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Abstract 
In this note the author discusses the problem of updating forecasts in a time-discrete 
forecasting model when information arrives between the current period and the next 
period. To use the information that arrives between two periods, he assumes that the 
process between two periods can be approximated by a linear interpolation of the time-
discrete forecasting model. Based on this assumption the author drives the optimal 
updating rule for the forecast of the next period when new information arrives between 
the current period and the next period. He demonstrates by theoretical arguments and 
empirical examples that this updating rule is simple, intuitively appealing, defendable 
and useful.  
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1 Introduction to the Problems

Time discrete models are the most popular models used in economic forecasting.
Updating forecasts based on newly arrived information is a routine work. While a
lot is written about how to update forecasts for the next period when new infor-
mation arrives at this period, little is discussed about how to update the forecasts
for the next period when new information arrives between the current period and
the next period. This question is however highly relevant for daily forecasting busi-
ness. Suppose that we have a time-discrete forecasting model with data of a certain
frequency, say quarterly data. In this case forecasts for the future quarters are cal-
culated based on the known information up to the current quarter. However, before
the new information for the next quarter comes in, there is already information at a
higher frequency, say monthly, weekly or daily available. In many circumstances, the
information at the higher frequencies can be informative for the forecasts of the next
quarter. Since the forecasting model only uses data at the lower frequency, the infor-
mation at other higher frequencies cannot be directly used to update the forecasts.
Updating forecasts based on the higher frequency information is either ignored or is
carried out on an ad hoc basis. For instance, for some variables with random walk
property, the forecast for the next period will be updated by the newest observation.
For stock variables it will be checked if the monthly observation lies between the
forecast and the last quarterly observation; if this is not the case some adjustment
of the forecast may be done; for flow variables it will be inspected whether the accu-
mulation of the monthly flow amounts roughly to the forecast for the next period;
if this is not the case the forecast will be adjusted, ect.

The need of updating the forecasts for the future periods when new information
arrives between the current period and the next period is grounded on the assump-
tion that the underlying economic process is continuous and the time-discrete fore-
casting model is an approximative description of the continuous process at discrete
time points. Therefore the new information that arrives between the current period
and the next period is informative for the forecasts of the next period.

Given the need of updating forecasts when information arrives between periods,
we ask the question: how can we update the forecasts in a time-discrete model using
the information that arrives between the current period and the next period?

This problem seems to be related to the issue of forecasting using data of different
frequencies. In the literature there are several approaches that address this issue.
One approach is to apply Kalman-filter technique to model the relation between the
data of different frequencies. Mittnik and Zadrozny (2004) and Chen and Zadrozny
(2008) are two examples of this approach. Mixed Data Sampling(MIDAS) regression
as presented by Andreou, Ghysels, and Kourtellos (2007) provides another approach
to address this issue. EM algorithm as applied in Stock and Watson (2002) can be
applied to solve the problem estimation using data at different frequencies. Bridge
equation models are a further alternative to solve this problem. The technique can
be found in Krolzig and Hendry (2001). Marcellino and Schumacher (2008) and
Barhoumi, Benk, Cristadoro, Reijer, Jakaitiene, Jelonek, Rua, Ruestler, Ruth, and
Nieuwenhuyze (2008) are two examples of this approach. The common feature of
these approaches is an explicit modeling of the relation between data with different
frequencies. This implies that an additional modeling work has to be done and there
may exist conflict between the original forecasting model and the additional model.
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Furthermore, not matter at which high frequency the explicit modeling may be, it
is impossible to exclude that some information at an even higher frequency will be
useful for forecasting the future. Therefore these approaches do not really solve the
original problem of updating forecasts when new information arrives between two
periods.

In this note we suggest how to use the existing model structure to update fore-
casts when information arrives between the current period and the next period. This
is done by formulating assumptions on the arriving information between the two pe-
riods, so that we can formalize the updating rules. We show that these assumptions
are simple, intuitively appealing and they are defendable.

2 The Updating Rule

2.1 A Forecasting Model and Assumptions

We formulate an econometric forecasting model as follows

Yt+1 = E(Yt+1|Ωt) + εt+1|t for t = 1, 2, ....T. (1)

where εt+1|t is the one-step ahead forecast error with E(εt+1|t) = E(εt+1|Ωt) = 0,
E(εt+1|tε′t+1|t|Ωt) = Σ and εt+1|t ∼ i.i.d. N(0, Σ). Ωt is the information set known at
time point t.

Equation (1) is a usual formulation of a forecasting model. It implies that we
want our model to be the best model in terms of mean square errors and the residuals
be homoscedastic.

By setting t = 1, 2, ....T the model is set out to be a time-discrete model and
nothing is said about what happens between two periods. On the one hand, this
time-discrete model setting makes it impossible to use directly any information that
is available between two periods to update forecasts; on the other hand, this allows
to make any assumptions on the process between two periods, as far as they are
not contradict to the process at the discrete time points as specified in the original
model.

Since non-contradiction with the original model at the discrete time points is
only a very weak restriction on the assumptions on the process between periods, it
is crucial to make reasonable assumptions in order to obtain a useful updating rule
for the forecast.

Generally the model process between two periods can be formulated as the sum
its forecast and the associated forecast errors:

Yt+∆t|t = E(Yt+∆t|Ωt) + εt+∆t|t for 0 < ∆t < 1 (2)

By specifying E(Yt+∆t|Ωt) and εt+∆t|t, we pinpoint the process between two pe-
riods. One set of possible assumptions are now given as follows.

Assumption 2.1

• A1

E(Yt+∆t|Ωt)− Yt

∆t
=

E(Yt+1|Ωt)− Yt

1
for 0 < ∆t < 1
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• A2
εt+1|t = Σ

1
2 (P (t + 1)− P (t)) for t = 1, 2, 3...,

εt+∆t|t = Σ
1
2 (P (t + ∆t)− P (t)) for ≤ ∆t ≤ 1,

where P (t) is a process with independent zero-mean increment and

V ar(P (t + ∆t)− P (t)) = ∆tI.

A1 say the the conditional expectation is a simple linear ”interpolation” between
Yt and E(Yt+1|Ωt). A2 says that the information set used to forecast Yt+1 is increas-
ing with t and the variance of the forecast error increases linearly with the time
span of the forecast. As information is getting close to t+1 the forecast uncertainty
becomes smaller and smaller. This set of assumptions assures that the process be-
tween periods is consistent with model (1) at discrete time points:

• for ∆t → 0 we have E(Yt+∆t|Ωt) → Yt and εt+∆t|t → 0 in probability; and

• for ∆t → 1 we have E(Yt+∆t|Ωt) → E(Yt+1|Ωt) and εt+∆t|t → εt+1|t in proba-
bility.

Assumption 2.1 pins down a process between two periods based on which we can
derive an optimal updating rule for the forecast of the next period when information
arrives between the current period and the next period.

Lemma 2.2 Under Assumption 2.1 the minimal variance forecast updating rule for
model (1) is given in the following equation.

E(Yt+∆t|Ωt) = Yt + (E(Yt+1|Ωt)− Yt)(1−∆t) (3)

V ar(εt+∆t|t) = ∆tΣ (4)

E(Yt+1|Ωt+∆t) = Yt+∆t + (E(Yt+1|Ωt)− Yt)(1−∆t) (5)

V ar(εt+1|t+∆t) = (1−∆t)Σ (6)

Proof: (3) and (4) follow directly from A1 and A2. To prove (5) we have:

E(Yt+1|Ωt+∆t) = E(E(Yt+1|Ωt) + εt+1|t|Ωt+∆t)

= E(Yt+1|Ωt) + E(εt+1|t|Ωt+∆t)

= E(Yt+1|Ωt) + Σ−1/2E(P (t + 1)− P (t + ∆t)− (P (t + ∆t)− P (t))|Ωt+∆t)

= E(Yt+1|Ωt)− Yt + Yt + Σ−1/2(P (t + ∆t)− P (t))

= (E(Yt+1|Ωt)− Yt)(1−∆t) + (E(Yt+1|Ωt)− Yt)∆t + Yt + εt+∆t|t
= (E(Yt+1|Ωt)− Yt)(1−∆t) + E(Yt+∆t|Ωt) + εt+∆t|t
= (E(Yt+1|Ωt)− Yt)(1−∆t) + Yt+∆t.

Then (6) follows from A2. 2

Beside the consistence and simplicity, additional justifications for this set of
assumptions can be seen in a class of models that encompass many often used linear
forecasting models in economics. We will show this in the next section.
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2.2 The Updating Rule in Some Special Cases

2.2.1 AR(1) Cases

AR(1) process as given in (7) is an often used forecast model for many economic
time series.

yt+1 = ρyt + σε∗t+1 for t = 1, 2, ...., (7)

where ε∗t+1 is a standard normal random variable. The variance minimal forecast of
yt+1 is

ŷt+1 = E(yt+∆t|Ωt) = ρyt. (8)

A natural way to consider the process between two time points in a time-
discrete model is to assume that the time-discrete model is a model fitted to a
time-continuous underlying process that is only sampled at the discrete time points.

If this assumption holds, how does the underlying continuous process for AR(1)
look like? It can be shown that the continuous process is a linear diffusion process1

as follows.

dyt = −κytdt + σdWt for any t ≥ 0. (9)

where Wt is a standard Wiener process. The solution of the stochastic differential
equation (9) is a continuous process:

yt+∆t = e−κ∆tyt + σ

∫ t+∆t

t

e−κ(t+∆t−s)dWs.

The second term on the right hand side is an independent normal zero-mean incre-
ment process. The first term gives the conditional mean of yt+∆t. For t = 0, 1, 2, ...
and ∆t = 1 we have:

yt+1 = e−κyt + σ

∫ t+∆t

t

e−κ(t+1−s)dWs

Comparing the equation above with (7) we have ρ = e−κ and ε∗t+1 =
∫ t+∆t

t
e−κ(t+1−s)dWs.

Indeed equation (9) gives the underlying continuous process of an time-discrete
AR(1).

Applying Taylor expansion to e−κ∆t and taking the first linear term we have:
e−κ∆t ≈ 1 − κ∆t. The solution of the continuous stochastic differential equation
above can be then approximated as follows

yt+∆t ≈ (1− κ∆t)yt + σ

∫ t+∆t

t

e−κ(t+∆t−s)dWs. (10)

The approximated process (10) can be used now to show that Assumption 2.1 hold
for this process and the optimal forecast updating rule for this process is exactly the
same as given in (5).

1See Kloeden and Platen (1995, P.117) for details.
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According to (10) we have:

E(yt+∆t|Ωt) ≈ yt−κyt∆t = yt+((1−κ)yt−yt)∆t ≈ yt+(E(yt+1|Ωt)−yt)∆t. (11)

This is the equation given by A1 in Assumption 2.1. And the forecast variance can
be calculated as follows

V ar

(
Σ

1
2

∫ t+∆t

t

e−κ(∆t−s)dWs

)
= Σ

1− e−2κ∆t

2κ
≈ Σ∆t

This is given in A2. According to (10) we have

E(Yt+1|Ωt+∆t) = E(E(Yt+1|Ωt) + εt+1|t|Ωt+∆t)

= E(Yt+1|Ωt) + E(εt+1|t|Ωt+∆t)

= E(Yt+1|Ωt) + εt+∆t|t
= (E(Yt+1|Ωt)− Yt)(1−∆t) + (E(Yt+1|Ωt)− Yt)∆t + Yt + εt+∆t|t
= (E(Yt+1|Ωt)− Yt)(1−∆t) + Yt(1 + (1− e−κ)∆t) + εt+∆t|t
≈ (E(Yt+1|Ωt)− Yt)(1−∆t) + Yte

−κ∆t + εt+∆t|t
= (E(Yt+1|Ωt)− Yt)(1−∆t) + Yt+∆t,

where the approximation in the sixth row above is: (1+(1−e−κ)∆t) ≈ (1+κ∆t) ≈
e−κ∆t. This is exactly the updating rule given in (5).

In this example of an AR(1) process we demonstrate that if the time-discrete
mode is a model fitted to a time-continuous process that only sampled at discrete
time points, Assumption 2.1 gives the linear approximation of the best forecast of
the underlying continuous process between the discrete time points.

This conclusion can be easily extended to multivariate cases of first order vector
autoregressive processes VAR(1).

2.2.2 Multivariate VAR(1) Cases

The multivariate counterpart of AR(1) is the first order vector auto regression pro-
cess VAR(1) that is a often used to forecast economic time series jointly. A VAR(1)
model can be written as follows.

Yt+1 = RYt + Σ
1
2 ε∗t+1 for t = 1, 2, ...., (12)

where ε∗t+1 is a standard normal random variable with independent components.
The forecast of Yt+1:

Ŷt+1 = E(Yt+∆t|Ωt) = RYt

is the variance minimal forecast. Similar to the case of AR(1), we can view VAR(1)
as a model fitted to an underlying continuous process which is only sampled at dis-
crete time points. The multivariate underlying process is specified by the following
stochastic differential equation.

dYt = −KYtdt + Σ
1
2 dWt for any t ≥ 0. (13)

where Wt is a standard Wiener process. The solution of the continuous process (13)
is

Yt+∆t = e−K∆tYt + Σ
1
2

∫ t+∆t

t

e−κ(t+∆t−s)dWs
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The second term is a normal zero mean random variable whose variance depend
linearly on ∆t.

The solution can be approximated as follows

Yt+∆t ≈ (I −K∆t)Yt + Σ
1
2

√
∆tε∗t+∆t, (14)

where ε∗t+∆t is a standard normally distributed random variable with independent
components.

Using the same argument as in the case of AR(1) we can show that for the
underlying continuous process of VAR(1) Assumption 2.1 holds up to the first order
approximation, and the updating rule (5) gives approximately the best forecast of
the underlying continuous process.

For some economic time series a forecasting model may need more lags. Hence,
VAR(p) instead of VAR(1) is a more suitable class of models for forecasting. How-
ever, a VAR(p) model can always be stacked into a higher dimensional VAR(1)
model, so that we can treat them as VAR(1) formally.

2.2.3 VAR(p) Cases

We demonstrate this in a VAR(2) example as follows2.

yt+1 = A1yt + A2yt−1 + Ω
1
2 εt+1 (15)

Equation (15) is VAR(2) model in which the future variables depends not only on
the current values of the variables but also on the values in the previous periods.
Now we stack yt and yt−1 into a vector, equation (15) can be rewitten as follows.

(
yt+1

yt

)
=

(
A1 A2

I 0

) (
yt

yt−1

)
+

(
Ω1/2 0

0 0

)(
εt+1

εt

)
(16)

Equation (16) can be written in matrix form.

Yt+1 = RYt + Σ
1
2 Et, (17)

where Yt+1 = (y′t+1, y
′
t)
′, Σ

1
2 =

(
Ω

1
2 0

0 0

)
and Et+1 = (ε′t+1, ε

′
t)
′.

The stacked model in (17) is formally a VAR(1) model. We can apply formula
(5) to forecast Yt+1 when new information arrives between the current period and
the next period. The first component of Yt+∆t is the forecast of the VAR(2) model
we need.

It is to note that although the updating formula (5) gives the variance mini-
mal forecast for the underlying time-continuous model of the stacked VAR(1), it
cannot be interpreted as giving the variance minimal forecast for the underlying
time-continuous model of the original VAR(p). The reason is that a stacked VAR(1)
model is equivalent to the original VAR(p) model only at discrete time points. Nev-
ertheless, formula (5) provides a simple interpolation forecast that is consistent with
the original VAR(p) model.

2See Hamilton (1994) p. 150 for general VAR(p) cases.
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2.2.4 Remarks on General Cases

Since a forecasting model like (1) will not necessarily encompassed by a VAR(p)
process, the possible underlying continuous process for the discrete forecasting model
can be very general, such as

dyt = µ(Yt, t)dt + σ(Yt, t)dW.

This can be a very complicated diffusion process that may become untraceable. One
often used method to study an untraceable diffusion process is local linearization3,
i.e. the general process is approximated locally piecewise by linear diffusion process.

dyt = κtytdt + σtdW,

where the parameter (κt, σt) is constant in the interval (t, t+1), but they are generally
time-varying from one interval to other interval. Note that Assumption 2.1 is a local
assumption on the process within the interval (t, t + 1). Therefore, this assumption
can be approximately satisfied by all locally linearized general continuous stochastic
processes. In this sense we can apply the derive updating rule (5) approximatively
to all general forecasting models.

2.3 Updating Forecast when only some Information arrives
between two periods

One complication with multivariate cases is that often only for a subset of variables
new information is available at higher frequency. This is in many cases the reason
why the forecasting model is constructed as time-discrete model at the lower fre-
quency. Then updating of a forecast must be done conditionally on this subset of
variables. For this purpose we separate the variables into two parts, Yt = (Y ′

1t, Y
′
2t).

Y1t represents those variables for which we have new information at t + ∆t, while
Y2t represents those variables for which we don’t have new information. Using the
train rule of expectation, we have

E(Yt+1|Ωt, Y1,t+∆t) = E((E(Yt+1|Ωt+∆t)) |Ωt, Y1,t+∆t)

E(Yt+1|Ωt+∆t) can be calculated using the updating formula in (5) which in this case
takes the following form.

E

(
Y1,t+1

Y2,t+1

∣∣∣Ωt+∆t

)
=

(
Y1,t+∆t

Y2,t+∆t

)
+ (1−∆t)

(
E(Y1,t+1|Ωt)− Y1,t

E(Y2,t+1|Ωt)− Y2,t

)
(18)

Now we need to calculated

E

(
Y1,t+∆t

Y2,t+∆t

∣∣∣Ωt, Y1,t+∆t

)

According to A1 in Assumption 2.1 the forecasting model in (1) can be written as
follows.

(
Y1,t+∆t

Y2,t+∆t

)
=

(
Y1,t

Y2,t

)
+ ∆t

(
E(Y1,t+1|Ωt)− Y1,t

E(Y2,t+1|Ωt)− Y2,t

)
+

(
ε1,t+∆t

ε1,t+∆t

)
(19)

3See Ozaki (1992) for more details.
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Premultiplying equation (19) with

(
I 0

−Σ21Σ
−1
11 I

)
we eliminate the correlation

between the forecast error of ε1,t+1 and that of ε2,t+1 and obtain:

Y2,t+∆t = Y2,t+∆t(E(Y2,t+1|Ωt)−Y2,t)+Σ21Σ
−1
11 (Y1,t+∆t−Y1,t−∆t(E(Y1,t+1|Ωt)−Y1,t))+ε∗2,t+∆

where ε∗2,t+∆ = ε2,t+∆ − Σ21Σ
−1
11 ε1,t+∆ is uncorrelated with ε1,t+∆. Taking the expec-

tation conditionally on Y1,t+∆t we have:

Ŷ2,t+∆t|Y1,t+∆t,Ωt = Y2,t+∆t(E(Y2,t+1|Ωt)−Y2,t)+Σ21Σ
−1
11 (Y1,t+∆t−Y1,t−∆t(E(Y1,t+1|Ωt)−Y1,t))

(20)

Inserting Ŷ2,t+∆t|Y1,t+∆t,Ωt from (20) into (18) we obtain the updating rule for the
case when only a part of the information is available between current period and
the next period.

E

(
Y1,t+1

Y2,t+1

∣∣∣Ωt, Yt+∆t

)
=

(
Y1,t+∆t

Ŷ2,t+∆t|Y1,t+∆t,Ωt

)
+(1−∆t)

(
E(Y1,t+1|Ωt)− Y1,t

E(Y2,t+1|Ωt)− Y2,t

)

(21)

3 Two Application Examples

The formula in (5) can be used to update forecasts in a quarterly model using
monthly new information. In this case ∆t assumes the value of 0.33 and 0.66 for
the first and the second month respectively. For the third month ∆t = 1, formula
(5) becomes the usual updating formula for quarterly data.

Example 1 Forecasting a unit-root variable.
Many economic time series such interest rates, exchange rates and stock market

indices are modelled as random walk processes. It is well known that random walk
processes are Markov and the best forecast for the future is the current value.

Suppose that we have a quarterly model for a certain interest rate that is for-
mulated as a unit root process as follows.

rt+1 = ρrt + εt+1.

where ρ = 1. We have r̂t+1|t = E(rt+1|Ωt) = rt. This model says the best forecast
for the interest rate in next period is the current value of the interest rate. After
one month we have new information about the interest rate rt+0.33. According to
updating formula (5) we have

r̂t+1|t+∆t = rt+∆t + (1−∆t)(r̂t+1|t − rt) = rt+∆t.

This is the same what we would have done intuitively when we regard the interest
rate follows a random walk.

Example 2 Forecasting Consumption Growth
We consider an example of forecasting the Australian growth of private con-

sumption expenditure using the consumer sentiment index. A VAR(5) model is
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fitted to the log difference of the real private consumption expenditure and log of
the consumer sentiment index. 4

(
y1,t+1

y2,t+1

)
=

(
c1

c2

)
+

5∑

k=1

(
c11,k c12,k

c21,k c22,k

)(
y1,t−k

y2,t−k

)
+

(
ε1,t+1

ε2,t+1

)
, (22)

where y1,t is the first difference of log of the private consumption expenditure and
y2,t is the log of the consumer sentiment index. The estimated variance-covariance
matrix of the residuals is

Σ̂ =

(
0.00003496 0.00003220
0.00003220 0.00641546

)

For the September quarter we have y1,t = 0.000571, y2,t = 4.5240. The forecast for
the December quarter 2008 was y1,t+1|t = 0.005127, y2,t = 4.5930. The realization
of the consumption growth in the December quarter was 0.000865. According to
this realization the September forecast overestimated the December consumption
growth. The data for the private consumption expenditure are available quarterly,
while the data of the consumer sentiment index are available monthly. This is the
case when only a part of the information arrives between the current period and
the next period. Using the updating rule (21), we could update the forecast of the
consumption growth for the December quarter, when the October observation of
the consumer sentiment index was available. The index value was 82.0. According
to the updating rule (21) we obtain y1,t+1|t+∆t = 0.003582 and y2,t+1|t+∆t = 4.4523.
This was an improvement of the forecast.

Over the last 5 years the root mean square error (RMSE) of the quarterly one
step ahead forecast of the consumption growth was 0.0051. The MSE of the updated
quarterly forecast was 0.0047. This shows that the simple updating rule (5) can
improve the forecasting quality in empirical cases.

4 Concluding Remarks

Time-discrete models are the most popular models used in forecasting economic
time series. One often encountered problem is to update forecasts according the
newest information. If models are set out to be time-discrete, new information that
arriving between the current period and the next period cannot be directly used in
the model. In this note we attempt to formalize an updating rule for forecasting
when information arrives between periods in a time-discrete model. Using the ex-
isting model structure, our approach bridges the process between periods by linear
interpolation. The interpolation formula provided has the following properties: (1)
It is consistent with the original model at discrete time points; (2) If the original
model is for VAR(1) the interpolation formula gives the variance minimal forecast of
the underlying time-continuous model, when we taken the original VAR(1)/AR(1)
model as result of a model fitted to a continuous process that only sampled at dis-
crete time points. (3) For a general underlying continuous stochastic process, our
updating rule gives the variance minimal forecast for the approximating process by
local linearization.

4Source of data: Reserve Bank of Australia Australian Bureau of Statistics.
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