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Abstract Non-spherical errors, namely heteroscedasticity, serial correlation and 
cross-sectional correlation are commonly present within panel data sets. These can 
cause significant problems for econometric analyses. The FGLS(Parks) estimator has 
been demonstrated to produce considerable efficiency gains in these settings. However, 
it suffers from underestimation of coefficient standard errors, oftentimes severe. 
Potentially, jackknifing the FGLS(Parks) estimator could allow one to maintain the 
efficiency advantages of FGLS(Parks) while producing more reliable estimates of 
coefficient standard errors. Accordingly, this study investigates the performance of the 
jackknife estimator of FGLS(Parks) using Monte Carlo experimentation. We find that 
jackknifing can —in narrowly defined situations— substantially improve the 
estimation of coefficient standard errors. However, its overall performance is not 
sufficient to make it a viable alternative to other panel data estimators. 
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I.  INTRODUCTION 
 
Panel data commonly suffer from a variety of nonspherical error behaviours, including 

heteroscedasticity, serial correlation, and cross-sectional correlation.  As is well known, 

the simultaneous occurrence of serial and cross-sectional correlation bedevils existing 

estimation procedures.  The Parks model (Parks, 1967) remains the most commonly used 

estimation procedure for simultaneously handling cross-sectional and serial correlation.1 

However, while FGLS(Parks) is consistent and asymptotically efficient, it can produce 

notoriously bad estimates of coefficient standard errors in finite samples.   

 The only other parametric estimator that simultaneously addresses both serial and 

cross-sectional correlation is Beck and Katz’s PCSE estimator (Beck and Katz, 1995).  

Beck and Katz (1995) propose a two-step estimator that they claim produces reliable 

standard error estimates at no cost to estimator efficiency when compared to 

FGLS(Parks).   In a recent paper, Chen, Lin and Reed (2010) show that the latter claim 

does not generally hold.  Specifically, the PCSE estimator compares poorly with 

FGLS(Parks) on efficiency grounds when data are characterized by both serial and cross-

sectional correlation.  There remains, therefore, a demand for an estimation procedure 

that produces both relatively efficient coefficient estimates and reliable standard errors. 

 This paper uses Monte Carlo experiments to study whether jackknifing the 

FGLS(Parks) estimator provides a solution to this problem.  On the face of it, jackknifing 

would appear to be a promising avenue.  As a result of increased computer processing 

speeds, jackknifing has become increasingly feasible (Breunig, 2002; Sunil, 2002).  

Further, it has been shown to reliably estimate coefficient standard errors in a variety of 

settings (Schucany, 1989; Jennrich, 2008).  Potentially, jackknifing would allow one to 
                                                 
1 For example, the options available with the Stata command “xtgls” are all variations of the Parks model. 
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maintain the efficiency advantages of FGLS(Parks) while producing more reliable 

estimates of coefficient standard errors.   

 While jackknifing with panel data characterized by both serial and cross-sectional 

correlation is not without its challenges (as we discuss below), it is feasible – unlike 

bootstrapping.  Bootstrapping techniques have been developed for one-way clustering 

such as serial correlation or cross-sectional correlation (e.g., Cameron, Gelbach, and 

Miller, 2008).  However, there are no bootstrapping procedures that are valid for the 

simultaneous occurrence of both of these.  A further attraction of jackknifing is that it 

easily incorporates unbalanced panels.    

 Unfortunately, our Monte Carlo simulations find that while jackknifing can 

improve estimation of coefficient standard errors, its overall performance is not sufficient 

to make it a viable alternative to other panel data estimators.   

 
II.  THE PARKS ERROR STRUCTURE AND THE PROBLEM WITH  
      ESTIMATING STANDARD ERRORS 
 
The data generating process.  This paper analyzes the following panel data problem.  Let 

the DGP be represented as follows: 

(1)   εXβεxiy 
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where N and T are the number of cross-sectional units and time periods; 0  and x  are 

scalars; and y , i , x , and ε  are, respectively, 1NT   vectors of observations of the 

dependent variable, a constant term, observations of the exogenous explanatory variable, 

and unobserved errors, where  ~ N(0, NT ).   
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 The NTNT   error variance-covariance matrix, NT , is structured according to 

the Parks model (Parks, 1967).  It assumes (i) groupwise heteroscedasticity; (ii) first-

order serial correlation; and (iii) time-invariant cross-sectional correlation.2  This implies 

the following specification for NT : 

(2)  NT ,  

where 
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 The GLS estimators for β  and var( β̂ ) are given by the usual formulae: 

β̂ =   yΩXXΩX 1
NT

11
NT

   and  β̂Var =   11
NT XΩX

 .  In the case of Feasible 

Generalized Least Squares (FGLS), NTΩ  is replaced with ΠΣΩ ˆˆˆ  , so that 

 FGLSβVar ˆ =   11 XΩX
 ˆ .  In other words, FGLS does not adjust coefficient standard 

errors for the additional uncertainty that arises from the fact that the elements of NTΩ  are 

unknown and must be estimated.  This causes FGLS to underestimate coefficient 

standard errors.  As there are a total of 
 

1
2

1NN



 unique elements in NTΩ , the degree 

of underestimation may be quite substantial.   

 

                                                 
2  In its most general form, the Parks model assumes groupwise, first-order serial correlation.  In contrast, 
our experiments model the DGP with a common AR(1) parameter,  , that is the same across groups.  We 

do this to facilitate comparison with previous Monte Carlo studies of this problem that have also assumed a 
common AR(1) parameter (cf., Chen, Lin, and Reed, 2010) 
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III.  JACKKNIFING THE FGLS(PARKS) ESTIMATOR 

Let β̂  be the FGLS(Parks) estimator given NT data points.  Define iβ̂  as the 

FGLS(Parks) estimate derived from dropping the ith observation, 

iβ̂ =   yΩXXΩX 1
NT

11
NT





  11

ˆˆ , where X  and y  are the data observations 

corresponding to the NT-1 observations, and 1NTΩ̂  is the estimate of the corresponding 

error variance-covariance matrix.   

 The ith “pseudovalue” is defined by   ii ββ*β ˆˆˆ 1)(NTNT  .  The jackknife 

estimate of β  is given by 



NT

1iNT

1
*β*β i

ˆˆ , and the corresponding standard error for 

each of the elements of  *β̂  is given by  
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 A complication arises when constructing 1NTΩ̂ .  Not only must the values of   

and the ijε,σ s be re-estimated with the deletion of an observation, but Ω̂  now has 

dimensions    1NT1NT  .  Let the deleted observation be indexed by it.  For the ith 

group, Π  must be modified to account for the deleted tth observation.  To illustrate, if 

T=5 and t=3, iΠ  becomes 

                

 

.   
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IV.  DESCRIPTION OF THE MONTE CARLO EXPERIMENTS 

One of the challenges of Monte Carlo analysis of panel data estimators given complicated 

error structures is how to set the population parameters associated with NTΩ .  As noted 

above, the Parks model has 
 

1
2

1NN



 unique elements in NTΩ .  This study employs 

the methodology described in Reed and Ye (2010).  The idea is to produce simulated data 

sets that are similar to “real world” data sets.   

 Two “families” of data sets are constructed: one patterned after cross-country, 

real, per capita GDP data; the other after real, per capita personal income (PCPI) data 

from U.S. states.  In each case, for given N and T values, a large number of OLS 

regressions are estimated using the basic specification 

iix0i ε Dummies TimeDummies ateCountry/Stx ββy  , i=1,2,…,NT, where the 

dependent variable is either the level or growth of real per capita GDP, or the level or 

growth of real per capita PCPI; and the explanatory variable is either governmental share 

of GDP or the state’s effective tax rate.  Specification (1) includes only Country/State 

Dummy variables.  Specification (2) also includes Time Dummy variables.   

 The residuals from these regressions are then used to construct representative 

parameter values for NTΩ .  Thus, for any given N and T values, eight different 

population, error variance-covariance structures are created, encompassing a large range 

of values of cross-sectional and serial correlations similar to those found in “real world” 

data sets. These population error variance-covariance structures are then used to generate 

the simulated data sets used in our experiments.   
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 An “experiment” is defined by the original data set (International GDP Data/U.S. 

State PCPI Data, Level/Growth), the size of the data set (N,T), and the regression 

specification (1/2) from which the values of  NTΩ  are set.  We follow Beck and Katz 

(1995) by setting N and T values that correspond to commonly chosen values in the 

literature.  N is restricted to be less than T, otherwise the Parks model is not estimable.  A 

total of 1000 replications are conducted for each experiment.  Further details are provided 

in Reed and Ye (2010). 

 
V.  RESULTS AND DISCUSSION 

The focus of our study is the “coverage rates” produced by the FGLS(Parks) and 

jackknife estimators, where the respective coverage rates are defined as the percent of 

95% confidence intervals that contain the true population value of xβ .  Coverage rates 

should be close to 95%.   

 Our main findings are: 

1. The jackknife estimator can produce substantial improvements in coverage rates 
over FGLS(Parks).   

 
2. Coverage rates for the jackknife estimator are unsatisfactory, except when N=T, 

and then only for some types of data. 
 
TABLE 1 demonstrates the improvement that can come from jackknifing FGLS(Parks) 

estimates.   

 The numbers in the table represent the difference in coverage rates between 

FGLS(Parks) and the jackknife estimator.  For example, using a population error 

variance-covariance matrix patterned after International GDP data (Level, Specification 

1) and data sets of size N=5 and T=5, we find that FGLS(Parks) and the jackknife 

estimator produce coverage rates of 45.4  and 84.5 percent, respectively.  Thus, the 
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jackknife estimator has coverage rates that are 39.1 percentage points higher than the 

FGLS(Parks) estimator.  It is the latter number that is reported in the table.   

 In general, the performance advantage of the jackknife estimator diminishes, and 

is sometimes reversed, as 
N

T
 increases.  This is primarily due to the better performance 

of FGLS(Parks).  The last row of TABLE 1 averages the difference in coverage rates for 

values of N and T across the different population data sets.  This generally confirms the 

observation that jackknifing results in greatest performance improvements when N=T. 

 To be a viable estimator, jackknifing should not only produce more reliable 

estimates of coefficient standard errors, but it should also have satisfactory coverage rates 

of its own.  Unfortunately, TABLE 2 makes clear that this is not the case.  Coverage rates 

are rarely close to 95 percent and are frequently less than 50 percent.  When N=T, the 

jackknife estimator does slightly better.  Overall, the coverage rates of the jackknife 

estimator compare poorly with alternative panel data estimators, such as the PCSE 

estimator (Beck and Katz, 1995). 

 One disadvantage of our experimental methodology is that we do not directly 

control the values of cross-sectional and serial correlation.  This is outweighed by the 

advantage of being able to measure estimator performance in simulated data 

environments patterned after the “real world.”  The fact that the jackknife estimator 

performs poorly under these conditions eliminates it as a viable alternative to existing 

panel data estimators.  Until a better approach is developed, the recommendation of Reed 

and Ye (2010) remains valid: Researchers should use FGLS(Parks) if the goal is 

estimator efficiency, and another estimator (e.g. the PCSE) if the concern is reliable 

hypothesis testing.   
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TABLE 1 
Difference in Coverage Rates for FGLS (Parks) and Jackknife Estimators 

 

Spec.a Experimental Data Patterned After…a N=5 N=10 N=20 

T=5 T=10 T=15 T=20 T=25 T=10 T=15 T=20 T=25 T=20 T=25

1  International GDP Data (Level) 39.1 -8.6 -34.7 -45.6 -54.1 60.2 25.6 -3.4 -29.6 57 48.7 

1  International GDP Data (Growth) 32.6 -18.5 -30.5 -42.3 -44.6 50.6 -9.1 -35.3 -44.2 70.6 42.6 

1  U.S. State PCPI Data (Level) 42.1 22.7 3.7 5 -2.1 52.9 37.6 32.5 33.6 44.5 62.3 

1  U.S. State PCPI Data (Growth) 39.7 9.4 -2.7 -14.8 -18.4 51.1 27.4 10.7 -9.5 53.2 57.7 

2  International GDP Data (Level) 45.9 4.6 -23.4 7.1 -16.3 64.3 34.5 70.7 36.6 61.9 81.5 

2  International GDP Data (Growth) 45.6 -13.2 -38.4 1.8 -67.4 58.9 20.6 61 49.5 69.5 84 

2  U.S. State PCPI Data (Level) 39.1 -9.4 34.8 0.5 -25.5 69.5 45.1 82.4 13.6 64.1 88.5 

2  U.S. State PCPI Data (Growth) 35.9 -21.3 5.5 -32.3 -21.9 65.6 24.9 54.4 17.8 67.9 89.7 

AVERAGE 40 -4.3 -10.7 -15.1 -31.2 59.1 25.8 34.1 8.5 61.1 69.4 

 
a See text for an explanation of “Specification” 1 and 2 and the methodology used to produce simulated data sets patterned after the 
respective data.
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TABLE 2 

Coverage Rates for FGLS (Parks) with Jackknifed Standard Errors 
 
 

RGF Model Data 
N=5 N=10 N=20 

T=5 T=10 T=15 T=20 T=25 T=10 T=15 T=20 T=25 T=20 T=25

1  International GDP Data (Level) 84.5 57.6 35.7 28.7 21.4 81.3 71.4 50.9 33.4 66 73 

1  International GDP Data (Growth) 81.7 59.7 52.1 44.4 43.3 83.7 53.8 37.9 34.5 85.5 79 

1  U.S. State PCPI Data (Level) 89.7 87 74.3 76.5 69.6 82.3 91 89.5 87.5 53.1 74.5 

1  U.S. State PCPI Data (Growth) 89.5 83.5 79 70.5 67.4 86.3 90.4 82.9 67.5 70.2 93.2 

2  International GDP Data (Level) 52.4 42.5 38.4 80 62.4 64.4 40.6 81.7 53.2 61.9 81.5 

2  International GDP Data (Growth) 54.1 34.7 28.1 84.5 21 59.2 27.4 79.4 79.3 69.5 84 

2  U.S. State PCPI Data (Level) 45.8 24.9 87.6 64.9 47.1 69.7 49.7 89.9 34.2 64.1 88.5 

2  U.S. State PCPI Data (Growth) 44.1 18.8 70.7 45 66.6 65.9 31.4 70.6 47.6 67.9 89.7 
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