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1 Introduction 

Part of social learning is related to an apparently naive behaviour known as herd 

behaviour (Banerjee, 1992) or informational cascades (Bikhchandani, Hirshleifer, 

and Welch, 1992 – BHW, henceforth). Peculiarity of these models, however, is that 

they view agents’ imitative behaviour as perfectly rational, even though 

characterized by imperfect information. 

This behaviour takes place when agents can augment their information set by 

looking at other agents’ behaviour. Although rational, it could cause information 

externalities that result in an aggregate welfare loss (Becker, 1991). In this situation, 

the individual rational behaviour may well result in a non-optimal strategy from an 

aggregate point of view. 

Looking at the real world, we have abundant empirical evidence for 

informational cascades. Actually, one of the most attractive features of these kinds of 

models concerns their direct application to a range of every-day situations. Just to 

cite an example, we can refer to bubbles in financial markets (Plott, 2002).  

 

The idea underlying these models is simple. Consider the case in which I 

have to choose between two unknown restaurants and I have no relevant 
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information about them. However, I can infer that the most crowded is the best and 

I will choose to join the queue. This behaviour is rational, but the possibility that 

first customers have no pregnant information as well is crucial.  

BHW point out the conformity of followers in a cascade contains no 

informational value (p. 998-999), and this argument has been demonstrated by some 

empirical evidence (Anderson and Holt, 1997; Allsopp and Hey, 2000). 

Aim of this paper is investigating the possibility to mitigate informational cascades’ 

negative effects forcing the first k subjects in a queue to play only according to their 

private information. For this purpose, we analyse a sequential model departing from 

BHW’s model in some relevant parts and then we experimentally investigate if 

“society may actually be better off by constraining some of the people to use only 

their own information” (Banerjee, 1992; p. 798).  

The paper is structured as follows. Section 2 is devoted to the new 

specification of the standard model. The experimental design and results are 

introduced, respectively, in Sections 3 and 4. Section 5 concludes.    

 
2 Theory 

In addition to the seminal papers on herd behaviour and informational cascades 

(Banerjee, 1992; Bikhchandani et al., 1992), even more recently a paper on word-of-
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mouth learning (Banerjee and Fudenberg, 2004) note that the inefficient herding of 

the standard models does not occur if some agents are forced to use their own 

private information. Nevertheless, earlier literature did not provide any model 

capturing this feature. Therefore, in order to fill this gap, we develop a new 

specification departing from the standard model as advanced in BHW. We retain the 

main features of the original model. We have a population of I = {1, …, N} 

individuals. Each individual Ni∈  has to decide whether to adopt or not a specific 

behaviour, for example, the adoption or not of a new technology. All individuals 

make their choices in a sequential and exogenously determined order. The gain of 

adopting, V, is the same for all Ni∈ and is either zero or one. These two events  

have the same ex-ante  probability to occur.  

However, each individual i privately observes a conditionally i.i.d. signal 

about V. This signal s is either 0 or 1: 1 is observed with probability p > ½  if the true 

value is 1, and with probability 1-p otherwise. 

Under our specification, the first k (< N) individuals in the queue are not 

allowed to observe the decisions already taken, whereas the entire history of 

decisions is commonly known to the last N-k individuals. We can think of this game 
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as of N-stage game where the first k individuals play simultaneously and the 

remaining N-k  sequentially. 

As the first k individuals can observe only their own signal, rationality 

requires them to follow their private information: they should take on the new 

behaviour if the signal is 1, and reject it otherwise. In contrast, the remaining N–k 

individuals should base their decision on both their own signal and all past 

decisions, thereby choosing the most frequently observed action†. In case of 

indifference, we assume that individual i with i = k+1 , …, N follows the tie-

breaking rule of adopting or rejecting with equal probability. 

In our specification it is as if individual i, with i = k+1 , …, N  has an 

advantage of additional signals. In this manner, we therefore expect our 

specification to lead to a more socially efficient final outcome, as the society has a 

mechanism that allows to aggregate the information in a later stage and in a more 

correct way.  

 

                                                 
† More precisely, Anderson and Holt (1997) show that the optimal strategy in a Bayesian sense 

whenever the two events are equally probable and signals identically distributed corresponds to the 
very simple strategy of doing the count of the previous decisions, one’s own signal included. 
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In their model, where all decision makers are allowed to observe their 

predecessors’ action, BHW derive the unconditional ex ante probability of a cascade 

and the ex ante probability of no cascade after an even number of individuals n. 

They also derive the probabilities of ending up in a correct cascade and ending up in 

a wrong one. We derive the same probabilities after having taken in consideration 

the fact that the first k players acting only based on their own signal s. We show our 

main results in the Appendix. At this point, however, it may be more illustrative to 

compare probabilities of ending up in a correct cascade (to a some extent, it can be 

consider as an index of efficiency) under the two specifications for some different 

parameter values (k, number of players observing only their own signal; p, 

probability of signal correctness; n, number of players having made their choice 

after which the probability is assessed). Figures are shown in Table 1. 
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                                      Table 1  Probability of a correct cascade: Comparative  

                                       static analysis and comparison between models‡  

P = .75 – n = 
100 

(k = 
10) 

(k = 
56) 

(k = 
98) 

BHW .8077 .8077 .8077 
Our 
specification 

.9690 .9999 .9999 

 
(k = 6) - p = .75 n = 10 n = 100 n = 

1000 
BHW .8075 .8077 .8077 
Our 
specification 

.9333 .9370 .9370 

 
(k = 56) – n = 
100 

p = .55 p = .85 p = .99 

BHW .5664 .9011 .9949 
Our 
specification 

.7778 .9999 1.000 

 

At a first glance, it is evident that probability of ending up in a correct 

cascade is higher under our specification throughout. Entering into details, we can 

point out that as k increases (top panel), probability of a correct cascade becomes not 

statistically different from 1, whereas under the standard model the probability is 

quite high, but never reaches this level. Other results are more obvious, in the sense 

                                                 
‡ In the first row different parameter values at which probabilities are computed. In boldface, 

parameters held constant for each comparative static exercise. Different values of k in parentheses 
since relevant only to our model.      
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that probability of a correct cascade is monotonically increasing in the number of 

subjects that have already made a decision (n, middle panel) and in the signal 

correctness (p, bottom panel) under both the two specifications, but nevertheless 

always higher under ours. 

Probably it may be interesting to combine results regarding the effect of 

changes in signal correctness and number of subjects that act with no clue regarding 

previous decisions. We perform these comparative static exercises varying 

simultaneously p and k, while keeping N  - the number of individuals in the 

population – constant. Consequently, we have the opportunity to note that for each 

value of k there is a probability p* under which the difference between the two 

specifications is maximised. The converse is also true. 

 

3 Experimental design 

In order to test empirically whether the new specification of the model allows to 

achieve a social improvement, we ran two computerized treatments at the 

laboratory of ESSE at the University of Bari. The control treatment was set in 

accordance with the original model (T1, henceforth), whereas in the second 
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treatment we test the new specification, with the first k = 4 subjects  forced to play 

basing their decision exclusively on their private information§ (T2, henceforth).  

The experiment was programmed using the Z-tree software (Fischbacher, 1999). 

Each treatment lasting for about an hour was made up of 22 periods, of which 2 

were trial ones. The trial periods were necessary for subjects to become friendly 

with the experiment, providing them also the opportunity to ask questions about the 

instructions (available on request). The final payment was made on only the 20 real 

periods and paid at the end of each treatment.  

We had N = 10 subjects for each treatment sitting next to a PC terminal 

connected by a net. The subjects could not see each other or communicate. All of 

them were students in Economics not familiar with previous similar experiments. 

In the experiment, subjects acted as entrepreneurs and their task was to 

decide to invest in a new product or not. The order in which they chose sequentially 

was randomly determined period by period**.  

                                                 
§ As we noted above, there is an optimal value for k* for each parameter combination. We 

determined the optimal k* with a Monte Carlo simulation. This simulation provided the winning 
percentages for each position in the queue, provided that we consider the individual winning 
percentage as a proxy for individual utility. The simulation consisted of 10 millions iterations for each 
different value of k, setting N and p at 10 and .75, respectively. We get a measure for social welfare 
summing up individual winning percentages over the entire population, and we picked the case in 
which this indicator was at its maximum.    
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However, subjects did not know whether this product would be profitable or 

not once on the market. Whenever they made the right decision, they gained 0.5€, 

and zero otherwise††. For each period the programme established the true value of V  

but did not reveal it to subjects. Each of them, however, received a free-of-charge 

signal s about V (a sort of a result of a market survey). These signals took either the 

value 1 or the value 0 and the signal correctness (p = .75) was common knowledge. 

The screen displayed these details: one’s own turn to play; the position in the queue; 

where allowed, the decision made by predecessors; and one’s own signal. At the end 

of each period, subjects were informed about the right option and their payoff. 

When all periods were played, subjects were paid and free to leave the laboratory. 

Average payoff was 6.75€. 

 

4 Results 

We start this section showing some data at individual level. In each position, taking 

into account predecessors’ decisions and the signal realization, we determine which 

action should be chosen according to the theory. Consequently, we categorize as 

                                                                                                                                               
** They were informed about their turn via a message on their PC screen. 
†† More precisely, if the product was successful (V = 1), they would gain 0.5€ in case of investment, 

and zero otherwise. If the product was not successful (V = 0), they would gain 0.5€ in case of no 
investment (the right decision in this scenario), and zero otherwise. 
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rational behaviours in accordance with it (in our simple set-up, the optimal strategy 

in a Bayesian sense corresponds to the count, as explained in footnote 1) and 

whenever subjects adopted the tie breaking rule if indifferent, regardless of the fact 

that it produces a cascade or not. At the individual level, we classify as cascade the 

case where “an imbalance of previous inferred signals causes a person’s optimal 

decision to be inconsistent with his or her private signal” (Anderson and Holt, 1997; 

p. 851). As regards behaviours categorized as irrational, namely, inconsistent with 

the theory, we discriminate the case in which it can be rationalized somehow – 

following her own signal – from the case it cannot be explained whatsoever. Results 

in Table 2. 

 

             Table 2  Summary of behaviours observed in the experiment (individual 
level)   

 rational  irrational 
   whose cascade  
   correct wrong  

not 
rationalized

signal-
keeping 

T1 146  4  16  33 21 
T2 171  12  8  24 5 

 

From the table it can be clearly noted that the new specification may be 

effective in driving a more consistent behaviour (73% in T1 vs. 85.5% in T2). 
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However, though lower, among the occurrence of irrational behaviours in T2 the 

percentage of behaviour that cannot be explained in any case is higher than in T1 

(61.1% in T1 vs. 82.7% in T2). Moreover, it interesting that while observing the same 

occurrence of cascade behaviour under the two treatments (20 in each), the 

percentage of a correct cascade is up to three times higher in T2. Finally, we observe 

that cascade behaviour is rather fragile (individuals do not choose to conform to the 

mass, still when their all predecessors made the same choice), and that often they 

also choose to play against their own signal, especially when they are the first in the 

queue. 

 

At this point, in order to test our hypothesis, namely that under the new 

specification of the model the outcome is socially more efficient, we compare the 

average earnings under two treatments. Particularly interesting is the comparison 

between the ex-ante earnings, as it would have been if all individuals behaved 

according to the theory, given the actual signal realization during the experiment, 

and the ex-post earnings, the actual payoffs obtained by participants during the 

experiment. Results in Table 3. 
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                 Table 3  Average earnings for each position and for each treatment 

 Ex-ante earnings  Ex-post earnings 
Position in the 

queue 
T1 T2  T1 T2 

1 0.225 0.4  0.225 0.425 
2 0.325 0.35  0.275 0.325 
3 0.3125 0.475  0.325 0.425 
4 0.33125 0.375  0.275 0.25 
5 0.34375 0.4  0.275 0.425 
6 0.34375 0.4125  0.25 0.375 
7 0.34375 0.4125  0.3 0.375 
8 0.34375 0.40625  0.3 0.4 
9 0.34375 0.425  0.375 0.375 
10 0.34375 0.425  0.375 0.4 
      

TOTAL 3.25625 4.08125  2.975 3.775 
 

First, we note a statistically significant difference between the two treatments 

(Wilcoxon rank-sum test for ex-ante earnings: -3.835, p-value = .0001; for ex-post 

earnings: -3.755, p-value = .0059). Interestingly, each experimental treatment is not 

statistically different from its theoretical counterpart (Wilcoxon rank-sum test for 

BHW and T1: 1.614, p-value = .1066; for our specification and T2: 1.190, p-value = 

.2340). Second, for each position in the queue, we observe always higher average 

earnings under T2‡‡.  

                                                 
‡‡ The lower average payoff for the fourth position cannot be considered as an exception. Indeed, 

under our specification the first k (except for the first) individuals observe their situation worsened 
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In order to give an additional insight into the social efficiency gain, we can 

consider the percentage of winning as a useful proxy for individual utility, and then 

compare this index under the two treatments. In figure 1 we report the index for 

each different position held in the decisional queue. 

 

 
Figure 1  Percentages of winning 

 

Except for the fourth subject in the second treatment (see footnote 6), under the 

second treatment the percentage is always higher than, or at the most the same as, 

                                                                                                                                               
passing from the first to the second treatment, even if the deterioration of their situation is more than 
offset by the improving of the remaining N-k individuals, for an appropriate choice of the value k.   
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under the first treatment. Looking at the graph, we may state that the new 

decisional mechanism is preferable from a social and even individual point of view. 

 

4.1 Econometric analysis 

Finally, we estimate a very simple learning model. Specifically, we constructed a 

model that links decisions in the experiment to a set of determinants, as follows. 

Firstly, the presence of learning is investigated by the use of the variable Time (the 

period number) and the variable Time2, to test for concavity of learning. Moreover, 

in order to gain further insight, we test for the presence of directional learning (or 

Cournot behaviour; Selten and Buchta, 1998) by using the Correctwon variable (a 

dummy variable equal to 1 if in the most recent period the subject made the 

theoretically correct decision and won) and Correctlost variable (a dummy variable 

equal to 1 if in the most recent period the subject made the theoretically correct 

decision and lost). Our dependent variable, Correct, is a dummy variable equal to 1 

whenever subjects make the decision consistent with the theory, 0 otherwise. 

Consequently, we run a probit estimation procedure. Results in Table 4.  
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              Table 4  Maximum Likelihood probit estimation§§ 

Dep. Variable: Correct Marginal 
Effect 

Std. Error p-value 

Time .02199    .01628     0.177 
Time2 -.00084    .00075    0.264 
Correctwon -.13474    .05139    0.011 
Correctlost -.22575    .08449    0.004 
T2 .15977    .04393     0.000 
    
Log likelihood -217.271   
Pseudo R2 0.0478   
NOBs 400   

 

We note no trend in observing a more consistent decisions over time (in fact, 

Time is not statistically significant), consequently, concavity for learning is not 

statistically significant, either. Even directional learning is not a firm determinant of 

learning. Indeed, even if both Correctwon and Correctlost are significant, 

nevertheless Correctwon does not present the correct direction (positive sign) in our 

analysis. In fact, we expect probability of making the correct decision increasing if in 

the previous period subject made correct decision and won.  

                                                 
§§ Note that the reported significance levels assume independent observations, though this is 

unlikely to be the case. 
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Interestingly, on the other hand, the dummy variable for the treatment T2: 

the decisional mechanism implemented in this treatment is actually effective in 

increasing probability of making the correct decision by 16%.          

 

5 Conclusions 

Negative informational externality produced by phenomenon of informational 

cascade has attracted concern in economic literature. Consequently, it may be of a 

some interest to find mechanisms useful in eliminating or at least in minimising this 

externality. The paradox whereby burning a piece of information in a first stage of 

the sequential decisional process could turn to be a social improvement in a later 

stage was indeed worth investigating. This was our task. Our empirical results show 

that this decisional mechanism actually leads to a behaviour more consistent with 

the theory that in turn produces a social improvement.  If supported by further 

analyses – aimed, for example, to design an implementable self-enforcing 

mechanism - our result may open new challenging scenarios once applied to reality. 
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Appendix 

Our analysis was structured in several stages: first, probabilities were derived 

varying each time the value of k – number of individuals acting with no clue 

regarding previous actions. Then, since constant regularities were present, we were 

able to generalize the model for any k.  

The probability of NO-cascade after n = 2m individuals is simply the probability of 

observing the same number of the two kinds of signals, s = 0 and s = 1. In our 

specification it becomes, whenever k is an even number: 
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At this point it is of greater importance to consider how the probability of ending up 

in a correct cascade after n  = 2m individuals becomes, whenever k is an even 

number: 
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and whenever k is odd: 
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Finally, consider the probability of ending up in a wrong cascade after n = 2m 

individuals, whenever k is an even number: 
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and whenever k is odd: 
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There are some points we have to clarify: in eq. (2.a), we have to work out the the k-

th  binomial power expansion in the first term until the p exponent is strictly greater 

than the 1-p one, whereas in eq. (3.a) we have to work out the expansion until the 

1-p exponent is strictly greater than the p one. For example, in (3.a), if k = 6, we 

have to work out until 1-p is raised to the fourth power and p to the second one. 

Also in eq. (2.b) and (3.b) we have to follow a very similar rule as in (2.a) and (3.a): 

we have to work out the the k+1-th  binomial power expansion in the first term 

until the two exponents are equal, but we have also to quarter the corresponding 

term.  
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