fourier analysis as well as implementation and statistical 

inference issues. Section 3 presents the results of simulation analysis comparing two wavelet methods 

of examining lead-lag relations for octave frequency bands, while Section 4 summarizes our empirical 

findings. Finally, the last section offers brief conclusions. 

 

2. Wavelet analysis 

 

  Wavelet analysis consists in decomposing a signal into shifted and scaled versions of a basic 

function, )(xψ , called the mother wavelet. There are different kinds of this decomposition depending 

on the wavelet transform applied. The continuous wavelet transform (CWT) enables to recognize local 

features in the data, especially in the case of signals that defined over the entire real axis, although it 

results in excessive redundancy of information. The discrete wavelet transform (DWT) provides a 

parsimonious  representation of the data and is particularly useful in discrete time series processing, 

especially in noise reduction and information compression. The maximal overlap discrete wavelet 

transform (MODWT) removes certain deficiencies of the discrete transformation by considering all 

time units, while – similarly to the DWT – octave frequency bands are analyzed. 

 

2.1. Conventional and maximal overlap discrete wavelet transforms4 

 

  The discrete wavelet transform of a real-valued function )(xf  is defined as follows: 

                                                 
4 In this subsection we concentrate exclusively on real wavelets. 
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∫
∞

∞−
= dxxxfW tjtj )()( ,, ψ , (1)  

where Jj ,,2,1 K= , 12,,1,0 −= − jJt K  and the wavelet daughters, )(, xtjψ , are shifted and scaled 

versions of the mother wavelet with dyadic shifts and scales, i.e.:  

 ( )txx jj
tj −= −− 22)( 2/
, ψψ . (2) 

For certain functions )(xψ  with good localization properties { })(, xtjψ  is an orthonormal basis in 

)(2 ℜL . The function )(xψ  is usually defined via another function (the scaling function or father 

wavelet), )(xφ , that, applied to the signal after shifting and scaling analogously to (2), produces 

another set of coefficients in the form: 

 ∫
∞

∞−
= dxxxfV tjtj )()( ,, φ  (3) 

known as scaling coefficients. For a given j the wavelet coefficients, tjW , , are computed as differences 

of moving averages for the previous scale scaling coefficients and are associate with scale 12 −= j
jλ , 

while their squares contribute to the decomposition of energy of the signal on the time-frequency 

plane. On the other hand, the level j scaling coefficients are moving averages of scale j
j 21 =+λ . The 

two types of coefficients give the multiresolution decomposition of the original function in the form: 

 
).()()()(

)()()()()(

11

,1,1,1,1,,,,

xDxDxDxS

xWxWxWxVxf

JJJ

t
tt

t
tJtJ

t
tJtJ

t
tJtJ

++++=

=++++=

−

−− ∑∑∑∑

L

L ψψψφ
 (4) 

The functions )(xSj  and )(xD j  are known as approximations (smooths) and details. The highest 

level approximation )(xSJ  represents smooth, low-frequency component of the signal, while the 

details )(1 xD , )(2 xD , …, )(xDJ  are associated with oscillations of length 42 − , 84 − , …, 

122 +− JJ . 

  In filtering notation the discrete wavelet transform is defined via quadrature mirror filters: the 

low-pass (scaling) filter 1,...,0}{ −= Lllg  and the high-pass (wavelet) filter 1,...,0}{ −= Lllh , where the low-

pass filter is obtained through the so-called two-scale relationship5. Consider a vector of length 

JN 2=  in the form  ),,,( 110 ′= −Nxxx Kx . Then the highest possible decomposition level is J and the 

numbers of wavelet and scaling coefficients of the conventional DWT for each level are 1,,, 42 KNN . 

On the other hand, the maximal overlap discrete wavelet transform produces the same number of 

wavelet and scaling coefficients at each decomposition level ( tjW ,
~

 and tjV ,
~

, accordingly) as it does not 

                                                 
5 The two filters fulfill the quadrature mirror relationship lL

l
l hg −−

+−= 1
1)1( , have unit energy and are even-shift 

orthogonal; the wavelet filter integrates (sums) to zero, while the scaling filter – to 2 .  
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use downsampling by 2. The coefficients are appropriately scaled in order to retain variance 

preservation. They are given as follows: 

 12,,0,
1

0 mod]1)1(2[,, −== −−
= −−+∑ jJL

l Nltljtj txhW j
j K , (5) 

 1,,0,
~

2
1

0 mod)(,,
2/ −==∑

−

= − NtxhW jL

l Nltljtj
j K , (6) 

12,,0,
1

0 mod]1)1(2[,, −== −−
= −−+∑ jJL

l Nltljtj txgV j
j K ,   (7) 

1,,0,
~

2
1

0 mod)(,,
2/ −==∑

−
= − NtxgV jL

l Nltljtj
j K ,  (8) 

where }{ ,ljh and }{ ,ljg are the j-the level wavelet and scaling filters of length 1)1)(12( +−−= LL j
j  

obtained by convolving together the following j filters (Percival, Walden, 2000, Chapter 4): 

(A) for }{ ,ljh : 

;0,,0,0,,0,0,,0,:filter 

;0,,0,0,,0,0,,0,:1filter 

;000000000:3filter 

;000:2filter 

;:1filter 
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−
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M

K

K

K

 (9) 

(B) for }{ ,ljg : 

Filters 1, …, j–1 as in (A) 

1

zeros 12

2

zeros 12

1

zeros 12

0

111

0,,0,0,,0,0,,0,:filter −

−

−

−− −−−

LL g,g,,g,gj
jjj

43421
KK

43421
K

43421
K . (10) 

}{ ,ljh  is a bandpass filter with a nominal passband jj f 2/12/1 1 ≤≤+ , while }{ ,ljg  is a low-pass 

filter with cutoff frequency 12/1 +j . In the notation above we assume that }{}{ ,1 ll hh ≡  and 

}{}{ ,1 ll gg ≡ . Further in the text we will also use 
2

~
lh

lh = , 
2

~ lg
lg = , 2

,, 2
~ j

ljlj hh = , 2
,, 2~ j
ljlj gg = . 

  For further considerations, we provide relationships between transfer functions of the above 

filters with the following correspondence: 

 )()();()(  and);(}{);(}{);(}{);(}{ 11,, fGfGfHfHGgGgHhHh jljljljl ≡≡⋅↔⋅↔⋅↔⋅↔ . 

Then we have (Percival, Walden, 2000, p. 154): 

 )()( 2
1)1(2 fGefH Lfi −−= −− π ,  (11a) 

 ∏
−

=

−=
2

0

1 )2()2()(
j

l

lj
j fGfHfH ,  (11b) 

 ∏
−

=
=

1

0

)2()(
j

l

l
j fGfG . (11c) 
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The same relationships also hold for the transfer functions of )~{},
~

{),~{},
~

{ ,, ljljll ghgh , which we 

further denote as )(
~

),(
~

),(
~

),(
~ ⋅⋅⋅⋅ jj GHGH .   

  The reconstruction part of wavelet analysis utilizes the inverse wavelet transformation in its 

conventional or maximal overlap versions, what results in a sequence of details and smooths. Though 

the details and smooths form an additive decomposition of the signal, the lack of translation invariance 

of the DWT, on the one hand, and the lack of energy preservation of the MODWT details and 

smooths, on the other, make them somewhat less attractive in studies concerning business and growth 

cycle synchronization.  

  The distinguishing features of the conventional DWT and the MODWT can be summarized as 

follows (see Whitcher, 1998, Percival, Walden, 2000, Gençay et al., 2002): 

- The MODWT can handle any sample size, while the J-th order partial DWT only multiplies of 

J2 . 

- The MODWT is translation invariant, which means that circularly shifting a time series is 

equivalent to analyzing its circularly shifted wavelet and scaling coefficients or details and 

smooths. This property is particularly useful in detecting singularities and examining lead-lag 

relations between frequency components of time series. 

- Like the conventional DWT, the MODWT enables variance and covariance decomposition. 

But the MODWT provides a better estimator of the wavelet variance in terms of its efficiency 

and gives an estimator of the wavelet covariance whose variance does not depend on the true 

time lag between time series.  

- The conventional DWT approximately decorrelates a broad range of stationary as well as 

nonstationary processes; Assuming that the decorrelation property of the DWT is effective, 

the maximal order of serial correlation of the level j MODWT wavelet coefficients is equal  

2j – 1.  

- The MODWT approximations and details from the multiresolution analysis are associated 

with zero phase filters, which makes it possible to align their features with those from the 

original series. Additionally, the result of the MODWT MRA is smoother and less dependent 

on the wavelet.  

- An additive decomposition of the time series in terms of its details and approximations is valid 

for both the DWT an the MODWT. Contrary to the DWT, however, the MODWT details and 

approximations do not form an energy (and covariance) decomposition. 
 

  Among the most popular real wavelet and scaling filters are the compactly supported 

orthonormal Daubechies filters: the extremal phase (dL) and the least asymmetric (laL) filters. The two 
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families are characterized by the smallest filter length L for a given number of vanishing moments.6 

Besides, the extremal phase scaling filters have the fastest build-up of the energy sequence, while the 

least asymmetric filters are approximately linear phase. 

    

2.2. Wavelet analysis of variance and covariance 

 

  For the stochastic process tY  the time-dependent wavelet variance is defined as: 

 )
~

Var()Var(
2

1
)( ,,

2
tjtj

j
jt WW ==

λ
λσ . (12) 

Assuming that (12) does not depend on time7, we arrive at variance decomposition according to 

different scales in the form: 

 ∑ ∑
∞

=

∞

=
==

1 1

2
, )()Var(

1

2

1
)Var(

j j
jtj

j
t WY λσ

λ
. (13) 

The wavelet variance at level j corresponding to scale 12 −= j
jλ , )(2

jλσ ,  informs about variation of 

oscillations of length approximately in the interval j2 – 12 +j . Similarly, the wavelet covariance and 

wavelet correlation are introduced. For the stochastic processes tX  and tY, the time-varying wavelet 

covariance is defined as: 

 )
~

,
~

Cov(),Cov(
2

1
)( ,,,,

Y
tj

X
tj

Y
tj

X
tj

j
jt WWWW ==

λ
λγ . (14) 

As in the case of the variance decomposition (13), if the wavelet covariances do not depend on time, 

they produce decomposition of the covariance between tX  and tY according to different scales jλ : 

 ∑ ∑
∞

=

∞

=
==

1 1
,, )(),Cov(

1

2

1
),Cov(

j j
j

Y
tj

X
tj

j
tt WWYX λγ

λ
. (15) 

Next, let us define the (time invariant) wavelet correlation coefficient for scale jλ  via: 

 
)()(

)(
)(

21 jj

j
j λσλσ

λγ
λρ = . (16) 

                                                 
6 Roughly speaking, vanishing moments (VM) are responsible for eliminating artifacts due to the wavelet 
function itself as well as for the degree of approximation to an ideal bandpass filter and make it possible to 
interpret the filters as generalized differences of adjacent observations with the number of embedded difference 
operations equal the number of vanishing moments – see Daubechies (1992), §7.4, Mallat (1998), p. 166, 
Percival, Walden (2000), p. 483. The number of VMs for the Daubechies filters equals half the filter length. 
7 The assumption is also fulfilled for nonstationary processes provided that they are integrated of order d and the 
width of the wavelet filter, L, is sufficient to eliminate nonstationarity. In the case of the Daubechies wavelet 
filters the condition is: L ≥ 2d – see, e.g., Percival, Walden (2000), p. 304. Further we assume that L > 2d in 

order to have 0}
~

{ , =tjWE . 
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The quantity (16) measures the strength and direction of linear dependence between two processes for 

a given decomposition level j (scale jλ ). Finally, the wavelet cross-covariance and its normalized 

version are given as:  

 )
~

,
~

Cov(),Cov(
2

1
)( ,,,,

Y
tj

X
tj

Y
tj

X
tj

j
j WWWW τττ λ

λγ ++ == , (17) 

 
)()(

)(
)(

21 jj

j
j λσλσ

λγ
λρ τ

τ = . (18) 

  As was mentioned in section 2.1, MODWT-based estimators have generally better statistical 

properties as compared to their DWT-based counterparts. Firstly, MODWT coefficients produce better 

estimates of the wavelet variance in terms of its efficiency; secondly, they give an estimator of the 

wavelet covariance whose variance does not depend on the true time lag between time series and, 

thirdly, decimation by 2 affects the lag-resolution of DWT-based estimators of the wavelet cross-

covariances and cross-correlations, so they should not be used in practice (see Percival, Walden, 2000, 

308–310, Gençay et al., 2002, p. 252–253). For these reasons, further we concentrate on estimation 

with the MODWT coefficients. 

  An unbiased estimator of the wavelet variance is defined as: 

 ∑
−

−=
=

1

1

2
,

2 ~
~
1

)(ˆ
N

Lt
tj

j
j

j

W
N

λσ , (19) 

where tjW ,
~

 are the MODWT wavelet coefficients, 1)1)(12( +−−= LL j
j  is the length of the wavelet 

filter for scale jλ  and 1
~ +−= jj LNN  is the number of wavelet coefficients unaffected by the 

boundary.  

  Estimates of wavelet covariances and wavelet correlations are computed via the following 

formulas:  

 Y
tj

N

Lt

X
tj

j
j WW

N
j

,

1

1
,

~~
~
1

)(ˆ ∑
−

−=
=λγ , (20) 

 
)(~)(~

)(~
)(ˆ

21 jj

j
j λσλσ

λγ
λρ = , (21) 

while an unbiased estimate of the wavelet cross-covariance is obtained via: 
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j

j

N
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j
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j

j
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τ
τ

τ
τ
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τ

τ
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τ  (22) 
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Constructions of confidence intervals for the quantities described in this section are discussed 

by Percival (1995) and Whitcher (1998) (see also Percival, Walden, 2000, Serroukh et al., 2000, 

Whitcher et al., 2000, Gençay et al., 2002). All the above estimators may be based on only a portion of 

wavelet coefficients, which results in estimates of local versions of the wavelet quantities. A good 

time resolution is exactly what the non-decimated discrete wavelet transform offers and – together 

with certain simplifications in obtaining global spectral estimates – is the most important characteristic 

of the approach presented here. The same holds for the MODHWT-based quantities described in §2.4. 

 

2.3. Maximal overlap discrete Hilbert wavelet transform 

 

  The maximal overlap discrete Hilbert wavelet transform (MODHWT) makes use of a recently 

introduced class of filters based on Hilbert wavelet pairs (HWP) and utilizes the non-decimated 

(maximal overlap) version of the dual-tree complex wavelet transform of Kingsbury.8 The approach 

was advocated by Whitcher and Craigmile (2004) (see also Whitcher et al., 2005). The filters in a 

Hilbert wavelet pair are approximate Hilbert transforms of each other and, as in the case of the usual 

discrete wavelet transformation, form a basis for a collection of orthogonal bandpass filters. This time, 

however, the approximate analyticity of the filters enables to compute quantities with direct analogy to 

the appropriate bivariate Fourier spectra.9  

 Let }{ 0
lh  and }{ 0

lg be conjugate quadrature mirror filters, i.e. 

 0
1

100
2

0200 )1(;0,0;1)(;0 lL
l

l
l l

nll
l

ll hgnhhhh −−
+

+ −=≠===∑ ∑∑ . (23) 

The father and mother wavelets are obtained via: 

 ∑∑ −=−=
l

l
l

l lthtltgt ).2(2)();2(2)( 000000 φψφφ  (24) 

Now consider another pair of such filters: }{ 1
lh  and }{ 1

lg  that define another couple of father and 

mother wavelets: )(1 tφ  and )(1 tψ . We say that )(1 tψ  is the Hilbert transform of )(0 tψ  if: 

 ,
0),(

0),(
)(

0

0
1





<Ψ
>Ψ−=Ψ

ffi

ffi
f  (25) 

where )(0 fΨ  and )(1 fΨ  are the Fourier transforms of )(0 tψ  and )(1 tψ , respectively. This means 

that the wavelets are 
2
π  out of phase with each other. The following theorem was proved by Selesnick 

(2001)10:  

 If transfer functions of two scaling filters fulfill the condition: 
                                                 
8 For an introduction see Selesnick et al. (2005). 
9 Their continuous (in both time and scale) counterparts have been known for a longer time in applications of 
wavelet analysis – see, e.g., Torrence, Compo (1998). 
10 The converse of the theorem is also true, so the Selesnick’s condition is both sufficient and necessary – see 
Selesnick et al. (2005) and references therein. 
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 5,0||,)()( )(01 <= − fefGfG fiθ ,  (26) 

where ff πθ =)( , then the corresponding wavelets are a Hilbert transform pair.  

The condition (26) says that the digital filter }{ 1
lg  should be a half-sample delayed version of }{ 0

lg , 

i.e. 01

2
1−= ll gg . As a half-sample delay cannot be implemented with finite impulse response filters, 

only approximate solutions are available.  

  In what follows we use mainly the HWP filters introduced by Selesnick (2002). All the filters 

we apply below have the following property: the filters in the Hilbert pair are of the same length and 

have the same squared gain functions. In the Selesnick’s so-called ‘common factor approach’ firstly an 

all-pass filter with approximately constant fractional group delay is constructed and then orthonormal 

filters are build via a solution to a linear system of equations and a spectral factorization. Under a 

specified degree of approximation (L) to the half-sample delay the design procedure produces short 

filters with a given number of vanishing moments (K). The length of each HWP(K, L) filter equals 

)(2 LK + . In our study we apply mid-phase solutions for HWP(3, 3), HWP(4, 2), HWP(3, 5), 

HWP(4, 4) and denote them ‘kKlL’. An alternative approach introduced by Kingsbury (2001) 

produces the so-called Q-shift  (quarter-shift) filters which are approximately linear phase with the 

property that the wavelets in the Hilbert pair are mirror images of each other. For comparison purposes 

in our simulation analysis we also use the 6-tap Q-shift filter of Kingsbury (2001) with 1 VM and the 

12-tap Q-shift filter of Tay et al. (2006) with 5 VM and denote them ‘kin’ and ‘tkp12’, respectively.  

  Figure 1 shows two examples of Selesnick’s approximately analytic wavelets with their 

corresponding phase difference functions )( fθ .  

0 5 10
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2
k3l3 

t
0 5 10
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2
k4l2

t
0 0.5

0

1

2

3
θ(f) for k3l3

f
0 0.5

0

1

2

3
θ(f) for k4l2

f  

Figure 1. Example Hilbert wavelet pairs together with corresponding phase differences for scaling filters 
 

It is clear that the functions )( fθ  fulfill the condition stated in the Selesnick’s theorem only for 

frequencies below 0.3–0.4. However, this is not of much worry as the condition concerns the 

approximately half-band low-pass scaling filters, while transfer functions of the wavelet filters are 

obtained via )()( 2
1)1(2 fGefH Lfi −−= −− π  and are not much affected either. As such, the Hilbert 

wavelet pairs can be seen as localized versions of cosine and sine waves forming the classic Fourier 

transformation.  
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  The maximal overlap discrete Hilbert wavelet transform (MODHWT) consists in a 

simultaneous application of a pair of wavelet (and scaling) filters in their non-decimated (maximal 

overlap) forms. As a result, two sequences of coefficients are obtained, which are the real and 

imaginary parts of the final wavelet coefficients. In other words, the following filters are used: 

 
,~~~

;
~~~

1
,

0
,,

1
,

0
,,

ljljlj

ljljlj

gigg

hihh

+=

+=
 (27) 

where 
2

1
,2

0
,2

1
,2

0
,

1
,

0
,

1
,

0
, ~,~,

~
,

~ ljljljlj g
lj

g
lj

h
lj

h
lj gghh ==== . These filters produce the complex wavelet and 

scaling coefficients in the following form: 

 ;
~~~~ 1

,

1

0

0
,,, tj

L

l
tjjtjltj WiWXhW ∑

−

=
− +==  (28) 

 .
~~~~ 1

,

1

0

0
,,, tj

L

l
tjjtjltj ViVXgV ∑

−

=
− +==  (29) 

  To invert the MODHWT, its real and imaginary parts are inverted separately with the 

appropriate inverse maximal overlap discrete wavelet transformations. In this way two real signals are 

first obtained and then the signals are averaged. 

  As discussed in Selesnick et al. (2005), the simplest approach to combine wavelet and Hilbert 

transforms is via DWT post-processing. However, in such a case we end up with operations that are 

more computationally complex, as we operate on two parallel complex wavelet transformations. Also 

performing the Hilbert transform as the first one is not recommended, as then we loose the possibility 

to optimize it at all scales simultaneously. The dual-tree complex wavelet transform of Kingsbury is 

based on two real orthogonal wavelet filters with the Hilbert transform built into them. Thanks to this 

the Hilbert transformation automatically adapts to the wavelet scales. This feature makes the approach 

particularly attractive as compared to other time-frequency methods producing instantaneous 

amplitudes, phases and frequencies like the classic demodulation method (see, e.g., Granger, 

Hatanaka, 1964, Chapter 10, Priestley, 1981, §11.2.2) or the modern Hilbert-Huang transform (see 

Huang, Shen, 2005). 

 

2.4. Wavelet analysis of coherence and phase angle 

 

  In this section we start with a detailed description of the relationships between the wavelet 

spectra obtained via the MODHWT and the appropriate Fourier spectra. The wavelet analogues of 

Fourier spectral characteristics of bivariate time series has been introduced by Whitcher and Craigmile 

(2004). Let X
tjW ,

~
 and Y

tjW ,
~

 be complex-valued wavelet coefficients obtained via filtering tX  and tY . 

Assuming that the wavelet filters applied have enough vanishing moments to eliminate deterministic 
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trend components of the series, the time-varying wavelet spectrum of ),( tt YX  for scale jλ  is defined 

as: 

 
( ) ( )( )[ ]
( ) ( )[ ] ),,(),(
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Y
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tj

X
tj

Y
tj

X
tjjXY

λλ

λ

−=−−+=

=−+==
 (30) 

where ),( tC jXY λ  and ),( tQ jXY λ  denote the time-varying wavelet cospectrum and quadrature 

spectrum (quad-spectrum), respectively. If the wavelet cospectrum and quadrature spectrum do not 

depend on time, it is possible to relate them to the appropriate Fourier quantities. Let the process 

),( tt YX  be covariance stationary with absolute summable cross-covariance sequence. We will denote 

its cross-spectral density function as )()()( fQifCfS XYXYXY −= .11 The wavelet cospectrum for 

scale jλ  is then: 

 ( ) ∫∫
−−

+=+=
21

21

21
21

21

201
,

1
,

0
,

0
, )()(

~
)()(

~~~~~
)( dffSfHdffSfHWWWWEC XYjXYj

Y
tj

X
tj

Y
tj

X
tjjXY λ ,  (31) 

where )(
~0 fH j  and )(

~1 fH j  are transfer functions of the scale jλ  MODWT wavelet filters }
~

{ 0
,ljh  and 

}
~

{ 1
,ljh . As in our case the two squared gain functions in (31) are identical, we obtain: 

 )(2)()(
~

2)()(
~

2)(
21

21

20
21

21

20
jXYXYjXYjjXY dffCfHdffSfHC λγλ === ∫∫

−−

,  (32) 

where )( jXY λγ  denotes the scale jλ  wavelet covariance computed with the filter }
~

{ 0
,ljh  (or, 

equivalently, }
~

{ 1
,ljh ). Further, assuming that the wavelet filter is long enough to be considered a good 

approximation to an ideal bandpass filter, we have: 

 ∫
+

≈
j

j

dffCC XYjXY

21

21 1

)(4)(λ .  (33) 

As the quantity: 

 ∫
+

+
j

j

dffCXY
j

21

21

1

1

)(2  (34) 

                                                 
11 For wavelet filters with enough vanishing moments the discussion concerning wavelet co- and quadrature 
spectra can be directly generalized to the case of nonstationary processes with stationary backward differences. 
To this end we consider two integrated processes: )(~),(~ YtXt dIYdIX , whose differences of order Xd  and 

Yd , respectively, are jointly stationary. Then, following Whitcher and Craigmile (2004), we define 

YX dfidfi
WZ

XY
ee

fS
fS

)1()1(

)(
)(

22 ππ −− −−
= , where t

d
tt

d
t YZXW YX ∆=∆= , . Note, however, that the generalization does 

not apply to the part of our analysis that utilizes the complex scaling coefficients tjV ,

~
. 
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is the average value of )( fCXY  in the interval ],[
2
1

2
1

1 jj+ , we can interpret )( jXYjj CC λλ= , 

Jj ,,1K= , as the average values of the Fourier cospectrum over the frequency bands 

],[],[
2
1

2
1

2
1

2
1

11 jjjj ++ ∪−− . If it is possible to assume that the Fourier cross-spectrum is piecewise 

constant over the octave frequency bands, estimators of jC  may serve to consistently estimate the 

Fourier cospectrum.12 In any case however, the wavelet quantities discussed here will provide 

piecewise constant approximations to their Fourier counterparts and summarize the information 

included in the cross-spectrum in a way similar to the wavelet variance in the univariate spectral 

analysis (see Percival, 1995). 

  In order to obtain similar results for the wavelet quadrature spectrum, we recall the analyticity 

property of the Hilbert wavelet pair. The condition (25) is equivalent to: 

 .
0,)(

0,)(
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0
)(01
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fi
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ξ  (25*) 

Making use of this and utilizing the approximations: )2()(
~ 00 ffH j

j Ψ≈ , )2()(
~ 11 ffH j

j Ψ≈  (see 

Percival, Walden, 2000, p. 476), we obtain: 

( )

.)()(
~

4)()2(2)()2(2

)(sin)()2(2)](sin2[)()2(

)()2()()2(

)()2()2()()2()2(

)()(
~

)(
~

)()(
~

)(
~~~~~

)(

21

0

20
0

21

20
21

0

20

21

21

20
21

21

20

21

21

)(20
21

21

)(20

21

21

01
21

21

10

21

21

01
21

21

100
,

1
,

1
,

0
,

∫∫∫

∫∫

∫∫

∫∫

∫∫

≈Ψ−Ψ=

=Ψ−=−Ψ=

=Ψ−Ψ≈

≈ΨΨ−ΨΨ≈

≈−=−=

−

−−

−−

−

−−

−−

dffQfHdffQfdffQf

dfffQfdffifSf

dffSefdffSef

dffSffdffSff

dffSfHfHdffSfHfHWWWWEQ

XYjXY
j

XY
j

XY
j

XY
j

XY
fij

XY
fij

XY
jj

XY
jj

XYjjXYjj
Y
tj

X
tj

Y
tj

X
tjjXY
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ξξ (35) 

  Unfortunately, it turns out that the first approximation assumed in (35) is of little use for the 

first several decomposition levels, as the approximately analytic mother wavelets )(0 tψ  and )(1 tψ  

are most helpful in describing the behavior of the associated wavelet filters at level j as ∞→j . In 

order to obtain more practical results, one is advised to apply different orthogonal quadrature mirror 

filters at the first stage of the Mallat’s pyramid algorithm, namely filters approximately satisfying the 

                                                 
12 Note that such an assumption is valid only for rather special kinds of relationships like the ‘fixed angle lag’ 
relationship (Granger, Hatanaka, 1964, p. 98) with constant amplitude spectrum over the frequency bands of 
interest or a linear regression without delay.  
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condition: 0
1

1 ~~
−= ll gg  (see Selesnick et al., 2005). The condition is different (and easier to implement) 

than the half-sample delay requirement: 01

2
1

~~
−= ll gg . 

  To see that it solves the approximation problem let us consider in more detail the 

implementation of the MODHWT. Now we are going to discriminate between level 1 and level j (j = 

2, 3, …) filters. We maintain the previous notation for the transfer functions of the remaining filters, 

while transfer functions of the level 1 scaling and wavelet filters will be denoted as: 

)(
~

),(
~

),(
~

),(
~ 11011101 fHfHfGfG , respectively. For the level 1 scaling filters we have: 

 )(
~

)(
~ 01211 fGefG fi π−= .  (36) 

Using this and (11a) for the level 1 wavelet filters we obtain:13 

  )(
~

)(
~ 01211 fHefH fi π−= .  (37) 

The imaginary part of the second stage wavelet filter is given as: 

 )(
~

)221(
~

)(
~

)2(
~

)(
~ 011)12(21111

2 fGfGefGfHfH Lfi −−== −− π .  (38) 

If the level 2 scaling filters approximately satisfy the half-sample delay condition, we further obtain 

the following approximation for 0>f :  
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iiLfi ππππ −−+−− ==−−= , (39) 

while the appropriate relation for 0<f  is obtained via complex conjugation. So, for the second 

decomposition level we do not need to substitute for )(
~ 0 fH j  and )(

~1 fH j  in (35) and the 

approximation is valid. A similar relationship holds for all the subsequent stages. To see this let us 

consider the j-th decomposition level and the frequencies satisfying 12
1|| −< jf . We start with writing: 
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For 0>f  the first factor in (40) is given as: 
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and the whole expression is then: 
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  The first stage complex scaling filter is easily obtained via translation of any real scaling filter 

by one sample and using it as the imaginary part of the resulting filter. Then the complex wavelet filter 

is computed via the quadrature mirror relationship applied separately to these two parts. As the 

                                                 
13 Here we assume that the level 1 real and imaginary filters are of the same (even) length. We change this 
assumption further in our computations by considering the imaginary filters to be of length L + 1, where L is 
even and equals the length of the real parts of the filters. This, however, does not change the result that follows. 
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transfer functions at the first stage of the wavelet decomposition obviously do not satisfy the 

analyticity property, all the quantities computed with the help of the wavelet quad-spectrum should 

basically be interpreted starting from the second level. However, it does not cause a problem for 

business cycle studies which are typically based on monthly or quarterly data. 

  As in the case of the cospectrum, the wavelet quad-spectrum enables to compute the average 

value of its Fourier analog in the interval ],[
2
1

2
1

1 jj + , jQ , via the following relationship: 
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. (43) 

Finally, we arrive at the following approximation for the Fourier cross-spectrum:  

 )()( jXYjXY SfS λλ≈   for ],[
2
1

2
1

1 jjf +∈ . (44) 

  To approximate the Fourier cross-spectrum in the interval [ ]11 21,21 ++− JJ  we may use the 

complex scaling coefficients tJV ,
~

 instead of the wavelet coefficients tjW ,
~

. Similar computations to the 

given above lead to: 
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where 1+JC  is the average value of the Fourier cospectrum in the interval [ ]11 21,21 ++− JJ . For the 

imaginary part of the spectrum firstly we notice that from (11c), (26) and (36) we have: 
Jfi

JJ efGfG 201 )(
~
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~ π−= . Then we obtain: 
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where in the last equality it is assumed that the value of the Fourier quad-spectrum in the interval 

],0[ 12
1

+J  is constant and equal 1+JQ . 

  Next, as in Whitcher and Craigmile (2004), we consider the time-varying wavelet cross-

amplitude spectrum: 

 [ ] 2122 ),(),(),(),( tQtCtStA jXYjXYjXYjXY λλλλ +== ,  (47)  

the time-varying wavelet phase spectrum (wavelet phase angle): 
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and the time-varying wavelet magnitude squared coherence (MSC)14: 
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where 
2

,
~

),( X
tjjX WEtS =λ , 

2

,
~

),( Y
tjjY WEtS =λ  denote the time-varying wavelet spectra equal two 

times the wavelet variance, )(2
jt λσ . The Schwartz inequality for complex random variables 

guaranties that 1),(0 ≤≤ tK jXY λ . 

  Let us consider some simple examples of stationary bivariate processes. We start with a linear 

regression without delay in the form: 

 ttt XY ηα += ,  (50) 

where tX  and tη  are stationary processes, uncorrelated with each other at all leads and lags. Then the 

appropriate Fourier quantities are as follows (comp., for example, Priestley, 1981, p. 663-664): 
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The corresponding wavelet quantities are the following: 

 ∫
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 0)()( == jXYjXYQ λθλ , )(2)( 2
jXjXYA λασλ = , (52) 
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As we can see, assuming that the individual Fourier spectra are approximately piecewise constant over 

octave frequency bands, the wavelet coherence will provide a good approximation to the appropriate 

Fourier quantity. 

 In the next example we consider a linear regression with delay in the form: 

  ttt XY ηα τ += − ,  (54) 

where, as previously, tX  and tη  are stationary and uncorrelated. In this case we have: 

)()2cos()( fSffC XXY τπα= , )()2sin()( fSffQ XXY τπα= , )()( fSfA XXY α= , 

)(

)(
)( 2

fS

fS
fK

Y

X
XY α= , τπθ ffXY 2)( −=  

                                                 
14 We will refer to it as wavelet coherence or wavelet coherence spectrum. Its square root is called the wavelet 
coherency. 
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and the time delay defined as: f
f

XY
XYf π

θτ 2
)(

df

)( −=  equal ττ =)( fXY . Then, assuming that the wavelet 

transformation produces a bandpass white noise, the wavelet co-, quad- and amplitude spectra are as 

follows: 
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where the last approximation takes place for high enough decomposition levels j15. The wavelet 

coherence is given as: 
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and, as previously, for higher decomposition levels can be approximated via: 
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The wavelet phase spectrum is: 
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In order to obtain a wavelet estimator of the parameter τ,  we also introduce a quantity called the 

wavelet time delay. It is defined as: 

 
0

df

2

)(
)(

j

jXY
jXY fπ
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λτ −= , (61)  

                                                 
15 Assuming that xx ≈sin  for 

8

π≤x  the last approximation will work for 22 −≤ jτ  (j = 2, 3, …) – comp. 

Percival, Walden (2000), p. 344. 
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where 0jf  is the center frequency of the octave band, computed as the arithmetic mean of the upper 

and lower cutoff frequencies, i.e. 22
3

0 += Jjf . Then in our example we have: τλτ ≈)( jXY . 

  A slightly more general situation arises in the case of the so-called time delay estimation 

(TDE) problem described as follows. Let us assume that tX  and tY  are two spatially separated sensor 

measurements of an unobserved signal tS  that satisfy: 

 
,

,

Yttt

Xttt

SY

SX

ηα
η

τ +=
+=

−
 (62) 

where tS , Xtη  and Ytη  are stationary and mutually uncorrelated at all leads and lags. Then: 

 )(Cov),Cov(),Cov( ταα τ −== −++ kSSYX Skttktt  

and 

 )()( 2 fSefS S
fi

XY
τπα −= . 

From this we obtain that the phase spectrum is as in the previous example, i.e. τπθ ffXY 2)( −= . 

Similarly, πτλθ
12

3
)( +−≈

jjXY  and the wavelet time delay is τλτ ≈)( jXY . 

  Estimators of (47)–(49) and (61) are obtained by replacing the wavelet cospectrum and quad-

spectrum as well as the wavelet individual spectra with their estimates computed via smoothing in 

time. The smoothing is necessary, in particular in estimation of the wavelet coherence. In Whitcher 

and Craigmile (2004) a simple two-sided moving average is suggested and this is the approach taken 

here as well. 

  Figures 2 and 3 below present mean estimates of the wavelet coherence, phase spectrum and 

time delay for samples ranging from 10 to 500 wavelet coefficients not affected by the boundary, 

obtained with the k4l2 HWP filter for the linear regression with delay (54) with 1=τ . Figure 2 

illustrates the case, when the first stage filters are different and fulfill the one-sample delay condition. 

The la12 Daubechies filter was applied in the real part of the first stage complex filter. For comparison 

purposes the appropriate results obtained without this modification are also presented (see Figure 3). 

As we can see, the modified procedure gives acceptable results starting from scale 2, while the 

simplified method introduces a more bias in both the coherence and time delay estimation, especially 

at the second decomposition level. Another observation concerns the small sample bias of the wavelet 

coherence estimator. The bias clearly increases with the scale.  

  To construct confidence intervals for the wavelet coherence the multivariate process in the 

form: 
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is considered together with the function: 
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Figure 2. Estimates of the wavelet coherence, wavelet phase spectrum and wavelet time delay with the modified 

method; the first stage filters are la12 and its one-sample shifted version and the complex filter for the 
higher levels is k4l2; figures present the theoretical Fourier quantities (thin dotted lines) together with 
the mean estimates of the corresponding wavelet quantities obtained with 500 replications for samples 
consisting of 10, 20,  …, 500 wavelet coefficients unaffected by the boundary for the linear regression 
model with delay τ = 1, α = 1 and tX  and tη  being two independent AR(1) processes with 

autoregressive parameters 0.8 and unit error variances (thick solid lines). 
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Figure 3. Estimates of the wavelet coherence, wavelet phase spectrum and wavelet time delay with the 

simplified method;  k4l2 HWP filter is applied at each decomposition level; see detailed description 
below Figure 2.  
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Then, assuming that 0)( >jXYK λ  and applying the delta method, the following result holds 

(Whitcher, Craigmile, 2004): 

 ( ) ))0(,0(~)()(ˆ~
, jabcjXYjXYj RANKKN λλ − ,  (65) 

where )()0()()0( ,,,, tjjabcd
T

tjjabc gSgR PP ∇⋅⋅∇= , )(, ⋅jabcdS  is the 44×  spectral matrix for tj ,P  and: 
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As suggested by Whitcher and Craigmile (2004), an estimate of the large sample variance 

jjabc NR
~

/)0(,  of )(ˆ
jXYK λ  may be obtained by replacing )( ,tjg P∇  with )ˆ( ,tjg P∇  and )0(, jabcdS  with 

an estimate utilizing sample covariances of elements of the vector process  tj ,P . Then, an approximate 

large sample CI for the wavelet coherence is: 
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where 
2
ας  is the (1–α/2) quantile of the standard normal distribution.  

  Due to the analytic complexity, when testing for significance of the wavelet coherence 

bootstrap methods are usually applied. Both parametric and nonparametric bootstrap techniques are 

recommended. For example, Whitcher et al. (2005) use the block bootstrap method, while Aguiar-

Conraria and Soares (2010) suggest bootstrapping based on ARMA models either in the parametric or 

nonparametric setting, i.e. assuming or not a particular distribution for residuals. It is worth noticing 

that asymptotic results for significance tests were also derived, though they concern only certain 

specific wavelet families – see Ge (2008), Cohen, Walden (2010a), (2010b). 

  To construct confidence intervals for the wavelet phase angle we assume that 0)( ≠jXYC λ  

and take: 
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Then, applying the delta method, we arrive at: 
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where the large sample variance, )0(, jabcR , is computed as previously utilizing an appropriate vector 

of partial derivatives equal: 
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Then, the confidence intervals are given in the form similar to (66). Multiplying them by a constant 

will produce approximate CIs for the wavelet time delay.  

  Estimates of the large sample variances of the estimators of the wavelet spectra can be 

obtained via nonparametric kernel methods. Below we examine properties of two kernel estimators: 

one based on the popular Bartlett kernel and the other based on the truncated (rectangular) kernel that 

is recommended when the order of serial correlation is known16. Figures 4 and 5 present an example 

investigation conducted for the same linear regression with delay as in the case of the mean wavelet 

estimates in Figures 2 and 3. In terms of unbiasedness, both methods seem to produce quite 

satisfactory results for the variances of the wavelet phase spectrum and time delay estimators, even for 

relatively small sample sizes, when carefully chosen truncation parameters are used. However, their 

performance in the case of the wavelet coherence estimator is much worse, depending on the particular 

value of the delay parameter and the scale of the analysis.17  
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Figure 4. Sample standard deviations of wavelet estimators and their kernel estimates – the case of the Bartlett 

kernel; truncation parameter was set to twice the scale (M = 2λj); solid lines are the sample SDs and 
dashed lines present the kernel estimates; results based on 200 simulations of the linear regression 
model with delay τ = 1, α = 1 and tX  and tη  being two independent AR(1) processes with 

autoregressive parameters 0.8 and unit error variances; samples consist of 20, 35, 50 …, 500 wavelet 
coefficients unaffected by the boundary; the first stage filters are la12 and its one-sample shifted version 
and the complex filter for the higher levels is k4l2. 

                                                 
16 See Ogaki et al. (2009), Chapter 6. 
17 Results of a detailed examination are available upon request. 
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Figure 5. Sample standard deviations of wavelet estimators and their kernel estimates – the case of the truncated 
kernel; truncation parameter was set to the scale (M = λj); see detailed description below Figure 4. 

 

 

3. Wavelet time delay estimation – a simulation study 

 

In this section we summarize results of simulation experiments examining statistical properties 

of two wavelet estimators of the time delay parameter. We concentrate on the model (55) and analyze 

mainly a small sample performance of the estimators in order to recommend a method of examining 

short-term lead-lag relations for octave frequency bands. In particular, such a method might be of 

interest in business cycle studies, as it should be useful when analyzing changing patterns of business 

and growth cycle synchronization. The estimators compared are: the wavelet cross-correlator (WCC) 

that is based on maximizing values of the cross-covariance estimates, i.e.:  

 )
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and the estimator of the wavelet time delay (62), i.e.: 
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τ −= , (72)  

which we call further the wavelet phase angle (WPA) delay estimator. It is worth stressing that we do 

not maximize the absolute value of the cross-covariance in (71), as is often done in the time delay 

literature, due to the fact that a large negative covariance will be interpreted as an anti-phase 

relationship. 

 The Cramér-Rao lower bound (CRLB) on the variance of any unbiased time delay estimator 

was derived to be (see Carter, 1987): 
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where )( fK  is the Fourier coherence of the processes under study (in our case – the wavelet 

coefficients X
jW

~
 and Y

jW
~

). Formula (73) predicts that the variance of an optimal estimator decreases 

with the value of coherence, the signal bandwidth and the center frequency. For the wavelet cross-

correlator it is known that for jointly stationary processes and large enough data samples the CRLB is 

automatically achieved in the case of the signal and noise processes with spectra that are flat over the 

same range of frequencies and zero outside this range – see Scarbrough et al. (1981), Carter (1987). If 

the spectra of tX  and tη  are relatively featureless within octave frequency bands, MODWT wavelet 

coefficients of tX  and tY  will be approximately bandpass white noises and the WCC becomes 

efficient asymptotically. However, the actual performance of the asymptotically efficient estimator can 

be much worse, especially for low signal-to-noise ratios, SNR (see simulation results in Scarbrough et 

al., 1981, Carter, 1987). As for estimators based on the Fourier phase angle, it has been proven that 

they are fully consistent with other asymptotically optimal methods after regression analysis is applied 

to the phase data – see Piersol (1981).  

 When discussing properties of the estimators (71) and (72), it is worth underlining that the 

WPA method enables to estimate delays that are not an integer multiple of the sampling period and 

guarantees a maximal time localization limited only by the length of the applied filter. On the other 

hand, the wavelet cross-correlator makes it possible to estimate delays that are longer than half of the 

center period, 0/1 jf , is asymptotically unbiased, also for the first stage of analysis, and can be based 

on shorter filters, as the approximately analytic complex wavelet filters are usually longer than real 

filters with similar squared gain functions. The length of the wavelet filter plays a crucial role in 

empirical examination, since it directly influences the number of wavelet coefficients that are 

unaffected by the extrapolation method at the ends of the sample and therefore determines the 

maximal number of decomposition levels as well as the precision of estimation. 

 In our simulations the following data generating process is used: 
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Figures 6–8 present a comparison of small sample biases, root mean square errors (RMSE) and large 

sample standard errors of the two estimators for the case: 1=α ; 1=τ ; 8,0== γβ ; 

3,2,1,, 2
1

3
1

2

1 ==
σ
σSNR , and the following wavelet filters: la12 for WCC and la12 (first stage) + k4l2 
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(higher stages) for WPA.18 The search range for the WCC was τ+±10 . In each case 1000 replications 

were run.19 In the presentation we also include the outcomes for the first decomposition level, largely 

because to some extent they are comparable to the other stages. The findings resulting from the 

experiments are summarized below:20 

• For wide ranges of signal-to-noise ratios and scales, the WPA estimator is better than WCC in 

small samples (see Figure 7). For the majority of outcomes, the relative efficiency of the two 

methods defined as )RMSE(
)RMSE(

WCC
WPA  increases with the SNR, the scale and the sample size. In large 

samples (see Figure 8) the WCC dominates the WPA estimator or their performance is similar. 

In small samples the relative efficiency of the methods depends largely on the search range for 

the WCC, although for similar ranges of delays for both methods and for lower signal-to-noise 

ratios, the WPA method performs better.  

• In larger samples the RMSE for both estimators increase with the scale. For this reason, it is 

generally advisable to assume smoothing windows with length proportional to the scale.21  

• For the lowest SNR case, both estimators show small sample bias, although with opposite signs: 

the WPA estimator towards 0, while the cross-correlator in the opposite direction (see Figure 6). 

This suggests that the usual biased estimator of the cross-covariance might be preferred in very 

small samples, when an estimate of the time delay parameter is needed. Other our experiments 

also demonstrate that the small sample bias of the WCC largely depends on whether the search 

range for the WCC is symmetric around the true value of the delay. 

• Other experiments not reported here indicate that for jointly stationary processes including 

observations affected by circularity increases an effective sample size and improves the overall 

performance of both estimators, especially for highest scales, where the number of affected 

coefficients is large. This, however, does not take place for nonstationary processes.  

• All the above observations are unchanged across different wavelets, although the outcomes 

obtained with the WPA method depend on the analytic properties of the HWP filters. Good 

analytic wavelets, however, produce almost identical results (for example, k4l2, k3l3). Different 

values of β and γ (including the nonstationary case) do not change the conclusions either. 

                                                 
18 These wavelet filters where chosen due to their popularity and also to guarantee maximal similarity in 
implementation of the WCC and WPA methods: la12 and k4l2 are of the same length (L = 12) and have similar 
squared gain functions. However, basically the same results were obtained for, e.g., la8 + k3l3, la12 + k4l4, real 
part of k4l2 + k4l2. The Selesnick’s HWP(K, L) filters outperformed the two Q-shift filters that were also 
considered, i.e. kin and tkp12.  
19 All computations, including the empirical part, were executed in Matlab. Numerical codes are available via e-
mailing the author. 
20 We also comment shortly on other experiments we performed. More detailed results are available upon 
request. 
21 Comp. Cohen, Walden (2010b). 
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Figure 6. Small sample bias of time delay estimators; lines with and without markers correspond to the WPA and 

the WCC methods, respectively; samples consist of 15, 30, 45, …, 255 wavelet coefficients unaffected 
by the boundary. 
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Figure 7. Root mean square errors of time delay estimators in small samples; lines with and without markers 

correspond to the WPA and the WCC methods, respectively; samples consist of 15, 30, 45, …, 255 
wavelet coefficients unaffected by the boundary. 

 



 27 

0 1000 2000 3000
0

0.5

1
SE; Level 1;SNR 0.33333

0 1000 2000 3000
0

0.005

0.01
SE; Level 1;SNR 0.5

0 1000 2000 3000
0

0.005

0.01
SE; Level 1;SNR 1

0 1000 2000 3000
0

0.005

0.01
SE; Level 1;SNR 2

0 1000 2000 3000
0

0.005

0.01
SE; Level 1;SNR 3

0 1000 2000 3000
0

2

4
SE; Level 2;SNR 0.33333

0 1000 2000 3000
0

0.5

1
SE; Level 2;SNR 0.5

0 1000 2000 3000
0

0.05

0.1
SE; Level 2;SNR 1

0 1000 2000 3000
0

0.05

0.1
SE; Level 2;SNR 2

0 1000 2000 3000
0

0.05
SE; Level 2;SNR 3

0 1000 2000 3000
0

2

4
SE; Level 4;SNR 0.33333

0 1000 2000 3000
0

1

2
SE; Level 4;SNR 0.5

0 1000 2000 3000
0

0.2

0.4
SE; Level 4;SNR 1

0 1000 2000 3000
0

0.1

0.2
SE; Level 4;SNR 2

0 1000 2000 3000
0

0.05

0.1
SE; Level 4;SNR 3

0 1000 2000 3000
0

2

4
SE; Level 8;SNR 0.33333

0 1000 2000 3000
0

1

2
SE; Level 8;SNR 0.5

0 1000 2000 3000
0

0.5

1
SE; Level 8;SNR 1

0 1000 2000 3000
0

0.2

0.4
SE; Level 8;SNR 2

0 1000 2000 3000
0

0.2

0.4
SE; Level 8;SNR 3

0 1000 2000 3000
0

5

10
SE; Level 16;SNR 0.33333

0 1000 2000 3000
0

5
SE; Level 16;SNR 0.5

0 1000 2000 3000
0

2

4
SE; Level 16;SNR 1

0 1000 2000 3000
0

0.5

1
SE; Level 16;SNR 2

0 1000 2000 3000
0

0.5

1
SE; Level 16;SNR 3

 
Figure 8. Standard errors of time delay estimators in large samples; lines with and without markers correspond to 

the WPA and the WCC methods, respectively; samples consist of 300, 400, , …, 2500 wavelet 
coefficients unaffected by the boundary.  

 

 

 The main finding of this section is that in business cycle studies, in which one often deals with 

low signal-to-noise ratios and which are typically based on relatively short time series, especially 

when countries undergoing transitions are examined, the wavelet phase angle methodology seems to 

be particularly attractive and might be used at least as a supplementary method. It is worth stressing 

that, besides its good localization properties, the WPA estimator is also simple and efficient 

computationally. For these reasons we believe it might be recommended for empirical analysis on 

business cycle synchronization. 

 

4. Empirical examination 

 

The data used in the empirical study are quarterly GDP volume estimates from the OECD 

Quarterly National Accounts (measure: VOBARSA) covering the period from the first quarter of 1960 

till the second quarter of 2010 (202 observations) for the following 11 countries: Austria, Belgium, 

Finland, France, Germany, Greece, Ireland, Italy, the Netherlands, Portugal, Spain. Besides, the 

OECD GDP volume for the euro area (16 countries) is used, which covers the shorter period from 

1995 till the end of the sample (62 observations). The examination is divided into two parts. In the first 

part local wavelet variance analysis is performed, while the second deals with local and global wavelet 

analysis of synchronization. 
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4.1. Business cycle variability 

 

Our examination of business cycle variability has been performed with the help of the d4 

Daubechies wavelet filter of length 4 that guarantees very good localization properties. The estimates  

of the wavelet variance have been computed in windows consisting of 30 wavelet coefficients 

unaffected by the boundary. The results are presented in Figures 9 and 10.  
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Figure 9. Running wavelet variance for scales 2, 4, 8 and 16 corresponding to oscillations with period lengths 4–

8 (1–2 years), 8–16 (2–4 years), 16–32 (4–8 years), 32–64 (8–16 years); results obtained with d4 
Daubechies wavelet filter of length 4 and windows of 30 wavelet coefficients unaffected by circularity 
after aligning them to the observations in the sample; step = 1. 

 

Firstly, we notice quite similar patters of volatility changes across countries in our sample, 

except for Finland (scale 4 and 8) and Ireland (all scales). Also contributions of different scales to the 

total variance as well as estimates of the wavelet variance alone seem not to vary much across the 

economies. For some countries we observe a systematic decline in the variance for all decomposition 

levels, which started at the beginning of our sample, as is the case for Germany (except for the more 

volatile period about the reunification as well as for the highest scale) and Spain. It is seen that the oil 

price shocks of 1973 and 1979 have been captured almost entirely by the shortest components of 

business cycle fluctuations. Thanks to this the scale 8 wavelet variance provides a more clear view of 

the Great Moderation, revealing that the process might have started well before the mid-1980s (comp. 

Aguiar-Conraria, Soares, 2010, for similar evidence for the United States obtained with the continuous 
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wavelet transformation). Also the most recent perturbations (the financial crisis of 2007–2009) are 

becoming apparent at the lowest decomposition level, as seen for example in the case of the euro area 

GDP.
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Figure 10. Running wavelet variance for scales 2, 4, 8 and 16 corresponding to oscillations with period lengths 

4–8 (1–2 years), 8–16 (2–4 years), 16–32 (4–8 years), 32–64 (8–16 years), except for the euro zone 
data, where scales 2 and 4 are only considered; results obtained with d4 Daubechies wavelet filter of 
length 4 and windows of 30 wavelet coefficients unaffected by circularity after aligning them to the 
observations in the sample; step = 1. 

 

 

4.2. Business cycle synchronization 

 

 Business cycle synchronization in the euro area was examined with the help of the local 

wavelet correlations, the global and local wavelet coherences and the global and local wavelet time 

delays. Figure 11 presents running wavelet correlations for scales 4, 8 and 16 computed in windows 

consisting of 40 non-boundary wavelet coefficients after the MODWT based on d4 wavelet has been 

applied to the observations. We decided to treat Germany as the reference country due to the high 

correlation between scale 4 wavelet coefficients for Germany and the euro zone as compared to e.g. 

France and the euro zone (see Figure 11). The most interesting finding resulting from the analysis of 

the wavelet correlations is that for the majority of countries in the sample we observe a systematic 

increase in the strength of the instantaneous relationships between business cycles of the examined 
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countries starting from the second half of the 1980s, especially for scales 4 and 8 corresponding to 

oscillations with period lengths below 4 and 8 years, respectively. The change in the dynamical 

correlation patterns agrees with the introduction of the Single European Act, which was signed in 1986 

and came into effect in 1987. It may also be observed that for the highest scale considered (cycles of 

length 8 year and above) there often is an opposite tendency in the instantaneous dependencies. 
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Figure 11. Running wavelet correlations for scales 4, 8 and 16 corresponding to oscillations with period lengths 

8–16 (2–4 years), 16–32 (4–8 years), 32–64 (8–16 years), except for the euro zone data, where scale 4 
is only considered; results obtained with d4 Daubechies wavelet filter of length 4 and windows of 40 
wavelet coefficients unaffected by circularity after aligning them to the observations in the sample; 
step = 1. 

 

 Figures 12–13 present the results of the complex discrete wavelet analysis performed with the 

modified method described in section 2.4 based on the k4l2 wavelet filter for levels 2–4 and the la12 

Daubechies filter together with its one-sample shifted variant at the first stage of the analysis. The 

global examination shows high dependencies at all leads and lags between Germany and the other 

countries in the sample at the third decomposition level (for shorter cycles) and for countries like 

Austria and the Netherlands also at the fourth level. Positive delays mean that the German cycle is 

behind the other countries’ cycles, as is, for example, in the case of the long French cycle and the short 

Irish cycle. Instantaneous dependencies with the German cycles take place for countries like Belgium, 

the Netherlands, Greece and Italy. The local analysis in Figure 13 reveals that shorter cycles are 

becoming more synchronized starting from the middle of our sample, while in the case of the longer 

cycles there are certain patterns of lead-lag relations that seem to be quite stable over time (partially 
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because only a couple of coefficient windows were available), though the wavelet coherences are 

uprising.  

The overall conclusion from both the real as well as complex wavelet analysis is that the 

synchronization between euro zone business cycles started to rise after the first important steps toward 

European integration were taken. This stays in line with the endogeneity hypothesis of the optimum 

currency area criteria as stated by Frankel and Rose (1998). Finally, Figure 14 presents comparison of 

local wavelet time delay estimates obtained with the WCC and WPA methods. It turns out that to a 

large extent both methods produce similar results.  
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Figure 12. Wavelet coherence and wavelet time delay for scales 1, 2, 4 and 8 (decomposition levels 1–4) 

corresponding to oscillations with period lengths 2–4 (below one year), 4–8 (1–2 years), 8–16 (2–4 
years) and 16–32 (4–8 years) together with large sample 90% confidence intervals; in the wavelet time 
delay estimation with the WPA estimator the reference country (Germany) is X and the other country – 
Y – see equation (55); the first stage filters are la12 and its one-sample shifted version and the complex 
filter for the higher levels is k4l2; only wavelet coefficients unaffected by circularity are considered; the 
truncated kernel is used in variance estimation with truncation parameters for the four decomposition 
levels equal: 1, 2, 2, 2 (for the wavelet coherence) and 1, 2, 4, 8 (for the wavelet time delay). 
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Figure 13. Running wavelet coherence and wavelet time delay for scales 4 and 8 corresponding to oscillations 

with period lengths 8–16 (2–4 years) and 16–32 (4–8 years); in the wavelet time delay estimation with 
the WPA estimator the reference country (Germany) is X and the other country – Y – see equation (55);  
the first stage filters are la12 and its one-sample shifted version and the complex filter for the higher 
levels is k4l2; data windows consist of 30 wavelet coefficients unaffected by circularity for scale 4 and 
40 – for scale 8, circularly shifted to align them to the real data; step = 1. 

 

 

5. Conclusions 

 

The discrete wavelet analysis provides a summary of evolutionary spectral and cross-spectral 

properties of processes under scrutiny with high computational efficiency, good localization properties 

and without an excessive redundancy of information that takes place in the case of the continuous 

wavelet methodology. These features together with a certain specific fresh look at an old problem 

seem to be the main reasons why the approach might be worth considering in business cycle 

examination.  

The paper has discussed some of the questions arising in discrete wavelet analysis of popular 

bivariate spectral quantities like the amplitude, coherence and phase spectra and the frequency-

dependent time delay. In particular, we show how the wavelet bivariate spectra can serve to 

approximate the corresponding Fourier quantities, discuss certain implementation issues and statistical 

inference problems. Our simulation study of properties of two wavelet estimators of the time delay 

parameter points at a practical relevance of the wavelet phase angle-based estimator suggested here, 
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which can be used at least as a supplementary method of examining short- and medium-term lead-lag 

relations for octave frequency bands.  

The complex discrete wavelet methodology has been illustrated with an examination of 

business cycle synchronization in the euro zone. The study has also been supplemented with wavelet 

analysis of variance and covariance of European business cycles. The empirical examination gives 

some new arguments in favour of the endogeneity hypothesis of the optimum currency area criteria as 

well as an early start of the Great Moderation in Europe. 
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Figure 14. Running wavelet estimates of time delay for scales 4 and 8 corresponding to oscillations with period 

lengths 8–16 (2–4 years) and 16–32 (4–8 years); the solid blue line is the result obtained with the WPA 
estimator and the dashed red line – with the WCC; in the WPA method the first stage filters are la12 
and its one-sample shifted version and the higher level filter is k4l2; the WCC is based on la12; data 
windows consist of 30 wavelet coefficients unaffected by circularity for scale 4 and 40 – for scale 8, 
circularly shifted to align them to the real data; step = 1; the numbers on the horizontal axis are the mid-
points of the subsamples. 
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